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where p is a positive polynomial on R and k > 0. Let ¢q, ¢y, ... be the
eigenfunctions of L with eigenvalues Ao, Ay, ... By Corollary 2.9 there exists
an x such that for every fel (R)

lim Y (=i (fs @) ey(x)=[(x) ac.

n-roo /'lj<n

In more dimensions our method gives a similar result only for the
operators L with the potentials which are sums of squares of polynomials,
since in several variables not every positive polynomial is a sum of squares of
polynomials.
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Some classes of commuting n-tuples of operators
by
MUNEO CHO and MAKOTO TAKAGUCHI (Hirosaki)

Abstract. In this paper we study the inclusion relations among some classes of operator-
families and the topological properties of these classes,

1. Introduction. Throughout this paper, H will be a complex Hilbert
space with the scalar product ( , ) and the norm |||, and all operators on H
will be assumed to be linear and bounded. For an operator T on H, let o(T)
denote its spectrum, r(T) its spectral radius, W(T) its numerical range and
w(T) its numerical radius.

In case of a single operator, the properties of a normal operator are well
known because it has spectral resolution. Thus many authors have discussed
some classes of operators which are close to being normal in some sense. It
is well known that there exists an inclusion relation among these classes. We

spectraloid
normaloid convexoid
transloid (Gy)
P
hyponormal spectroid .
subnormal
quasinormal

normal

shall indicate it by the diagram above (e. g. see [10]). Here, T is called
normaloid il ||T|| = w(T), and transloid iff T—AI is normaloid for each
leC. T is called convexoid iff W(T) =coa(T). (X denotes the closure of the
set X < C and coX its convex hull) T is called spectraloid iff w(T) = r(T).
T belongs to (Gy) iff |(T=AD"Y|| = 1/d(A, a(T)) for each ie C—a(T), where
d(1, X) denotes the distance between 4 and the set X < C. And T is called
spectroid iff o(T) is a spectral set for T in the sense of von Neumann.

4 ~ Studia Muthematica 80.3
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In this paper we study analogous situations for commuting n-tuples
of operators. The properties. of a commuting n-tuple of normal operators
are well known, because there exists a suitable measure space (X, ) and
an n-tuple @ =(@y, ..., @,) of functions in L* (X, u) such that each 4,
k=1,...,n, is unitarily equivalent to multiplication by ¢, on I? (¥, 1). So we
shall introduce some classes of n-tuples of operators similar to the classes of
single operator case. In Section 3 we shall give some results on a doubly
commuting n-tuple of hyponormal operators. In Section 4 we shall show that
there exists an inclusion relation among these classes which is similar to the
inclusion relation among the corresponding classes of single operators. And
finally, in Section 5, we shall study the topological properties of these classes.

2. Definitions and preliminaries. In the sequel, by an operator-fumily
we shall mean a commuting n-tuple of operators and denote the set of all
operator-families by B"(H).

Let A= (A, ..., A,)eB"(H). We shall say that a point z = (zy, ..., z,)
of C"is in the joint approximate point spectrum o, (A) of A if there exists
a sequence {x;} of unit vectors in H such that

ll(z— A x|l = 0

A point z =(zy, ..., z,) of C" will be said to be in the joint approximate
compression spectrum a,(A4) of A if there exists a sequence {x;} of unit vectors
in H such that

(i—»), k=1,..., n.

((z— A)* x| — 0

And a point z =(zy, ..., z,) will be said to be in the joint point spectrum
0,(4) of A if there exists a non-zero vector x such that

k=1,...,n

(i—c0), k=1, ..., n.

Ay x =z, X,

Next we shall describe a definition of joint spectrum. There are several
definitions of the joint spectrum, but since the concept of Taylor’s joint
spectrum seems to be the most natural generalization of the usual spectrum
of an operator, we shall describe it (cf. [187, [5]).

Let E" be the complex exterior algebra on n generators ey, ..., e, with
multiplication denoted by A. E}, will stand for the space of elements of
degree p in E" (p=1, ..., n).. Then we denote by E}(H) the tensor product
H®E},. Define a map D,: E4(H)~ El.,(H) by

r
D,(x®ej, A ... A ¢) = Z:i(«1)’“Aj,x®e,1 AN NG A LA,
where ~means deletion. Also define Dy = D, = 0. Then we see that every

D, is a continuous linear map and D,0D,., = 0. Thus, we get the sequence
E(H, A) '
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D, -
E(H, A): 0 =3 En(H) =" B3, () 25 .. 22, pr o) 25 En ey 20,

Then A = (A4, ..., 4,) is said to be nonsingular if E(H, A) is exact, ie.,
kerD, =ranD,,, for all p. Taylor's joint spectrum Sp(4) of A4 is the set
of points z=(zy,...,2) of C" such that z—A=(z~A4y,...,z,—A)
is singular (but the spectrum of a single operator T will be denoted
by a(T)).

Next we shall define the joint inf-spectral set and joint sup-spectral set.
Suppose that a closed subset X of C” includes Sp(4). Denote the set
of all rational functions without singularities on X by U(X). For
u(z) =ulzy, ..., z,)e W(X), u(d) =u(A4y, ..., 4,) is well defined (see [19]).
Then X is said to be a joint inf-spectral set for A if

inf{il llae () xl1?: 1 xif = 1}>inf{f_‘, lu(2)|*: ze X}

for all n-tuples (uy, ..., u,) of elements of U(X). And 'similarly X is said to
be a joint sup-spectral set for A if

sup { ), llu (A)x|*: fix] =1} < sup{i () ze X}
k=1 k=1

for all n-tuples (uy, ..., u,) of elements of U(X). In case of n =1, both the
joint inf-spectral set and joint sup-spectral set coincide with the usual
spectral set (see [12]).

The joint numerical range of A is the subset W(A) of C" such that

W) = {(A, %, %), ..., (4,x, x): xeH, ||xi| =1}.

The joint operator norm, joint spectral radius and joint numerical radius of
A, denoted by |[A]l, r(4) and w(A4) respectively, are defined by

" L
il = sup {( X, 14 xI: Il = 1},

r(A) = sup {(él ]z,‘|2)7: (24, ..+, 2,) €Sp(4)}

and

w(A) = sup {(}”j (4, x)2)% Il =1},
k=1

respectively.

It is well known that o,(4), o,(4) and Sp(A4) are non-empty compact
sets, and that o,(4) U g,(4) <Sp(4) ccoW(4) (cf. [21], [20], [18], [3],
[97). Consequently it is evident that [|4|| > w(A4) > r{4). T, in particular,
A =(Ay,..., 4,) is a doubly commuting n-tuple (i.e, AyA;=A4;4, and
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A A¥ = AF 4, for k+#j) of hyponormal operators, then Sp(4)=o,(d)
(cf. [5]). And, moreover, if 4 is an operator-family of normal operators,
then Sp(d) = 0,(4) = 0,(4) and coSp(4) = W(4) (cf. [7]).

In particular, the spectral mapping theorem also holds for the joint spec-
trum as follows.

THeorREM A ([19], Theorem 4.8). Let A =(Ay, ..., A,)e B(H) and
Uys ...y Uy €U(SP(A)). Let u: Sp(A) —C™ be defined by u(z) =(u;(2), ...
cey U (2)) and let u(A) = (ug (A), ..., Um(A). Then Sp(u(A)) =u(Sp(4)).

Next we shall define some classes of operator-families. An operator-
family A =(Ay, ..., 4,) is called jointly normaloid if |4}l =w(4). An
operator-family A =(4,, ..., 4,) is called jointly transloid if A—z = (4~
—Zy, ..., Ay—2z,) is jointly normaloid for any point z =(z,, ..., z,) of C".
Similarly A are called jointly spectraloid and jointly convexoid if w(A) = r(A)
and co Sp(4) = co W (4), respectively. An operator-family A is said to belong
to joint (Gy) if

" L
inf{( 3 (Ae—2z) xlI?P: Ixll = 1} > d(z, Sp(4))
k=1
for all z=(z, ..., z,)e C". Especially if for all n-tuples B = (B,, ..
linear combinations of {4y, ..., 4,}

., B) of

n 1
inf‘{(kZl IBx—z) xlI?): |Ix| = 1} > d(z, Sp(B)),
we call 4 to belong to complete joint (G,). An operator-family A4 is called
Jointly inf-spectroid if the joint spectrum Sp(4) is a joint inf-spectral set and
Jointly sup-spectroid if Sp(A) is a joint sup-spectral set for A.
It is easily seen that every jointly convexoid operator-family and jointly
normaloid operator-family are jointly spectraloid (cf. [2]).

3. A doubly commuting n-tuple of hyponormal operators.
TueoreM 3.1. Let A =(Ay, ..., A,) be a doubly commuting n-tuple of
hyponormal operators and suppose that
r=(ry, ..., 1) €Sp(A* 4) LU Sp(44¥), »
where A*A =(AT Ay, ..., AYA) and AA* = (A, A%, ..., A;AY). Then there
exists a point z ={zy, ..., z,)eSp(A) for which |z,| = /ry, k=1, ..., n.

We shall prepare the following lemmas for .the proof of the above
theorem.

Lemma 3.2. ([16], Theorem 7). Let T be a hyponormal operator and
suppose that

rec(T* TYu o(TT*).
Then there exists a point zeo(T) for which 2| = \/;

icm
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®

Lemma 3.3 ([1], Theorem 1). Let B(H) be the *-algebra of all operators
on H. Then there exist an extension space K of H and a faithful
*.representation of WB(H) into B(K): T—T° such that o,(Ay,..., A,)
=0,(4}, ..., A =0,(4], ..., AY).

Proof of Theorem 3.1. In what follows, for an operator T we shall
denote (T* T)** by |T|. We shall prove the theorem by induction.

For n=1, the theorem holds by Lemma 3.2,

For n > 2, assume that it holds for any doubly commuting (n— 1)-tuple
of hyponormal operators. Then we shall prove that the theorem also holds
for a doubly commuting n-tuple 4 =(4,, ..., 4,) of hyponormal operators.
We assume that r =(ry, ..., r,)eSp(A* 4). Since Sp(4* A) = g,(4* A), we
have (\/r1, ... \/a)ecr,,(lAll, ...s |[4,)). Consider the extension space
K of H and the faithful *-representation B(H) — B(K): T T° in Lemma
33. Then A°= (49, ..., 4 is a doubly commuting n-tuple of hypo-
normal operators on K. Let 9 =ker(4%—./7,) (# {0}). Then M is a
reducing subspace of A, ..., A%, and (Adg, ... AS_y) is a doubly
commuting (n—1)-tuple of hyponormal operators. Since

pAENAL
is not invertible, it follows that
ker (%, (481~ 707) = () ker 4l - 7} 090 % (0}
Hence
RN

i$ not invertible, and so, by the assumption of the induction, there exist

Zyy .ev, Zy—1 €C such that |z| = /1, k=1, ..., n—1, and
. n—1
E (AI?Iun_Zk)(AI?m_'Zk)*
k=1

is not invertible. Therefore
n—1
Y (A9 —z) (AL = z)* + (148 —/r)*
k=1

is not invertible, and so

ker {3 (49— 20 (40— 20" +14% — /%) % (0} e
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Set

n~1

N = ker(z (AP —z) (A0 — z)*) = ﬂ ker (A9 —z,)*.

Then 9 reduces A2. And since 9 M+ {0}, \/— €0 (|4%y)). Hence by
Lemma 3.2 there exists a point z,,eo(A,,m) such that |z,| = \/_,, - Since A9, is
‘hyponormal, {(A%9—2s) (AQin—2z,)* is not invertible. Hence

(Ak —z) (Ak —z)*

-

is not invertible, and so

(Ac—2z) (A —2)*

-
™=

is not invertible. Thus this point z = (zy, ..., z,) belongs to 6,(A) = Sp(A)
and satisfies |z] = /r,, k=1, ..., n. In case of reSp(44*), the proof is
similar. Consequently, the proof is complete.

In consequence of Theorem 3.1 we have the following results.

TreoreM 34. Let 4 =(Ay,..., A,) be a doubly commuting n-tuple of
hyponormal operators. Then there exlsts a z=(zy,...,2,)€Sp(A) such that
lzl =1|All. That is, A is jointly normaloid.

Proof. Since A* 4 is an operator-family of Hermitian operators we
have coSp(A* 4) = W(4* 4). And observing that 14l -*sup{ Z (A} A, x, %):
,r,,)eSp(A* A) such that

Z 7 =|l4]|*. Hence by Theorem 3.1 there exists a point z = (215 --.s 2,)E

]IxH =1}, we see that there exists a point (ry, ..

ESp(A) such that |z| = ||AJl. Thus the proof is complete.

Tueorem 3.5. If A =(Ay, ..., 4,) is a doubly commuting n-tuple of
hyponormal operators, then it follows that

inf{(kZ (A~ zk)*xll) lixll =1} = d(z, Sp(4)).
=1
Jor every z =(zy, ..., z,)e C".
Proof. Since A4— Z-(Al"zls--- z,) is a doubly commuting

n-tuple of hyponormal operators, in a sxmllar way as in the proof of Theorem
34 there exists a point 1 = (A, ... » A €Sp(A—2z) such that

& inf{k;1 (A= 2% xl|: lxl] = 1} = A2,

icm
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Since Sp(4—z) = Sp(A4)—2z, it follows that
d(z, Sp(4))*.

» 1) €Sp(A) be such that d(z, Sp(4)) =

inf {k;l!(Ak-Zk)*JCHzi Ixi =1} >

Conversely, let p = (g4, ... |z— . Then

it is clear that

(z Ay~

k=1

=

(Z (A~ XII) +d(z, Sp(4))

for every unit vector x. So we obtain the opposite inequality, and so the
proof is complete.

z)* x'lz)

4. The inclusion relations for classes of operator-families. First we shall
show the following theorem.

TueoREM 4.1. Let A =(Ay, ..., Ay be a normal operator-family. Then
Sp(A) is a joint inf-spectral set and joint sup-spectral set for A.

Proof. Since 4 is a commuting n-tuple of normal operators, it is well
known that there exists a suitable measure space (¥, u) and an n-tuple
@ =(¢y, ..., ¢,) of functions in I (X, u) such that each A, is unitarily
equivalent to multiplication by ¢, on IZ?(¥X, y). That is,

A f =@ f forall fe? (X, ), k=1,...,n

Then the joint spectrum Sp(4) of A is the joint essential range of
@ =(¢y, ..., @, (cf. [8], Theorem 5.2), that is, the set of all points z
=(z4, ..., z,) in C" such that for every ¢ > 0

ulfrex: 3 o0zl <5))>0

Here we claim that u({teX¥: (@, (D), ..., P.())¢Sp(4)}) = 0. Because, for
each z = (zy, ..., z,) ¢Sp(4), there ex1sts an open sphere U, about z such that
u({teX: (0,00, ... 2, 0)U.}) =
Hence by Lindelofs theorem it follows that
n({te®: (o), .. @a(0)#SP(A)) =

Therefore, for each n-tuple u = (uy, ..., u,) of elements in _LI(Sp(A)) and
SelZ (%, w, I/l =1, we have

= 3 [fules 0,
- % (o1 9, -

{texi(@1 (). 0p)eSp(4)} k=1

3 [ () 7112 s o O)?1F (O dpa(0)
k=1

o @)1 O du().
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And so it follows that
inf {3 fu(A) 1% (11l =1} = inf {3 [ (2)1*: zeSp(A)}
k=1 k=1

and

n

sup {3 () £ (£l = 1} < sup{ 3 lw ()% zeSp(a)}.
k=1

=1

Thus the proof is complete.

Next we cite the following theorem due to R. E. Curto.

THeoreM B ([6], Theorem 1). Let A =(A4,, ..., A,) be a doubly com-
muting n-tuple of subnormal operaiors on H with minimal normal extension
N =(N;,..., N,) on K > H. Then Sp(4) = Sp(N).

Note that any doubly commuting n-tuple of subnormal operators has a
commuting normal extension. The following theorem follows from Theorem
4.1 and Theorem B.

TueoREM 4.2. A doubly commuting n-tuple of subnormal operators is
jointly inf-spectroid and jointly sup-spectroid.

Proof. Let A= (4, ..., 4,) be a doubly commuting n-tuple of sub-
normal operators on H and N = (Ny,..., N,) be its minimal commuting
normal extension acting on K o> H. Then for any n-tuple (uy,...,u,) of
elements of U(Sp(4)), we have

inf{é‘,l ll (A x)1*: xeH, |Ix|| =1} = inf{k:/:l e (N)xII?: xeK, |Ixl| = 1}
>inf{zn: | (2)*: zeSp(N)}
k=1

> int{ 3 Ju ()% zeSp(A)).
k=1

Hence A is jointly inf-spectroid. Similarly we can show A is jointly sup-
spectroid.

Next we shall prepare a lemma to”study jointly convexoid operator-

families. In what follows we shall abbreviate ((4y x,x), ..., (A,,x.x)) and
X ||Akx][2)1/2 to (4x,x) and ||Ax||, respectively.
k=1

LemMma 43. Let X be a closed convex set of the n-dimensional unitary
space C" such that p,(X) is contained in twe ieft closed half-plane of C, where
P is the projection of C" onto the kth coordinate space. Then, if

(A~2)x1* = d(2, X)-|(A= D) x, x)|

icm
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Jor all he C" and xe H, p,(W(A)) is also contained in the left closed half-plane
of C.

Proof. Let 4, > 0. Then from the assumption
IA=2)xI1? > inf{lze—&): zeep (X))} -[((A-A)x, x)
n 1
= j’k'(z I(4; x, x)_/{ilz)E
i=1
for every vector x. Squaring both sides of the above inequality, dividing by
A3 and letting 4, — o0, we obtain
—4-Re(A,x, x) = —2-Re (4, x, x).
This implies Re(A, x,x) < 0, and the proof is complete.

THEOREM 4.4. If, for all n-tuples B = (By, ..., B,) of linear combinations of
an operator-family A = (44, ..., 4,), .

[l(B—2)xi|* > d (A, co Sp(B))-|((B— 1) x, )

for all AeC" and xeH, then A is jointly convexoid.

Proof. Since coSp(4) =coW(4), we have only to show the opposite
inclusion. That is, we have only to show that a closed half space which
contains Sp(A4), also contains W(A4), since a closed convex set is the
intersection of closed half spaces that contain it. Let = be a hyperplane of
support to coSp(4) and y =(y,, ..., 7,) a point at which = touches co Sp(4).
n decomposes the entire space C” into two half spaces. Let S be the closed
half space which contains Sp(4), among the two. Here we may assume
YWw=0 k=1,...,n because the translation: z=(z,...,2,)—>z—7
=(zy =915 .--» 2,—7%,) takes y, Sp(B) and W(B) into (0,...,0), Sp(B—7)
and W(B—y), respectively, and the following inequality holds:

I{(B=7)—(A—)} x> = d(A—y, coSp(B—7))- [({B—7—(A—)} x, x)|.

Then there exists a regular matrix M:

Oy ve Ogy

Apg v+ Opy

such that p, (M=) and p,(MS) are the y-axis and left closed half-plane of the
first coordinate space, respectively. Then p, (M Sp(4)) = p, (Sp(Dy, ..., D,))
is contained in the left closed half-plane of the first coordinate space, where
D is oy Ayt Ay + ... + 04, Ay k=1,..., n. And then, from Lemma 4.3
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and the assumption, p, (W(D1, ﬁ_D,T)) is contained in the ]eft"kclf)sed half-
plane of it. Therefore, since M"‘E/_(Q_I, ..., D,) is W(A), co W(A) is con-
tained in S. Hence coSp(A) » co W(A) and the proof is _complete,

CorOLLARY 4.5. For an operator-family A =(4,, ..., 4,), the following
five conditions are mutually equivalent:

(i) A is jointly convexoid,

(i) d(4, coSp(B)) < inf{|((B—A)x, x): Xl =1} for il
n-tuples B = (By, ..., B,) of linear combinations of {Ay, ..., Au}

(ii) d(4,coSp(B)) <inf{|(B~A)x|: |Ixl| =1} for all AeC" and n-tuples
B =(By, ..., B,) of linear combinations of {A;, ..., A4}, !

(iv) d(4,co Sp(B))-[((B—A)x,x)] <(B=A)x||* for all ieC", xeX and
n-tuples B = (B, ..., B,) of linear combinations of {A1, ..., A},

(v) A—A are jointly spectraloid for all points 1 = (A, ..., 4,) in C".

Proof. Obviously, (i) implies (ii), (ii) implies (iii) and (iii) implies (iv). And
(iv) implies (i) from Theorem 4.4. Thus we have only to show the equivalence

between (i) and (v).
Suppose that w(4—A) =r(4—A) for every point 4 in C". Since a closed
convex set of C" is the intersection of all spheres that contain it, we have

AeC"  and

=

coSp(4) = ﬂ’mu---, JTAE (Z i~ 2 2? < r(A= D)}
n L
= Q{(ul, oo ) (0 =Ml S w(d=2)}
k=1
=co W(A4).

Hence (v) implies (i).
Conversely, if A is jointly convexoid, then w(A4—
point Ae C" since

A) =r(A—2), for every

com =coW(d)—1 =co Sp(d)—2
=coSp(4d—4).
Hence (i) implies (v).
5. Topological properties for classes of operator-families. First we shall

show that the set of all normal operator-families is a very thin subset of
complete joint (Gy). For this purpose we prepare the following lemmas.

Lemma 5.1. If X is a non-empty compact subset of C", then there exists a
commuting n-tuple N = (N,, ..., N,) of normal operators such that Sp(N) =

icm

Commuting n-tuples of operators 255,

Proof. Let {o; = (o, ..., %,))2; be a sequence of points in C" such
that {a;} is dense in X. Set

Then N =(Ny, ..., N,) is a commuting n-tuple of normal operators, and
Sp(N) is the closure of {o;} and so Sp(N) = X.

LemMa 5.2, If A =(Ay, ..., 4,) is any commuting n-tuple of operators
on H, then there exist a Hilbert space K and a commuting  n-tuple
N =(Ny, .... N,) of normal operators on K such that A(—BN (A1 ®Ny, ...

. Ay®N,) belongs to joint (Gy).

Proof. There exist a Hilbert space K and a commuting n-tuple of
normal operators N = (N, ..., N,) on K such that Sp(N) = co W(A), by the
above lemma. Then, since Sp(A@®N) = Sp(A4) U Sp(N) = Sp(N), it follows
that for every ze C"

inf {(A®N—z)x]: |Ixl| =1}
= inf {|[(4—2) x; BN —2) X,l: [lx, > +[x,))* = 1]
= min{ inf [[(4~z2)x], ”ilrllf N —z) if}
xj|=1

[l =1

> min { (z. W(A)), d(z, Sp(N)}
>

Thus A@®N belongs to joint (G,) and the proof is complete.

Remark. The operatorfamily A@N constructed in the proof of
Lemma 5.2 belongs not only to joint (G,) but also to complete joint (G,).

THEOREM 5.3. The set M of all commuting n-tuples of normal operators is
nowhere dense in complete joint (G,) when dim H = co.

Proof. Since M is closed, to show that J is a nowhere dense subset of
complete joint (G,), it suffices to show that M has empty interior in complete
joint (G,). Let A =(4,,...,4,)eMN.

Here we cite the notations used in the proof of Theorem 4.1. Let ¢ be an
arbitrary positive number. For each point z = (zy, ..., z,)€Sp(A4) we denote
the open e¢-sphere about z by U(z,e). Since {U(z, €)},e5504) IS an open
cover of Sp(4) and Sp(A4) is compact, there exists a finite subcover of
Sp(A). Consequently, since dim I? (X, u) = oo, there exists- a subset
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¥o = {t: (01(1), ..., 9, ()€U (2% &)} of X such that dim I? (%5, @) = 0. Then
set

I if reX¥—X,,
U {z,? if teX,,

and let T, be the multiplication operator induced by Ve, k=1,...,n And

then set
0 00
= = k=2,..., .
51 ‘[0 0} S [o oJ’ "

Since S =(Sy, ..., S,) is commuting, in the same way as in Lemma 5.2 we
can construct an n-tuple N =(Ny, ..., N,) of normal operators such that
S®N = (S;®Ny, ..., S,®N,) acts on I (¥,, y) and belongs to complete
joint (G,). Let Z=(Zy, ..., Z,) be the n-tuple of the zero operator on
I? (X—%p, ) and B = T+(Z@S®N). Then B is a non-normal operator-
family belonging to complete joint (G;). And since

Sp(S®N)=coW(S) and [[S@N|<s

we have
|A—B|| < JJA—T||+||T-B|| < &-+e.

Therefore, since ¢ > 0 is arbitrary, 4 is not contained in the interior of N in
complete joint (G,). Hence the interior of M in complete joint (G,) is empty
and the proof is complete.

Next we shall study the continuity of the joint spectrum. In general, the
joint spectrum Sp(4) is not a continuous function of 4 in B"(H), but Sp(4)
is upper semicontinuous (cf. [17] or it follows from Corollary 3.5 in Curto
[5]). Moreover, if we restrict A4 to normal operator-families, then Sp(4) is
continuous (cf. Theorem 3 in [4]). Furthermore, Janas [14, Theorem 1]
showed that the rationally convex hull of Sp(4) is continuous if we restrict A
to. doubly commuting hyponormal operator-families.

The following theorem is an improvement on these results.

THEOREM 5.4. If {A; = (A;q, ..., An)} is a sequence of doubly commuting
operator-families of hyponormal operators approaching an operator-family
A =(Ay, ..., 4,) in joint operator norm, then Sp(A,) - Sp(A) as i~ co.

The proof of this theorem is directly deduced from the following:

Lemma 5.5. Let A=(A4,,..., 4,) and B= (B, ..
commuting n-tuples of hyponormal operators. Then

Sp(B) = Sp(4)+([|4*— B¥|).

., B,) be two doubly
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Proof. Let z =(zy,...,2)eC" be such that d(z, Sp(4)) > [|4*— B*|.
Then, by Theorem 3.5, it follows that
1

d(z, Sp(A) < (X IAx—z* x|%)?

L

1 n
(I(Ax— Bi)* >CII2)7+(’;1 (1B —zi)* xII?)?

A

1= EM;

-

" 1
< [|4*=B¥|+( X I(Be—z* x|
k=1
for every unit vector x. Therefore,
n 1
0 < d(z, Sp(A))—[|4*—B*|| < inf {( 3, I(Be—z* [P+ lIxll = 1}.
k=1

Hence z =(zy, ..., 2,)¢Sp(B) = ¢,(B) and the proof is complete.

Finally we shall investigate whether each class of operator-families
dealt with above is closed or not in B"(H). We note that if a sequence
{4; = (41, ---> Aw)}21 of operator-families approaches 4 = (44, -.., 4,) in
joint operator norm, then A}, |4} and W(4;) also approach A*, 4] and
W (A), respectively. Moreover, if B; = (B, ..., By) = B =(By, ..., By), then
A; B, — AB, where AB means (4 By, ..., 4, B,). From these facts we have
the following:

ProrostTioN 5.6. The sets of normal, doubly commuting quasinormal,
doubly commuting hyponormal, jointly -normaloid and jointly spectraloid
operator-families are all closed in B"(H).

ProposiTioN 5.7. The set of all operator-families belonging to joint (G,) is
closed in B"(H).

Proof Let {4; =(Ai,..., Ai)} be a sequence of operator-families
belonging to joint (G,) and 4, — 4 =(4;, ..., 4,), i — c0. Then by the upper
semicontinuity of the joint spectrum

liminfd(z, Sp(4y) > d(z, Sp(4)).

Since [|(4;—2)x|| = |[(A—2)x|, i— oo, and by the assumption {|(4;—2)xl.
>d(z, Sp(4,)) for every unit vector x and i=1,2, ..., it follows that

(A =2) ] = lim |(4;~2) x| > lim1ofd 2, Sp(4)) > d(z. Sp(4)
i

Hence A belongs to joint (G;) and the proof is complete.. ) )
The set of all operator-families belonging to compl.e.te joint (G,) is also
closed; this is proved in the same way as the proposition above.
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ProrosiTioN 58. The set .of all jointly convexoid operator<families is
closed in B"(H).

Proof. Let {A; =(4;,.... 4;y)} be a sequence of jointly convexoid
operator-families and A4; A =(4y,...,A,) as i—o5. Then coW(d,)
—coW(A4) as i —co. Let £ > 0. Then by the upper semicontinuity of the
joint spectrum, there exists a positive integer N such that

co Sp(4,) = coSp(A)+(e)

for all i > N. Hence

co W(A) =limco W(4) = lim coSp(4,) = coSp(4)+(s).

Since & > 0 is arbitrary, co W(A) < coSp(4). On the other hand, in general,
coSp(4) = co W(A). Hence 4 is jointly convexoid and the proof is complete.

From this proposition we can see that the convex hull of the joint
spectrum co Sp(A) is continuous if we restrict A to the convexoid operator-
families.

CoroLLARY 5.8. If {A; =(A;y, ..., A;)} is a sequence of jointly convexoid
operator-families approaching an operatorfamily A =(A,, ..., A,), then
coSp(A;) approaches co Sp(A).

Setting the foregoing results in order we get the following chart on the
classes of operator-families: :

[ jointly spectraloid ]

[ jointly nofmatoid ] [ jointly convexoid ]

Tjoint (G,)]

@

[jointly transloid ] [complete joint (G,)]

jointly sup-spectroid [doubly commuting hyponormal] Jointly inf=spectroid

doubly commuting subnormal
[doubly commuting quasinormal]

[normal operator-family]

where the symbol - indicates the inclusion relation and the symbol []
denotes that the class 9 of operator-families is closed in B"(H).

qu we should like to express our thanks to Professors K. Takahashi,
J. Tomiyama and T. Furuta for their valuable advices. And we are also
grateful to the referee for his advice.

icm

Commuting n-tuples of operators 259

References

[11 8. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc, 13 (1962), 111-114.

[2] M. Cho and M. Takaguchi, Boundary points of joint numerical range, Pacific J, Math. 95
(1981), 27-35. )

[3] —, Identity of Tuylors joint spectrum and Dash's Joint spectrum, Studja Math. 70 (1981),
225-229.

[4] ~. On the joint spectrum of commuting normal operators, Sci. Rep. Hirosaki Univ. 30 (1983),
1-4.

[5] R. E. Curto, Fredholm and invertible n-tuples of operators. The deformation problem, Trans.
Amer. Math, Soc. 266 (1981), 129159,

[6] ~. Spectral inclusion for doubly commuting subnormal n-tuples, Proc. Amer. Math. Soc. 83
(1981), 730--734,

[71 A. T. Dash, Joint numerical range, Glasnik Mat. 7 (1972), 75-81.

[8] —. Joint spectra, Studia Math. 45 (1973), 225--237. )

[91 N. Dekker, Ph. D. Thesis, Amsterdam 1969,

[10] T. Furuta, On convexoid operators, Stigaku 25 (1973), 20~37 (in Japanese).

[11] =, Relations between generalized growth conditions and several classes of convexoid oper-
ators, Canad. J. Math. 5 (1977), 1010-1030, -

[12] T. Furuta and M. Ch®, Necessary and sufficient conditions Jor spectral sets, Bull. Austral.
Math. Soc. 24 (1981), 349-355.

[13] P. R. Halmos, A Hilbert space problem book, Van Nostrand-Reinhold, Princeton,
N. 1. 1967.

[14] J. Janas, Note on the spectrum and joint spectrum of hyponormal and Toeplitz operators,
Buil. Acad. Polon. Sci. 23 (1975), 957-961.

[15] G. R. Luecke, Topological properties of paranormal operators on Hilbert space, Trans.
Amer. Math, Soc. 172 (1972), 35-43.

[16] C. R. Putnam, Spectra of polar factors of hyponormal operators, ibid. 188 (1974), 419-428.

[17] Z. Stodkowski, An infinite family of joint spectra, Studia Math. 61 (1977), 240-255.

[18] J. L.Taylox, A joint spectrum for several commuting operators, J. Funct, Anal. 6 (1970),
172-191.

[19] —, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970),
1-38.

[20] F.-H. Vasilescu, A characterization of the joint spectrum in Hilbert spaces, Rev. Roumaine
Math. Pures Appl. 22 (1977), 1003-1009.

[21] W. Zelazko, On a problem concerning joint approximate point spectra, Studia Math. 45
(1973), 239-240.

DEPARTMENT OF MATHEMATICS, JOETSU UNIVERSITY OF EDUCATION
Joetsu, Niigata 943, Japan
and
DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, HIROSAKI UNIVERSITY
Hirosaki 036, Jupan
Received April 27, 1983
Revised version October 20, 1983 (1890)


GUEST




