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Entropy numbers of r-nuclear operatbrs in
Banach spaces of type g

: . . by

THOMAS KUHN (Jena)

Abstract. It is shown that the entropy numbers of r-nuclear operators mapping a Banach
space whose dual has type ¢ into a Banach space of type p, belong to the Lorentz sequence
space l,, where 0 <r < 1,1 <p, g<2and 1/s = 1+41/r—1/p~1/q. This extends results of Carl’
and K&nig.

0. Introduction. The entropy numbers describe the “degree of com-
pactness” of bounded linear operators, but, moreover, they are also a powerful
tool for the investigation of eigenvalue problems, cf. [6]. Therefore during
the last few years a lot of results concerning entropy numbers of certain
classes of operators has been established. We only remind of diagonal
operators between Lorentz sequence spaces or embedding maps between
Besov function spaces.

Recently Carl [4] considered operators S admitting a factorization

through I;:
s
Iy X
. /1

where B is a bounded and D a diagonal operator. Supposing that X is of some
type p, he characterized these operators in terms of their entropy numbers.
In the present paper we deal with the “dual” situation of operators T

factorizing through /.,
X
\ /
ls
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where again B is a bounded and D a diagonal operator. But now X * (the dual
of X) is assumed to have some type p. We shall estimate the asymptotic
behaviour of the entropy numbers of these operators.

Then we apply our results to r-nuclear operators acting between Banach
spaces of certain type, thus extending results of Carl [5] and Kénig [7].

1. Preliminaries. We denote by .Z (X, Y) the class of all (bounded linear)
operators from the Banach space X into the Banach space Y. The n-th inner
_entropy number f,(T) of an operator Te % (X, Y) is defined as the sup-
remum of all & >0 such that there are elements x,, ..., x,eUy, p 3 2"},
with

|Tx,—Tx|l > 2  whenever i3],

see [12], 12.1.6. Here Uy is the closed unit ball of X. The n-th outer entropy
number e,(T) is the infimum of all ¢ >0 such that there are elements
Vs «ees Yon—1 € Y With

T(Uy s (iJ i+eUyl,

see [12], 12.1.2. For every Te #(X, Y) one has
S(D) < (1) < 2(T),

[12], 12.1.10.
Now let [, ||*[l,..] be the Lorentz sequence spaces, cf. e.g. [12], 13.9.1.
Setting

Lo =1{S€Z: (en(S))€l,}

and

Ly, (8) = ”(en(S))”p.u
we get quasi-normed operator ideals (for the definition see [12], 14.3.5)
[&pu Lpud, 0 < p <00, 0 <u < o0. The multiplicativity of entropy numbers
yields the following useful product formula:
“(!)I'Iv Hy o’%pz' Uz = .9”',"“

0<py,ps <00, 0 <uy, uy o0, IYp = 1/py+1/py, 1u = 1/uy + 1/u,.
An operator Se.Z(X, Y) is said to be r-nuclear, 0 <r <1, if there are
sequences (a) S Uy, () € Uy and o = (a))el, with

ot

Sx =3 o;<x, ady

=1

for all xe X,

see [12], 18.5. Finally we need some definitions from probability theory. A
Banaqh space X is said to be of (Rademacher) type p, 1 < p < 2, if there is a
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constant K >0 such that for all finite families {x,,...

»X,p & X the
inequality .

M:

In
xir (Ol de < KP 3 llxill?
. i=1

Oy

1

holds, where (r;)) is the sequence of Rademacher functions defined over the
interval [0, 1]. Detailed information on the notions of type and cotype can
be found in [11].

A real random variable @ is called p-stable, 0 <p< 2, if there is a
parameter ¢ > 0 such that the characteristic function of @ is

O(t) = E exp(it®) = exp(~—cHt|"), teR.
(Here E is the symbol for the mathematical expectation). A random vector
O,,...,0,) in R, is called p-stable if all linear combinations

n

Z a; @h

i=1

o €R,

are p-stable real random variables.

In the sequel we shall always denote by (@), ; a sequence of independent
p-stable random variables, each with parameter ¢ = 1.

The space of all Bochner-integrable functions from a measure space
(2, #, P) into a Banach space X will be denoted by L;(2, #, P; X), or,
when the underlying measure space is inessential, simply by L, (X).

2. I -factorizable operators. We start with a lemma of Marcus and Pisier

([10], Corollary 2.7), which is a consequence of the deep comparison theorem
for p-stable and Gaussian processes ([10], Theorem 2.5).
LemMma 1. For 1 < p <2 there are constants a, >0 such that for any p-
stable random vector (@, ..., ©,) in R,, neN, the inequality
E sup |0 = a,(log, n''" inf EO,~6,, 1l/p+1/p =1,
1</sn mk
holds.

This lemma enables us to prove the next one which is a reformulation
of [10], Theorem 2.6, in the language of entropy ideals. The case p = 2 was
already treated in [9]. .

Lremma 2. Let X be any Banach space and Te £ (X, 1), 1 <p<2, an

operator such that the series Y T*e¢; @ converges in Ly (X*). Then

i=1
Te Ly (X, L), I/p+1/p=1.
Proof. Fix ne N and choose elements x,, ...,

inf;c 1TX0— Txil| 2 for 1 (T) 2 Fens 1 (T).
m

x,,€ Uy such that
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Then consider the p-stable random vector (84, ..., @,,) in R*" with

o

0,= % <en Tx» 0P,

i=1

1gjg2n.
For m # k we have

E10,~ 0 =E| Y. (e, Txn—Tx> 0P
=1

=(¥ KKep» Txm—TxdIP)7 E|O)
f==1

= ¢l T = Totll 2 4+, €01 (T),

Using this and Lemma 1 we get the following estimation
© > E|Y T*¢ 0P| =E sup [} (T*e, x>0
i=1 xelly 1

>E sup Y e, TxOP| =E sup |9
1520 1 1€5529

> a, (log, 29" - inf E|@,,—6)
m#k

Z%a,c, 0t e, (T).
This means Te 2, ., (X, I,). m
Lemma 3. Let 1< q<p<2, and let Z be a Banach space of type q.
20 o
If ¥ 11z)] < oo for a sequence (z;) < Z, then the series Y 20 converges
i=1 i= ]
in L, (2).
. Proof. It suffices to prove that there is a constant ¢ >0, depending

only on.p, ¢ and Z but not on neN, such that for every finite family
{z1, ..., z,} € Z the inequality

EH{Z’:l 700 < c(‘.il ll24{1%) /4

holds. To this end fix neN, let K denote the type g constant of Z, and
consider for every te[0, 1] the Z-valued random variables

14 "

Z 2,@}” and 2 ZII"'(I)@V’.
i=1 f= 1
(Here we assume that the @"s are defined over a probability space
[2, #, P] and consider r, ®{" as random variables over Qx[0,1])
Since the Rademacher functions attain only the values +1 and — 1, it
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follows from the symmetry of the random variables @ that these two sums
always have the same distribution, and consequently, for all re[0, 1],

E|S 260 =E| S zn@mor.
i=1 i=1

Integrating this equation against ¢ and applying Fubini’s theorem, we obtain
the desired estimate:

E|S 0] <(E]3 200
i=1 i=1
1 n
~({E| 3, ant op dys
0 i=1
<K(E Y, 2009
i=1

=K (E|IOP[Y( 3 llzilo)h.
Since g < p, we have E|@P|? < o0, and the proof is finished. =
Remark. In the definition of type one can use inmstead of the
Rademacher functions also standard Gaussian (i.e., 2-stable) random vari-
ables. Therefore Lemma 3 holds for p =g =2, too.

THEOREM 4. Let X be a Banach space whose dual is of type q and let
TeZ (X, 1) admit a factorization

with a diagonal operator l'),e,?(l,,‘, ) and Ac £(X,1,). If o0 = (0)€l,,,
then Te%,(X,1), provided that 1<¢<2, 1<u<ow, 0<t<w0,
0 <r <min(g, w) and
1s =1/r+1-1/g—1/u.
Proof. We split the proof into three steps, First of all fix any operator
Ae Z(X, 1,).

Step 1. Next we prove that ocel, implies T = D,A€ ¥, (X, I,) when-
ever.1 g <p<2or p=gq=2. Because of -

T HIT*effr < 4% Y lofe < o0
1 1
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we get from Lemma 3 the convergence of i T*e, ®P in L, (X*). But this
implies, by Lemma 2, Te %, . (X, 1,). 1

Step 2. Now we show that

‘ cel, implies T =AD,e%, . (X,1).

The assumptions on g, r, s, u guarantee that one can find real numbers p, v
with the following properties:

g<p<2, 0<v<x, Ir=1/g+1/v, 1/o+1/p > 1/u.

Then we split o = pu-v with vel, and pel,. So we have the factorization
diagram: '

p=g=2o0r 1<

ly
Dy
A Dy
Dy
los b

* Now it follows from Step 1 that
D, Ae Xy (X, 1)
and from [3], Theorem 3, that
Doy, L) S Ly (s L),

where 1/w = 1/p+1/v—1/u. The multiplication formula for the entropy ideals
yields

T=D,D,Ac &, 0Ly (X, ) &, . (X, 1)

since 1w+1/p" = 1/p+1fo—1u+1/p" = L+ 1/r—=1/qg~1/u = 1/s.

Step 3. Improving the result of the preceding step by real interpolation
we shall derive the desired assertion. Let ¢ be the operator assigning to a
sequence ¢ the composite operator D,A4. By Step 2,

Db =Ly (X L)

is a bounded linear operator whenever 0 <r < min(q, u) and 1/s =

+1/.r—1/q——1/u. For given r, 0<r <min(q, u), determine 0 <ry<r,

<min(g, ) and 0 <@ <1 with 1/r = (1~©)/ro-+@/ry. Then clearly
Dby > Ly (X, L), VYsy=141r=1fg=1ju,i=0,1,

are both bounded operators.

Now let us recall two results regarding the real interpolation method.
The first one is classical and can be found, e.g., in [1], for the second see [4]1.

icm®
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If0 < po+# py <0,0<go, gy,
+6/p;, then

< o0, 0<@<1and1/p (1-8)/po+

(lpo.qo= lpl,ql) 8t = lp,t
and ’
(”ynonIo(Y 2), plql(Y Z))Gr S LY, 2)
for arbitrary Banach spaces Y and Z. Consequently, by the interpolation
property, 3 .
@b, - L (X, L)

is also bounded. The proof is finished. m»

3. r-nuclear operators. Before we can state a result on entropy of r-
nuclear operators let us recall the result. of Carl [4], Theorem 2, already
mentioned in the introduction.

THEOREM 5. Let Y be a Banach space of type p and let S€ £ (l,, Y) admit

a factorization

with a diagonal operator D,e % (l,, ll) and BeZ(l,,Y). If oel,,, then
Se Ly, (l,, Y) where 1 <p<2,1<v<00,0<t <00, 1/v+1/r>1and 1/s
= 1fr+1/v— l/p

,Combining the preceding theorem and Theorem 4 we obtain our main
result a description of r-nuclear operators in terms of their entropy numbers.

THEOREM 6. Let X and Y be Banach spaces such that X* is of type q and
Y of type p. Then

N (X, Ve %, (X, Y)
p, g <2 and 1/s=1+1r—1/p~1/q.

Proof. Every operator Te.4", (X, Y) can be represented as T = BD, 4
with bounded operators Ae (X, 1,), Be £(l;, Y) and a diagonal opetator
D,e #(l,,1,) generated by a sequence gel,. Choose now 0 <r; <1 and
0<r,<oo with 1/r =1/ry+1/r, and split o= u-v with vel, and pel,,,
So we arrive at the following factorization diagram:
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Applying Theorem 4 we obtain
D,Ae %y, (X, ), sy =1+1/r=1/g~1=1/r;—1/q,
and from Theorem 5 we get

BD,e%,,,, (L, Y), sy =1/r+1=1/p.

Using again the multiplication formula for the entropy ideals we see that -

T= (BDu)(DvA)Gg}sz,rZOM

e (X, Y) S8, (X, 1),
since 1/ri+1/ry =1/r and
Vsi+1/sy =1/ry=1)g+1/ra+1—=1/p=1+1jr—~1/p—1/g = 1/s. m

This theorem extends recent results of Carl [5]. As corollaries we get once
more two results of Konig [7], Theorem b, and [8], Proposition 5, on
eigenvalue distributions of r-nuclear operators. However, K&nig proved these
results by completely different methods.

Since we are concerned with eigenvalue problems, all Banach spaces X
are now assumed to be complex. The eigenvalues of compact operators
Se#(X, X) are denoted by (4,(S)), they are counted according to their
algebraic multiplicities and are ordered so that |, (S)| > |4,(S)| = ... If § has
less than n eigenvalues, we set 4,(S) = A,.,(S)=...=0.

CoroLrary 7 [7]. If S is an r-nuclear operator acting in some L, (1), then
(An(S))el,, where 0 <r<1, 1 <p<co and 1/s=1/r—|1/p—1/2.

Proof. Since L,(y) is of type min(p, 2), it follows from Theorem 6 that
© Se%,,, where

1/s_%1+1/r~l/p——1/2 if
- 14+1/r—1/2-1/p" if
By [6], Corollary 2, we have

TS <251 (S), n=1,2,...,
hence (4,(S))€l,,. w
CoroLLary 8 [8]. Let § be an r-nuclear operator, 0 < r < 1, acting in a
Banach space X of type p and cotype ¢, 1 <p<2<q< oo, p—1/q < 1/2.
Then (A,(S))&l,,, where 1/s = 1/r—(1/p—1/g).
Proof. By a recent result of Pisier [13], Corollary 2.5, X* has type ¢,

1/g+1/q' = 1. Again Theorem 6 and [6], Corollary 2, vyield the as-
sertion. m

1<p<g2
2€p<w

} =1/r~|1/p—1/2.

4. Final remarks.

Remark 1. Theorem 4 is optimal in the following sense: For every
constellation of parameters g, r, ¢, u there are a Banach space X and an
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operator Te #(X, l,) possessing all described properties such that Te Lo
but T¢.%L,,, whenever to <t. To see this it suffices to consider a diagonal
operator D, e #(l,, ]) generated by a sequence ¢ &l,, which does not belong
to any ’lr,to, 0 <to<t. Then by Carl [3], Theorem 2, D, belongs to the
entropy ideal %, but not to %, , 0 <ty <1.

Remark 2. It seems very likely that the assumption 0 < r < min (g, u)
in Theorem 4 can be replaced by the weaker one 0 < r < u. However, the
methods of our proof do not apply to the case ¢ <r < u.

Remark 3. The main open problem connected with entropy numbers is
the question of complete symmetry of the entropy ideals, ie., is it true that
Se,, iff $*e ¥, ,? The comparison of Theorems 4 and 5 is one more hint
that the answer to this question might be affirmative.
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