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The Holder continuity of the Bergman projection
and proper holomorphic mappings
by
EWA LIGOCKA (Warszawa)

Abstract. The integral formulae are used to prove the Holder continuity of the Bergman
projection for bounded strictly pseudoconvex domains with C-smooth boundaries. It gives us a
tool to study the boundary behaviour of proper holomorphic mappings onto such domains.

1. Introduction. We begin with the statement of our main result:

Let A,(D) denote the Holder space defined as follows: If 0 < o < 2 then.

A, (D)= {feL*(D): If (x+1)+f (x =) —2f ()l < A1},

1f x0)+1 (x— 1)~ 2 (%)l
[¢]* '

Wa>1 then A, = {f: feL”(D); &f/0x;€A4~y, i=1,..., 2n}. Note that if
0 %« <1 then 4, is the space of functions satisfying the Holder condition
1L () —f ()] < A| x—y|*. The space L?(D) is a Sobolev space of functions of
bounded derivatives up to order s. I is isomorphic to the space Lip,_, (D)
of Tisaetions with derivatives of order s— 1 satisfying Lipschitz condition. We
shall denote by P the orthogonal projection from I?(D) onto the space
I? H(D) of square integrable holomorphic functions. P is called the Bergman

projection. P is an integral operator Pf(z) = [Kp(z1) f()dt. The kernel
D .

Il = Ilfllm+|§|u>%

Kp(z,1) is the Bergman function of D.

TueoreM L. If D is a bounded strictly pseudoconvex domain in C" with the
boundary of class C*** then

(1) P is a continuous operator from Ay (D) into Ay, (D) for 0 < B <1,

(2) P maps continuously L., (D) into Ay, ;2 (D),

(3) P is a continuous mapping from A,(D) into A,(D) if a < k.

The proof of Theorem 1 will be based on the methods developed in
Kerzman-Stein paper [9] to study the singularities of the Szegt kernel for
smooth strictly pseudoconvex domains. Their approach is the following. Let
S be a Szegd projector from I?(6D) onto HZ2(8D). They constructed an
integral formula which gives another projection H from I? (D) onto H?*(8D)
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and proved that S = H(I—(H*—H))™* = (I+(H*—H)) H*. It enables us to
write down the singularity of the Szegs kernel in terms of the kernel of H
given explicitly.
We shall use the same procedure to study the Bergman projector P. We
shall use the Kerzman-Stein integral formula to get an explicit projection
G: I2(D) » I H(D). .
We shall next show that G, G* and [I— (G* G)]~* are continuous in the A,
normis. This.implies that P = [I+(G* —G)] ™! G* is continuous in the A, norms.
In studying the arising singular integral operators we shall use only the
standard methods, originated by Henkin ([6], [7]) and refined by Kranz [10].

We shall also use the very convenient method of integration by parts originat-
ed by Elgueta [5] and used by Ahern and Schneider [1].

It should be mentioned that Ahern and Schneider proved the Holder

estimates for Bergman projection in the case of strictly pseudoconvex
domains with C*-boundary. However, their proof is based on the Boutet de
Monvel expression of the Bergman function. This expression is very difficult
_to prove even for C®-smooth domains (its proof is not elementary and uses
such things as pseudodifferential operators with complex phase and
asymptotic expansions) and probably is not valid for domains with
C*smooth boundary. Therefore we prefer more elementary methods.

In our proof we shall use only Hormander’s I? estimates for d-problem
to construct the kernel G. The rest of the proof consists of ‘standard
elementary estimates. In the special case of a strictly. convex domain, the-
kernel G can be written globally without using any 3-problem and the priof
in this case is entirely elementary. )

We shall apply Theorem, 1 to study the boundary behaviour of biholg
morphic and proper holomorphic ‘mappings. We shall prove

TreorReM 2. If D is a bounded strictly pseudoconvex domain with
boundary of class C*** then

(A) For each toeD the Bergman kernel function K,(z, to) belongs to
Ak+ 1/23

"(B) If k=2, then for each ze 3D there exist n+1 points t, ..., t,eD
such that
Kp(z, t)
det 0K (z, 1))| # 0.

0z

In [14] and [11] (compare also [12]) it was shown how these conditions
can be used in the study of biholomorphic mappings. The transformation rule

for the Bergman function with respect to proper mappings was proved in [2].
It yields, in particular:

CoroLLARY 1. Let D be a bounded strictly pseudoconvex domain with

icm

ReF,(w, 2)—0(a) >
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boundary of class C™, m= 6 and let G be a strictly pseudoconvex domain
with boundary of class C", n > 6. Then every proper holomorphic mapping from
D onto G extends to the mapping of class Ay, from D onto G, where
k = min(n, m)—4.-

CorOLLARY 2. Let D be a bounded strictly pseudoconvex domain with
boundary of class C***, k> 2. Let G be a bounded pseudoconvex domain
with real analytic boundary or a bounded circular complete domain such that
AG < G for A < 1. Then a bikolomorphic mapping between D and G extends to
a Ay 1,2 diffeomorphism between D and G. This implies that if such a mapping
exists then D must be also strictly pseudoconvex with boundary of class at least
ck,

The main results of this paper were presented at the Conference on
Partial Differential Equations, Oberwolfach, August 1980.

2. The proof of Theorem 1.

(a) The kernel G(w, z). Let ¢ denote a defining function for a domain D.
We can always assume that g is strictly plurisubharmonic in a neigh-
bourhood of D and of class C*** on C".

Denote by Lg(z) the Levi form of the function . We can find &, and 50
such that Lo(z)(z—w) > clz—w|* if ¢ <6, and |z—w| <gy. Put

P ) =T 2 - .>+zzh—-—(z)(w

i aZl

It follows from the Taylor formula that

—Q(Z);zg(w)--kglz—wlz if 0(2) <6y and |z—w| < gq.

Let () be a cutting function such that w(f) =1 if t <g,/4 and Y (t) =0
if t >¢0/2. We put t =|z—w| and take

F(w, 2) =y (O)Fy(w, 2)+(1 -y (&) Iw—zI?,
b, e o .
orm, 2 =¥ (G @+ T 5 0=2) [ -y ).
Thus we have .

ReF(w, 2)=0(2) > —¢; (e()+eW)+calz—w]* >

1) (Zj - WJ)

e(—e@-oW)+lz—wl?)

for we Dy, = {pe C™: g(p) <8,} and ze D. The functions F(w, z) and g;(w, z)
are of class C® in w and of class C**2 in z.
Consider now the (n, n—1)-form

gi(w, 2)
(Fw, 2)—e ()

A O g, Adz.

——
N(w, z)=cz_(—1)"’1 .91 A .. ACg A
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The coefficients of the form N(w, z) are of class C®*xC*** on DxD.
Since N(w, z) is a Cauchy-Fantappié form for ze @D, for each holo-
morphic f e C*(D) we have

fw)= J"N(W 2) f(2)

weD.

Thus, by the Stokes theorem f(w) = [ 3, N (w, 2) f (2).
D

Note that the form & N(w, z) is also of class C*xC**' on DxD,
because only the functions g; and F—g¢ have been differentiated.
" We shall now proceed in the same manner as Kerzman and Stein did
in [9].
Let § < &, be so small that the form 3,8, N(w, z) is of class C*® x C¥*+!
on D;xD and let P, be a Hormander operator which solves d-problem
on D;. We define

Qw,z)=—P,0,0.N(w,z) and G(w,z)=Q(w, 2)+3.N(w, 2).
The form G (w, z) is holomorphic in w. We shall now show the reproductive
property of G(w, z), ie., that for every function f holomorphic on D; and
each weD

fw) =)f)G(W, 2) [ (2)-

It suffices to show that

[f@)P,(3,8,(N(w,2))=0

D
We have

jP (3,3.Nw,2)f(z) =P, ja . N(w, 2)f(z) = P, [8,3,Nw, 2) £z

=P, [ 8,N(w, 2) f(z) (by the Stokes theorem).
o

It was proved by Kerzman and Stein in [9] that the last term vanishes.

Since & is an elliptic operator, the form Q(w, z) is of class C® xCk+1
on DxD and thus is a nonsingular kernel. We can now write down a
singularity of G (w, z). We have

(- 1),, 0@ gi(z, w)
det %2 0Ogilz, w)
LN, 2) = 6zj 0z;

(F(z, w—o(2))**

icm
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It can easily be checked that

. 0
Cp |20 )
—"det 2‘
T2y Te g,
0Oz; 0z; 0Z;
(Flz, W—o@) "

xC**! on D xD.

0(jz—wl)

0 Nw, z) =

The kernel 8. N is of class ot

(b) The properties of the projection G. We shall now prove that the
integral operator

Gu = [G(w, 2)u(z)dV,
D

is a well-defined projection from L*(D) onto I? H (D). By now we know that
it is defined on holomorphic functions on D,; and on functions from CZ (D).
The formal adjoint of G is the operator

G*u = [G(z, w)u(z)dV,
D
Let B=G*—G be the integral operator with the kernel B(w, z) = G(z, w)—
—G(w, z). It was proved by Kerzman and Stein that
F(z, w)=F(w, z) = o(w)—(2)+ Oz —w]),

3

and hence
LF (w, 2)—e(2)]=[F (z, w) —e(W)] = O (1z—wl*).

This implies that the kernel B is dominated by
c jz—w
(—e@—ew)2+Cylw—z?y*?

and therefore, by the Kranz estimates [10], it is of weak type (2n+ 2)/(2h+ 1).
In particular, it extends to a continuous operator from I?(D) into I?(D).
We have now for ueC¥ (D) or ue H(Dy)

(®  lIGuUl* = (Gu, Gu) = u, (G+B) Gu) < ||u]| (|G ull +|{B]| [|Gul))
= |lu| |Gul|(1+]|Bl[)  because G*u = Gu if GueH(D,).

Thus ||Gu|| < )|ul|(1+]|B|l) (compare Kerzman-Stein [9], Theorem 13.1).
It can easily be proved, by using Hérmander’s I2-estimates for & problem,
that functions holomorphic on D; are dense in L?* H (D). It follows from (%)
that G is continuous on I* H(D) so it must be equal to identity on L* H(D).
Thus G*u = Gu for every ue C¥ (D). Hence, G is a well-defined continuous
projector from [*(D) onto L*H(D).
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Remark. In a special case where D is a strictly convex domain, the
construction of the kernel G(w, z) and of the projector P is very simple.
If ¢ is a strictly convex defining function for D, it is sufficient to take

_y T e o Bgr . Tgnd
N A= 3 0 G ) e
where
; z)+ Zaz 021 2)(w;—z),
Fon )= %, —a—f—l(z)(z.:—wo+5%5;‘~§;;(wj—zj)(wi-z,)
to get G(w, z) = ON (w, 2).

The density of H(D,) in [*H(D) is obvious in this case. Thus no
O-problem is needed.

Note that, usually, in literature one can find another formula for strictly
convex domains. In this formula’

n

and  F(w,2)= Za—(z)(z ).

However, this formula is of no use for our purposes, because it gives only
the estimate

do
gi = E—ZT(Z)

[F (w, 2)—e(@]-[F (z, w)—e(w)] = 0(z—wp),
which is too weak.
Now, let P denote the Bergman prolector We have PG =G, GP = P,
G*P = G* PG*=P. Thus P(I—B)=G and (I+B)P = G* (B = G*-G).
The operators I+ B and I—B are invertible in I?(D), and hence

P=G(I~-B)"* =(I+B)~*G*.
This implies that the proof of Theorem 1 will be complete if we prove the
following four facts:

I If a<k+1/2 then I—B and I+ B are isomorphisms of A4, (D),
II. If k<a<k+1 then G and G* map continuously A4,(D) into
Ak+(a k)/Z(D)=

III. The operators G and G* are continuous from Llp,,(D into

Ak+1/2(D)a
IV. If « < k then G and G* map continuously A4,(D) into A, (D).
The proof of these facts will need the gradient estimates which were
done by Kranz [10] and an integration by parts lemma originated by
Elguetda [5] and used by Ahern and Schneider [1]. We begin with the

icm°

The Holder continuity of the Bergman projection 95

gradient estimates and the proof of I, If and III for k= 0. If k=0 then no
integration by parts lemma is needed.

(d) The gradient estimates. At first we formulate the following simple
estimates for F(w, z)—g(z) and F(z, w)—o(2):

(+ 1)

'aiwj(F(W, Z)—Q(Z)) == —-—,aazgj(z).,t_ouw_zh’

£
w—z| <=

2) b—%(F(w, H—o(x)=0 if 3

3) a%(F(W, z)—o(2) = fg—;(Z)JrO(IZ—WI),

0
E(F(W’ 2)—e(@) =

0 = 0
5 gy FEW—ot) = 520,

j

4 O(lz—w),

6 e .
6) E;V;(F(Z, w)—e(w)) = 0(z—wl),

) gg(m—e(fv)) = —gv%(w)w(lrwl)?

J

8) aizj(F(z, W)— () = 0(z—w).

Since [F(w, 2)—g(=)]—[F(z, w—oW)] = O(z—w/®), the kernel B(w, z)
= G(z, w)—G(w, z) is dominated by

|z—w|

[(—e@—eW)2+clz—wl?]"™"

o
. — < =
f . |z—w| 5

We shall now proceed in the same manner as Kranz did in [10] and find
a suitable o, 0 < ¢ < £,/6 and a C*(C"x C") cutting function h(w, z) such
that h(w, z) = 1 if —o(2)—oW)+lw—2z| <0/2, h(w,z) =0 if —g(z)—e(W)+
+jz—w| >0.

We can now consider integral operators B, with the kernel (1—
—h(w, 2))B(w, z) and B, with the kernel h(w, z) B(w, z). The first operator is
of class C*** on D x D and therefore is nonsingular. It follows from () that
lgrad,, B, (w, z)| is dominated by

|w—z| €y

n+ < — — n+1°
< Q—(—W—z Q()+clw—z|2> ' lw—zl(—*g'gv%—g‘(’zl‘l“clw—ﬂz)
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This implies that we can use Kranz gradient estimates (see [[10]; our singularity
is the same as in the case a = 2, k = 1 in this paper). Thus for every bounded
function feL* (D)

jrad, JBz (w, 2 (Y,

¢,
<Ifllo L erdV.
meot—al( Z2ZEE )
1
Scz”f“w'(‘:’é‘(‘v";)‘)i_/—f-

Hence B, is continuous from L* into A,,,. This implies that B is continuous
from L* into A;;,. From the Ascoli theorem it follows that I+ B and I— B are
invertible Fredholm operators from L* onto L®. Let 0 <a < 1/2.

If (I+B)f =geA, then fed,. The same is true for I—B. Hence I+ B
and I—B are isomorphisms of 4,.

To prove II and III for k =0, we need the reproducing property of G.
Let fed,, 0 <a <1 or feLip, (D). We have

(1=G)f () =[(/ () ~1 (@) Gw, 2)dV,
and
' oG "9 oG
gv—;( >-5—V§=J5£7(w)c(w, 2dV, J(f( =1 () 8L 2 (Wi 2,

D D
Thus grad Gf = [(f(w)—f(2)) grad,, G(w, z}dV..
. D
If w is near z then the kernel on the right-hand side is dominated by

lz—wi
W2+l

(—e)—el

Take now the cutting function h(w, z) as before and define G, to be the
operator with kernel (L—h(w, 2))G(w, z) and G, to be the operator with

kernel h(w, z)- G (w, z). Since G1 is nonsingular, we have to estimate only G,.
Thus

T h(w, w)~G, f (W) = [[h(w, w) f (W)~ h(w, z)
D

.

f(@]Gw, 2)dV,

icm
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and
602
= |Th(w, W) F (W)= h(w, Z)f(Z)]—-*(W z)dV,,

D
G .
aa;if |rer -G ar.

D

The first expression is dominated by

Cy IZ—W|m”f”A¢

..J [(_Q(W)—Q(Z))/z—i'c|z-—W]2]n+z

av,

and the second by

J" ez |1 f1l4
J (—el@~eW)+clz—wl?)*t

Ths grad, G /1 < 1/l (—5mrr This implies that G,

(w)
maps 4, into A, and Lip, into A,,,. We have proven [, II and III for k = 0.

To deal with the highest order derivatives we shall need the following:

+¢ [In? Q(W)l)

(e) Inregration by parts lemma. Suppose that the cutting function h(w, z)
is chosen such that

z [ O(F (z, w)—
;-—a(F(w ai o) aé >c¢>0 and ;——————————( 4 221 Q(W))-gf: >c>0
on the support of h. This is possible to achieve because of (#x).
Let @ denote F(w, z)—g(z) or F (z w)—o(z) and let Q(w, z) be equal

to Z -ag_—di g— Then it follows from the Stokes theorem that for every

u(w, z) which is C*(D) in z,

u-h u-h 00
(1) J¢m+1dV J‘Wzl(—l)gzdp, A dZ,-+

D cD
d (u-h-0g/0z;\ 1 |
“ZJZJET( 0 )"(ﬁd”

b
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and for each v(w, z) of class C*(D) in z

vh, 0o 6@/02 1~
@ Jﬁd“ Zfazi(gl) g @t

aD D
dofez 1
*ZJ( )lv’al” 1l

aD

where

2@ 0 070
0, = Oz, 62, 0z, 0z;
! |grad ol

Thus to prove I, II and III for k>0 it suffices to differentiate B, f
k times in w and apply the above given integration by parts lemma k times.
For B, the gradients of the arising area kernels will be dominated by

J 1
or |¢!n+1
D

and the gradients of boundary terms by

ot (L
l¢ln+1 |¢|n
ap

aD

|Z_w|a-k
I¢In+2
D

To estimate G,(w,z) and B,(w, z) we shall use both the reproducing
property (over thé domain) and the reproducing property of Kerzman-Stein
kernel (over the boundary) and proceed as in the case of k =0.

The details of calculations are the same as in the paper by Ahern~
Schneider for Henkin kernel and the Boutet de Monvel expression of the
Bergman kernel function. To make the whole process understandable we
shall give more details in the case k = 1.

Denote by I(z) the function

7
1y 0@ 7O
det| - &
n do o

3 02,07,
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Let fed,, a >1 or feLip(D) =LY, and

Byf = jh w, 2) f(2) [G(z, w) G (w, 2)]

D
fh(w’ Z)f()[( IW+0(z=w) _ 1z)+0(z—w) ]+

J F(z, w)—g(w))"** (Fw, 2)—o(@)"**

+nonsingular terms.

Thus
B,f _ [
o) —Jaw'(w,z)f(z)[...]dl/;-‘r
D
g 190 =) 5-(1)+0(= i)
h 2 (%
+ (W Z)f(z)1 F(Z w) QW))"+1 (F(W, Z)_Q(Z))"+1 | V.+

%(F(z, w)
+c Jh(wa 2) f(2) | :

D

—o(W)(Iw)+0 (z—w)

(Flz, w—o0w)*?

%(F(w, 2)—0(2)(1(2) + 0 z—w))
(F(w, 2)—e(2)*?

The expression for 8B,/dW; has the same form.

We must observe now that the first term on the right-hand side is
- nonsingular since h(z, w) = 1 if |z—w| <¢/2. If we apply the integration by
parts lemma to the second term on the right-hand side, then we get area
kernels which are dominated by || fli.2/9" with gradients in w dominated by
Wl L;n/(b"“ and boundary kernels which are dominated by || f ||L;°/¢"-1 with
gradients in w dominated by ||f [|,_<1x>/¢".

It is shown in [6], [7] and [10] that

p
ra
D

and thus we have the desired estimates.
It remains to estimate the last term.

v, -

<c¢;cfin®*(—g(w)) and UEC;T <¢y-c|in*(—eW))|
. oD ’
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We apply the integration by parts lemma (1) to it and consider the
resulting area kernel. It is equal to

S(w, z)

2 f ) h(w, z)‘g—zg—'b—%(F(z, w)—o (W) (L(w)+ 0 (lz—w))
= - L X
a7, 0
1

(F(z, w—o (W) -

, (f(z)h(w, 922 (F, Z)—Q(Z))'(l(Z)+0(Iz—WI))>
X

i

0z; ow,
Q

1
“Fon Do
Denote by S(w, z) the sum of all terms of S(w, z) where f(z) is not

differentiated. Since f(z) is in L} (D) = Lip(D) and other functions are in
CY(D), S(w, z) can be written as .

u(w, z) _ v(w, z)
(F(z, w—am)™** (Fw, 2)—0(2))"**

lu(w, z)—u(w, w)| <clz—w| and

where

[o(w, 2)—v(w, w)| < clz—w|.
The kernel S(w, z) can be written as

S, 2) = u{w, z)—u{w, w)  v(w, wy—v(w, 2)

(Flz, w—ow)y™! (F(w, 2)—g(2)™*

+u(w, w)(_._1 - i ) u(w, w)—v(w, W)'
(Fz wy—e W)™t (F(w, 2)—o@)**/) (F(w, 2)—e(@)""-

We must now estimate grad, [ 8w, z)dV,.

D
The gradients of the first three terms on the right-hand side can be
estimated by

el g J (%l—j—l—ﬁl%f%)m
J\ie]

which is exactly what we need.

icm
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W, W)— s i
ulw, w)—v(w "Y)l we shall use the reproducing

To estimate grad, J F—————
. (F(w, z;—0(2))

D

property of a

BeN(w, 2) = D) 1@)+0lz—wl

Fw, D—0@y™ (Fw, —2@)" "

Denote by q(w) the function (u(w, w)~uv(w, w))/I(w). (The function I(w) is
bounded away from zero if w is near D.) Then

u(w, W)_U(Wa W) _ Q(W) l(W)
grady f Fow, D—e@p = gr?dw,! Fw, -y

d

<

D

= grad,, Jw dV, +grad g(w)m.

J (F(w, 2)—(2))"*"*

Since g(w)(l(w)—L(w, z)) = O|z—w|, our gradient can be estimated by

clfll ( j [;-;-,:;glﬂ.;;_ﬂ]mc;).

D
It remains now to estimate those terms of S(w, z) in which f(z) is differ-
entiated. Denote by S(w, z) the kernel consisting of these terms. It is easy to
check that S(w, z) can be written as

ZQ(Z)( uy(w, 2) - vo(W, 2) )
Oz \(Fz, W—ewW)™*t (Fw, 2)—e(@)"*

where uy(w, w) = v, (w, w). Thus we can proceed as before, writing

o (W, 2)—ug(w, w} vy (w, w)—o(w, 2)

(F(z, wy—ew)"™*  (F(w, —e(@)**

1 1
+up(w, w) <(m_g(w))"+ 1 —(F(W, 2)=e()* 1)

and get the desired estimates.

To estimate grad,, (0B,/dw;) we must deal also with the boundary terms
which arose from the integration by parts formula (1). We can at first
observe that the form N(w, z) has a reproducing property as the Cauchy-
Fantappi€ form. We can always write

Nw, 7) = Kw,z) __ Kw,z _KW+0(w—2)

" (Fw,2—0@)" (F(w,2—e()

- Sw, =Y

.5;_;’



GUEST


102 E. Ligocka

where K (w) = K (w, w). Thus after using the integration by parts formula (2)
we can repeat word by word the whole proof of our estimates given for area
kernels. The only difference is that the integration will be over boundary (in z,
of course).

It is clear from (**) that the estimates for 0B/0w; are the same. We have
thus proved that the operator B maps continuously Llp(D) into A4y,
Hence the operators I—B and I +B are isomorphisms of A, for each «,
l<a<1+1/2.

To end the proof of our theorem we must estimate

grad d —Gf = grad,, ijG(W,Z)f(Z)dV;
D

" ow; ow,

for fed,, 1 <a<3/2 or feLip, (D). This means that we must, as before,
estlmate the gradlent of the following kernel:

P (F (w, 2)— 2(2))"L(w, 2)
j i hw, z) f (2).

(F(w, 2)—e(2)y**

Integrate by parts as before and consider two area kernels. The first of them
consisting of terms in which f (z) is not differentiated can be written as

f—'ﬂ—?ﬁf( )av,
o(w, 2)

D
=J"(W 2) f(2)—uw, w) f (W) v+ fu(w, w).f (w)
D

di(w, Z)n+1 Q.(W, Z)n+1 dV;
D
“(W W)f(W) (L(w, 2)—10w)
u(w, £ @)= uln, WSO ), J e
®(w, z)"t? EE z
D D
e

Thus the gradient estimates are here the same as before. The second area
kernel is a sum of .integrals of the type

v(w, ) L{w,2) Of . of
J @ (w, Z)n+1 EZI:[(Z) = D(W’ w) 'é'vi‘(w)"'
af(z)V(w z)* -—L(W V(w, w)- L
j @(W, Z)n+1

D
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Since f(z)e A, or Lip,, the gradient of the last term is dominated by

w|*
cliftl J (W‘Fl(plnn)d"

The same procedure can be applied to the boundary terms. Thus G maps
continuously 4, into A, 44—y, and Lip, into A3, . This ends the proof of I, I
and III for k=1. .

‘The part IV can be proved by exactly the same method as used in the
paper of Phong-Stein [13] for the Boutet de Monvel expression for the
Bergman kernel function.

Thus we have the desired estimates for Bergman projection.”

3. The proof of Theorem 2. Condition (A) is valid for each k > 0, because
Kp(:, t)e P(CE (D)) (see [3], [4]). It remains to prove condition (B). The
proof of it will be actually the same as that given in [4] although it needs
some modification, because C{ (D) is not dense in A,. Thus we shall use the
following Sobolev imbedding theorem: Let W, denote the Sobolév space of
functions D with derivatives up to order s belonging to I7 (D) and let W2 -
denote the closure of CP(D) in WS. As in the case m =2 we have

W = {few afﬁ;ﬂ 0 on 6Dif|oc|<s—1%.

If m > 2n then W is compactly 1mbedded in Ag- 14 (m-2n 2- This implies, in
particular, that the Bergman projection P maps continuously W2, into
Ag tgm-2myan = A1sp. Now we shall prove that each holomorphic function
which is C®-smooth on D belongs to the closure of the linear span of the set
{Kp(51): teD} in Ayip.

LetfeC "°(5) N H(D). Since k > 2 and aD is of class at least C®, we can
use the construction described in [4] (proof of Lemma 1) to find the function
u such that: (a) ueC?(D), (b) u vanishes on 0D with its first derivatives,
(c) P(u) = f. It is clear that ue W?2.

Now for teD let $eC§ be radially symmetric about t with J'(DdV =1.

Then P(®) =K,(-,

The linear span of such functions & is dense in W? (see [4], proof of
Lemma 1 for details), This implies that span{K,(:,t)} is dense in
P(W? )::A,H, Thus the function f = P(u) belongs to the closure of

span {K,(, 1), teD} in A 4.
Now let zo€ 0D. The function
Kp(zo, 1)
F.y(tos ..., ty) = det | 0K p (2o, 1;) )
0z;
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cannot be identically zero because if it were, then we would get

gi (ZO)
det 6gl( =0

for each (gy, ..., g) < C““(E) NH(D)

and get a contradiction for go =1, g, = z,.

Proof - of Corollary 1. Let D and G be bounded strictly
pseudoconvex domains with boundaries of class C¥*4, k=2 and let h be
a proper mapping from D onto G. Pinchuk in [14] and [15] proved that h
extends to a continuous mapping from D onto G and that the Jacobian Jh is
bounded away from zero on D. S. Bell in [2] proved the following transform-
ation rule for the Bergman function under proper mappings:

Let weG and h™ ' (w) = {wy, ..., w,} and let U,(w) denote the Jacobian
of the ith local inverse of h. Then

T Kolz, w) T, () =

i=1
It follows from condition (B) that for every zoe dD we can find n+1 points
from G such that the quotients v, (w) = Kg(w, a)/Kg(w, a,) are local coor-
dinates in the neighbourhood of h(z) (see [117). For each k, v, is of class
Ag+ 172 on some neighbourhood of h(z,) in G. The transformdtlon rule implies
that

K (h(2), w) Jh(z).

Z Kp(z, ) U(ay)
ve(h(w) = 2
=Z (z, ao,)U(aO‘)

Since Jh(z) is bounded away from zero on D, the function on the right-hand
side is of class Ay, ,, in some neighbourhood of z, in D. It is obvious that
h(z) extends to a mapping of class C* on D.

Since k >2, we have that h(z)eC*(D) and is a Lipschitz mapping
between D and G, Thus it is also of class Ag+12 on D,

The proof of Corollary 2 is the same as that given in [11] and thus it
can be omitted.

4. Remark on extension of proper holomorphic mappings. The transform-
ation rule for the Bergman functions under proper mappings ‘due to S. Bell
[2] (see the proof of Corollary. 1y enables us to prove the following fact:

ProrosiTioN. Let D and G be bounded domains such that

(A) The Bergman functions Kp(z, ) and Kg(w, ")
class C* (or Ay, x> 1) on D and G, respectively.

Assume also that condition (B) from Theorem 2 holds for Kg(w, ). Let
h be a proper holomorphic mapping from D onto G. Then

extend to functions of
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(1) the complex Jacobian Jh(z) and the mappmg Jh-h extend con-
tinuously to D,

(2) the proper mapping h extends to the set D\lz: ze D, Jh(z) =
a mapping of class C* (locally of class Ay, o > 1)

Proof. Similarly as in [4] and [11] we prove (1) by showing that the
partial derivatives dJh/dz; and d(Jh-h,)/0z; are bounded functions on D. If it
is not true, then we can find a sequence z, —zo€dD such that s, = h(z,)

0} as

- 50€0G and Max (%Jh( —(iah;—}—lﬂ)—» 00. By Condition (B) there exist
Zt i
bo, by, ..., b, eG such that
KG (50’ bj)
det 2K, (50, ) | # 0.
Os;
Let {aj(, ..., @j) = h~ 1(bj) and let u(a;) be the Jacobian of the rth inverse

of h at b;. The Bell transformation rule implies -that
u(z) = 3, Kp(z,a;)Ulay) = Jh(z)- K (h(2), by)
r=1 )

and

" K¢ (h(2), b) ok
Kg(h(2), bj)+k§:l Jh(z) Tas, o

ouz) _ BIh(2)
dz; 0z

Thus we get the following matrix equality:

u; Kg(hz), b)) | [7hmy 0

du; | = 6KG | aTh; oy
2. Jh(z

| B |5 Fme)

There exists N >0 such that the entries of the matrix on the left-hand
side are bounded on the set {z,},-y and the entries of the inverse of the first
matrix on the right-hand side are bounded on the set {s,},»n. Thus the
derivatives' dJh/0z; and 8(Jh-h)/dz; are bounded on the set {z,},»n. A
contradiction.

Note that (1) implies that h extends continuously to the set
D\{ze dD: Jh(z) = 0}. The smoothness of this extension ((2)) is proved in
the same way as in the proof of Corollary 1, using the equality

K » rU r.
) n(z aj,) (@) KG(/’!

3lips

KD (Z, a()r) U (aOr)

[N

i=
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and the fact that if zoe @D \{Jh(z) = 0} then Jh(z) is bounded away from
zero on some neighbourhood of z, in D.

Remark. In the case where D and G are pseudoconvex bounded
domains with C®-boundary, S. Bell in [2] got more precise description of the
boundary behaviour of proper holomorphic mappings. ]\yevertheless, his

methods, based on the transformation rule for Bergman iprojection and .

estimates in the negative Sobolev norms, cannot be used if the boundaries of
D and G are not C®-smooth.

Note that there exist at least three classes of domains with boundaries
not C®-smooth but satisfying conditions (A) and (B) (see [11]):,

1) complete circular domains such that AD = D, 4 <1,
2) Cartesian products of domains with properties (A) and (B),
3) strictly pseudoconvex domains with boundary of class C™, m > 6.
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