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A graph G is edge-symmetric if for any two edges e and f of G there
exists an induced edge-automorphism a of G such that a(e) =f. Edge-
symmetric graphs have been studied by Bouwer [2], [3], Dauber and Harary
[5], Folkman [6], and Foster [7], [8]. We observe that, for all positive
integers m and n, the graphs nK,, K(m, n), K,,, and nC, are edge-
symmetric as are a number of other well-known graphs such as the Heawood
and Petersen graphs and the graphs of the five regular polyhedra. Our
terminology follows that of Behzad et al. [1].

If G and H are graphs such that G = H U K, then G is edge-symmetric
if and only if H is edge-symmetric. With no loss, then, we focus our attention
on edge-symmetric graphs containing no isolated vertices.

In [4] it was shown that if G is an edge-symmetric graph which has no
isolated vertices and if 9; is the degree set of G, then |24 =1 or |Z;4] = 2.
We call a graph biregular if |2;| = 2. Our goal is to establish non-structural
characterizations of those biregular edge-symmetric graphs containing no
isolated vertices.

We begin work towards that goal with some new terminology and
notation. For unequal positive integers a and b and for a graph G with
{a, b} = 95, we denote by V, (respectively, V;) the set of vertices of G with
degree a (respectively, b). For such a graph we define an equivalence relation
on V,u ¥, as follows: two vertices v, and v, are equivalent if and only if
N(v,) = N(v,), where N (v) denotes the neighborhood of v. Note that if two
vertices are equivalent, then they have the same degree. Hence each equival-
ence class so formed is a subset of either V, or ¥,. We denote these classes by

Va(1), Va(2), ..., Va(No), (1), V(2), ..., Vo(Ny).

If G is a bipartite graph, then a transitive bipartition of G is a bipartition
of G such that for any two vertices ¥ and v of G belonging to the same
partite set there exists an automorphism 6 of G such that 6(u) = v.

Our first result for these graphs appears in [4].
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THEOREM 1. If G is an edge-symmetric graph containing no isolated
vertices where 9 = la, b}, then G is bipartite and has a unique transitive
bipartition V, L V,.

Our characterization theorem involves the identification of a class of
graphs containing edge-symmetric graphs as a proper subset. A graph G is
called neighborhood symmetric if for any two pairs {u,, v,}, {u,, vy} of
adjacent vertices of G with degu, = degu, and degv, = degv, there exists an
automorphism « of G such that a(N(u,)) = N(u,) and a(N(v,)) = N(v,). The
tree shown in Fig. 1 is neighborhood symmetric but not edge-symmetric.

Fig. 1

THEOREM 2. Let G be a graph containing no isolated vertices where
{a, b} =€ D;. Then G is edge-symmetric and biregular if and only if G has a
bipartition V, UV, and G is neighborhood symmetric.

Proof. Assume first that G is edge-symmetric and biregular. It is
immediate from Theorem 1 that G has a bipartition ¥V, U ¥,. To show that G
is neighborhood symmetric, let {u,, v,} and {u,, v,} be two pairs of adjacent
vertices in G such that degu, = degu, = a and degv, = degv, = b. Since G
is edge-symmetric, there exists an automorphism a of G whose induced edge-
automorphism maps u, v; to u,v,. Thus a {u,, v,} = {u,, v,}, and since a
and b are unequal, a(u;) =u, and a(v,) = v,. Hence a(N(u,)) = N(x(u,))
= N(u,) and a(N(vy)) = N(x(v,)) = N(v). ,

Suppose, conversely, that G has a bipartition V, U ¥, and is neigh-
borhood symmetric. It is obvious that G is biregular. To show that G is
edge-symmetric let e; = u; v; and e, = u, v, be edges of G where, say, y;eV,
and v;e ¥, for i =1, 2. We consider two cases depending on whether or not
{u,, u,} and {v,, v,} are equivalent pairs of vertices.

Case 1. Assume that N(u;) = N(u,) and N(v;) = N(v,). Hence there
exist integers i and j such that 1<i<n, and 1<j<n, where
{uy, u} < V,(i) and {v,, v,} = V,(j). Let =n: V,(i) - V,(i) be a bijection such
that n(u,) = u,. Define ¢: V(G) - V(G) as follows:

n(v) if veV, (),
v otherwise.

®(v) =%

Similarly, let A: V,(j) » V,(j) be a bijection with A(v;) =v, and define
0: V(G) - V(G) as follows:
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() = Av) if veV,(h),
(v) = v otherwise.

The maps ¢ and 6 are automorphisms of G. Thus 8¢ is an automor-
phism of G mapping u, to u, and v, to v,. Therefore, 8¢ induces an edge-
automorphism of G which maps e, to e,.

Ve

Fig. 2

Case 2. Assume that either N (u,) # N(u,) or N(v,) # N(v,). Since G is
neighborhood symmetric and since degu; = degu, = a and degv, = degv,
= b, there exists an automorphism o of G such that a(N(u,)) = N(u;) and
a(N(vy)) = N(vy). It follows that N(x(u;))=N(u;) and N(x(v;)) = N(v,).
Applying the argument of Case 1 to the equivalent pairs of vertices
{o(uy), u} and {a(v,), v,} we conclude that there exists an automorphism f
of G such that B(x(u,)) = u, and B(x(v,)) = v,. Thus Ba is an automorphism
of G whose induced edge automorphism maps e; to e,. This completes the
proof.

There exist bipartite biregular neighborhood symmetric graphs which
are not edge-symmetric; see, for example, the graph of Fig. 1. By Theorem 2
this graph fails to be edge-symmetric because it has no bipartition V; U V;.
The requirement that G be neighborhood symmetric is also necessary in
Theorem 2. The graph in Fig. 3, for example, is biregular and is bipartite
with bipartition V; UV, yet neither edge-symmetric nor neighborhood
symmetric.

Fig. 3

A second characterization is now easy to establish.
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COROLLARY. Let G be a graph containing no isolated vertices where
{a, b} €« 9. Then G is edge-symmetric and biregular if and only if G has a
transitive bipartition and is neighborhood symmetric.

Proof. Assume first that G is edge-symmetric and biregular. By
Theorem 1, G has a transitive bipartition and, by Theorem 2, G is neigh-
borhood symmetric. Suppose, conversely, that G has a transitive bipartition
and is neighborhood symmetric. Vertices belonging to the same partite set of
the transitive bipartition must be of the same degree so that the transitive
bipartition is ¥, U ¥, and the result follows by Theorem 2.

REFERENCES

[1] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs and digraphs, Boston 1979.

[2] I. Z. Bouwer, An edge but not vertex transitive cubic graph, Canadian Mathematical
Bulletin 11 (1968), p. 533 -535.

[3]1 — On edge but not vertex transitive regular graphs, Journal of Combinatorial Theory, Series
B, 12 (1972), p. 32-40.

[4] D. Burns, S. F. Kapoor and P. A. Ostrand, On line-symmetric graphs, Fundamenta
Mathematicae (to appear).

[5] E. Dauber and F. Harary, On point-symmetric and line-symmetric graphs (unpublished).

[6] J. Folkman, Regular line-symmetric graphs, Journal of Combinatorial Theory 3 (1967), p.
215-232.

[7]1 R. M. Foster, Geometrical circuits of electrical networks, Transactions of the American
Institute of the Electrical Engineerings 51 (1932), p. 309-317.

[8] — A census of trivalent symmetrical graphs. I (unpublished).

MATHEMATICS DEPARTMENT
FERRIS STATE COLLEGE
BIG RAPIDS, MICHIGAN

Regu par la Rédaction le 13. 10. 1980



