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THE LOWER VARIANCE BOUND
OF THE DISORDER MOMENT ESTIMATOR
FOR THE NEGATIVE BINOMIAL AND POISSON PROCESSES

We discuss the negative binomial process which changes its intensity
Stepwise at a certain moment of time (the moment of disorder). The
Cramer-Rao inequality is usually used to determine the accuracy of par-
ameter estimation. The application of this inequality requires, however,
the density function to fulfil particular conditions of regularity. The neces-
Sary conditions, which must be satisfied by the density of distribution,
are not fulfilled in the problem in which the moment of a stepwise change
of the statistical characteristic of a signal is the estimated parameter.

Basing on the inequality proposed by Kiefer, we find the accurate
lower variance bound of the disorder moment estimator. In our calculations
We use the method presented in [2].

. 1. We consider the negative binomial process in a given period [0, T'].
It is 4 homogeneous process with independent increments for which
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P(X,(w) = )

Where 3 > 0,k =0,1,2,... We assume that the process is separable and

at almost all sample functions are right continuous. Almost all sample
Unctions of this process are nondecreasing and integral-valued but the
Magnitudes of jumps may be different. The process changes its intensity 4
3t the moment of time & (the moment of disorder):

(L1) 2¢t/8) = a+b-1(t—9), te[0,T],#e[0,T],a>0, atb>0,
Where

_J1 forit=0,
1“)“{0 for t < 0.

3 — Zastos, Mat. 18.3
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From the properties of the process it follows that every sample func-
tion is determined by the sequence of time coordinates i, 1,,...,1%, in
which jumps bave occurred and by the sequence %, %, ..., k, of magni-
tudes of jumps related to this sequence.

We introduce the system of densities p, (%, %yy ...y ¥,y K,y #), Which
characterizes the process by the probabilities, to obtain jumps that have
successively values %,, ..., k, of units only in the intervals [t,, ¢, + 4¢,), ...
ooy [Bny t, +4t,), Tespectively, with the fixed parameter 4 € [0, T']. We de-
note these probabilities as follows:

P(tl’ Atl,kl’"‘?tn’ Atn? kn’ 0)7
where 0 <t;, <T for ¢ =1,...,m, n =1,2,..., ¢, #4t if ¢ #j, 45, >0
for ¢ =1,...,n, and k; =1 for ¢ =1, ..., n.
Using the definition of the process and the intensity function we can

easily calculate that

(1.2)  P(ty, Aty byy eevy bny Alyy Ky 9)

1 ? 1 T7-6 n 1 l(tz/’ﬁ) ki
B = NV A o4ty . A1),
(l—l-a) (l—l—a—l-b) !Jki(l-‘rl(tiw)) at;+o(4t, )

Hence we obtain the system of densities

(1.3)  Du(tis Eyyovvy tny Bopy 9)

1V 1 \T- g1 Atd) \m
=<1+a) (1+a+b) !;1]70;(1-!-2(%/19)) ’

where 0 <t,<T for ¢ =1,...,n, n =1,2,..., &, #1 if i #j, and
k,i=21fori=1,..., n

We find a method to sum up the events whose probability is giveD
by (1.2). The following identity is useful for this purpose:

.4) j’ 3 ﬁ%(lfli)k‘=ﬁm(1ﬁ-zi>,

k=n kyt..thy=k i=1
K >,k >1

where for each n (n > 1) the system of numbers 1, (¢ =1, ...,n) fulfils
the inequality 4, > —3. )

The proof of (1.4), which can easily be carried out by induction, fs
omitted. Using now identity (1.4) we see that the following equality s
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true:
( 1 L] 1 T—-96
+
1+a)(1+a+b)
00 T T )
1 1 L 1 T-9
+2;b_'f(n)f{2 (1+a) (1+a+b) %
n=1 0 0 k=n ky+...+ky=k

k1>1,...,kn>l

“r 1 AP \k
an(f—i——}.(t@_/ﬁ_)) }dtl...dtn=1.

t=1

2. The probability density functions (1.3) cannot be everywhere
differentiated with respect to the parameter . We introduce an inequality
of the Cramer-Rao type, given in [1], which does not require the conditions
of regularity to be satisfied.

Let X be a random variable with density f(x, 9) (x € &, ¢ € @) with
Tespect to some fixed o-finite measure 4 and let ® < R. For each 4 €6,
We put

Oy = {h:9+heb}.

For fixed &, let y, and u, be two probability densities on @, such that
the integrals

f hy;(h)dh
6y

exist and are finite for ¢ = 1, 2. Then for any unbiased estimator ¢(») of
the parameter @ € © the following inequality holds:

(9 [ Bty (B) @b~ , [ By (B) aR)?

2. — S
21) Bo(t— )" > sup T @, O 7@, 810 s W) — pa W1 ah A )
&

Where for each ¢ the supremum is taken over all u; and u, for which u, # u,
and for which the integrand of the integral over % is defined 1-a.e.

Inequality (2.1) holds without any restriction on the probability
d}énsity f(z, 9) and the right-hand side of this inequality is the best pos-
Sible lower variance bound of the estimator of the parameter & (see [1]).
The right-hand side of inequality (2.1) can be calculated by the method
Proposed in [2].

We introduce the following symbols:

p(h) 2 py(h) — pa(B),

D [pl1Z | huhyah, @,[u]Z 1
9{ Jf(w, 0)

2
(Jf(w, ﬂ—l—h)y(h)dh) dA(x).
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In order to find the supremum in (2.1) we have to find g such that

(D.[p'])? _ (P1[p])?

2.2 sup — =
(2:2) PG w ] Balu]
with the restrictions
(2.3) [wman = o,
6y
(2.3) u(h) £0, heb,.

The restriction (2.3) follows from the fact that 4, and u, are the prob-
ability densities.
Changing the order of integration in the functional @, we get
(2.4) Dylu]l = [ [ Kb, W) pd)p@®)dhan,
0y 0y
where the kernel K (-, -) is of the form

@, O+h)f(z, 3+ h')
[z, 9)

According to [2] the problem defined in (2.2)-(2.3’) leads to the Euler
equation

(2.6) [E(h, M) u(h)ah' = Ah+ 2y,
6y

(2.5) K(h,h’)gff( di(z), b, €0,.
x

where 1, and 1, are Lagrange multipliers. From (2.3) it follows that 1, = 0.
The multiplier 2, can be equal to one, which results from the fact that if
the function u(-) fulfils condition (2.2), so does the function cu(-).

3. Our considerations from Section 2 will be used for obtaining the
probability density funections. The kernel (2.5) can be transformed in the
following way:

(8.1) Kb, W) = (14+a)" "M N1+ at )T x

S35 S [Tluesnd

n=1 k=n ky+. tkp=k i=1
ky>1,..0kp,>1

for h, ' €O, = [— &, T — 9], where
T( A(t[9+h) )"( A(t[9+h") )k
1+ A(E/0+h 14+A(t/94h'
Ik(ﬁ,h,h’)i—f- f + At/ + ;(t/ﬂ) k(/ )
° (1+z<t/0>)

forde[0,T), h, b €@y, and k = 1,2, ... To find the kernel we use ident-
ity (1.4).

dt
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After integrating and summing (3.1) we obtain the following values
of the kernel in the domain b’ > h:

(a+b)(1+a+b)\"
for K
( a*+a-+b-+2ab or h>0,
(3.2) K(h,b') =1 for h<0, B’ >0,
a®+a—b%\¥
— for ' .
( Ata)a ) or "<0, h<0

This formula holds under the conditions
a?t+a—5b2>0 and a*4a-t+b-+2ab>0

Which are necessary for identity (1.4) to hold. ,
In the remaining domain of changes of a and b we obtain the fol-
lowing values of the kernel for b’ > h:

b h
(<Z;”;‘i:j;b)) for k>0,
3.3 ) =
(3.3) K(h, 1" 1 for <0, B’ >0,
o for ' <O
if a2+a—b""<0, and
0o for h >0,
1 for <0, A >0
(3.4) .K(h, hl) — 2+ " y or i s I H
_(LL) for ' < 0
(1+a)a

if g244—b2>0 and a+a-+b-42ab < 0.

By symmetry of the kernel K (-, ), it can easily be calculated in the do-
Mmain »’' < h.

We write

at (@a+b)(1+a+b)

(3.5) = ond B&¥ta—b

a®+a-+b-+2ab (1+a)a

The Euler equality will be solved for each kernel separately.
For the kernel (3.2), the equality is of the form

r—96

0 h —
©:6) [ [ pwyah' + [ A¥u(h)an' + 4> [ p()dn]1(h)+
-9 0 h

h 0 T-9
+[B* [w)aw + [ BYu(w)dn' + | u(B')ak'] 1(—h) = b,
—_ h 0
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where 1 (k) is the function of unit jump. Equality (3.6) will be solved sep-
arately for & < 0 and 4 > 0, and then we shall “join” both solutions at the
point & = 0. The only condition for joining them is the equality of the
solutions at this point.

For h <0, by (3.6) we have

h 0
(3.7) B* [ u(W)ah'+ [ B¥u(W)dh' = h—C,
-9 h

for h e[ —3,0], where
at T-9
C,= [ p()aw

ot

is unknown. Differentiating (3.7) twice with respect to & we get one of

the possible solutions: u(h) = —B~* for h € (—%, 0). The function will

be extended for the points » = — & and 4 = 0 by means of point measures

so that equality (3.7) will hold for A = 0 and A = —&. We obtain

(3.8) p(h) = —B*+C_s8(h+8)+Cyd(h), he[—9,0],

where 4(-) is the Dirac function and the constants are equal to
C_s=BnB and C, = —C,—1/InB.

Putting (3.8) into (3.7) we check that the function (3.8) is the solution
of the equality.
For h >0, equality (3.6) is of the form

h -9
(3.9) [ AMu(W)dh +A* [ p(h)ah' =h—C,, he[0,T—95],
0

h

where
-
(3.10) 0, = [ w(h)dh.

s
Comparing (3.8) and (3.10) we obtain

(3.11) C, =1/InB.

Equality (3.9) can be solved in the same way as (3.7). Now, we get
(3.12) u(h) = A"+ Cp_s6(h—T+9)+Cp, 6(h), hel0,T—3],
where

1 1
C. . — —~(T-9) — O — .
T8 o A and 002 02 !111 |
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Putting (3.11) into the last equality we obtain

-1 1
Uo =B "Ta"

Having the function u(-) defined on the interval (0, 7'—#], we calculate
Ol alnd 001:

0;=1nA and Cy = —1/InA—1/InB.

It can be noticed that Cp = Cp, = —1/lnA—1/InB & ¢,

The equality of the constants €y, and C,, is the sufficient condition
to join the solutions (3.8) and (3.12) at the point A = 0. Therefore, the
obtained solution of equality (3.6) is of the form

(313)  u(h) = —B~*1(—h)+0_sd(h+9)+
+Co8(h) +Cp_ 58(h —T +8)+A~"-1(h)
for b e [ -9, T— 9], where

14
B -1 1 _ 1 aa

Co=%z %=z wB %~ 14

The Euler equality will now be solved for the kernel (3.3). The value of the
functional @, (from (2.4)) equals + oo for each function u(-) which fulfils

the restrictions and which does not equal zero in the interval [—3,0]
Then

CA
D, (]
The supremum (2.2) is calculated with all the functions u(-) fulfilling
{2.3) and (2.3’) and such that u(k) = 0 for h e [—3&,0). It is then the
Problem identical with the problem (2.2), (2.3), (2.3’) in which the subset

[0, T —§] is taken now from the set @,.
From (2.6) we obtain the Euler equality in the form

h T7-9
fA"',u(h’)dh'-]-A"f u(h')yah' =h, hel0,T—9].
0 h

We obtain the solution of this equality using the solution of equality
(3.9) for ¢, = 0:

(B14)  u(h) = AL CL0(R)+Cp_yd(h—T+9), hel0,T—9],
Where 0y = —1/ln4 and Cp_p = A~T~")/InA.
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The Euler equality is solved in the same way for the kernel (3.4).
The solution takes the form

(316) (k) = —B+C0_,0(h+9)+Cyo(h), he[—8,0],

where C;' = —1/InB and C_, = B’/InB.

According to [2], the solution of (3.6) appears to be not only a neces-
sary condition but also a sufficient one for finding the supremum (2.2).
Moreover, the solutions (3.13), (3.14), and (3.15) satisfy (2.3) and (2.3').
In this way they are the solutions of the problem of finding the supremum
(2.2) with conditions (2.3) and (2.3'). The solutions can be represented
as the result of subtraction of two densities, which follows from the prop-
erty of (2.2), formulated after formula (2.6). Therefore, these solutions
give such a supremum in formula (2.2). We shall calculate the value of
this supremum.

Introducing the solution of Euler’s equality into the functional ®,,
by (2.4) and (2.6) we obtain

Dolul = [ [E@®,W)p(h)u(h')ahdh’ = [ hu(hyan.
7

6y 0

The extreme value of functional (2.2) is therefore equal to

b
(3.16) sup

Introducing (3.13), (3.14), and (3.15) into (3.16) we get the accurate lower
variance bound of the disorder moment estimator for the process under
consideration. Depending on the values of the intensity coefficients a and b
in (1.1), this limit equals

1
l_A—(T—ﬂ) I __nd
Tnid ( )+ B (1-B%),

where a?+a—52 >0, a2+a-- b4 2ab >0;

(1—A4A-T-%)  where at+a—b2 < 0;

In24

1
m(l—B"), where a*+a—b%>0, a*+a+b+2ab < 0;

A and B being defined by (3.5).
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Obviously, this limit depends on the process parameters (a, b, 9)
and on the time of observation 7. When the factors & and T — ¥ increase,
the minimal variance increases to the limit

1/In24 +1/In?2B, where a2+a—02>0, a2+a+b+2ab >0;
1/In24, ~where a®+a—0b%<0;
1/In’B, where a2+a—b2>0, a’+a-+b+2ab<0.

4. Finally, we consider the situation in which we have the possibility
tfj‘ observe independent channels, each of which is described by a negative
binomial process similar to the one presented above. We assume that the

intensity is changed stepwise simultaneously in all channels at a moment
de o, 1],

ys(t[P) = ag+bg-1(t—9), a;>0,0b,>0,

Where s is a number of channels (s =1,...,%).

. According to the considerations in Section 2, we may state that if X
I8 a random vector with independent components, the kernel (2.5) can
be calculated by the formula

1. dz,

K (h, b') = fw ff(w“ co0y Tn3 OIS (@1 .0y B3 AR o
x

@ f(w17""$n; "9)

— - fi(@s; O +h)fi(2;; O-+R') B " ,
- wa Ji@;5 9) do; = !JKﬂ(h’ k),

Where K,(-, -) is the kernel related to the i-th component of the vector X,
han'ng density f;, and f denotes density of the vector X. Since the chan-
Dels are independent, the density function in this case is the product of
densities (1.3) that describe single channels. Therefore, the value of the
€rnel at each point equals the product of kernel values at that point,
calculated for g single channel. Making calculations similar to those for
the one-dimensional case, we can evaluate the minimal estimator variance
of the Parameter ¢ which uses information about all » channels.
Defining new constants by the formulae

n n 2
A = (a’s+bs)(1+as+bs) — ai+as_bs
!J as+ a;+b,+2a.b, and B !J (1+a,)a, ’




384 W. Kolkiewicz
we can see that the minimal variance is equal to

1
Inz24

1
— AT 4~ (1— B
(1 )+ g 1= B

where a2+a,—b2 >0 for all se{1,...,n}, and

1
In24

(1—4--9),

where a-a,—b2 < 0 for some se{l,...,n}.

It can be ecasily checked that in the described multi-dimensional
case the minimal estimator variance of the parameter # is smaller than
the minimal estimator variance that uses information from s single channel.

5. The precise lower variance bound of the disorder moment estima-
tor for the Poisson process has been obtained in [2]. The multi-dimensional
case can be analyzed for this process similarly as in Section 4. We observe
channels each of which is described by a Poisson process. We assume that
the intensity is changed stepwise simultaneously in all channels at the
moment 4 € [0, T]:

ls(t/ﬂ) = as_l_bs'l(t—ﬁ))

where s is a number of channels (s =1,...,n).
Pertel’ [2] has obtained the lower variance bound for the one-dimen-
sional case in the form

() [ (= ol] 552 [rome (=550

Calculating similarly as in Section 4, we obtain the following lower variance
bound of the estimator for the multi-dimensional case:

il S

(.2 bi/as)z s=1 °
s=1

n 2

1 b
+ [1 —exp (— R (T—ﬁ))].
(2 b%/(as+D,))* Z %t s

S=l
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