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Given an arbitrary fibered manifold π: Y → X, a connection on Y (or a generalized 
connection) means any section Γ∙. Y → J1Y (= the first jet prolongation of Γ),
[3], [5]. Analogously, a non-holonomic rth order (generalized) connection on Y 
is a section Y → JrY, where the rth non-holonomic prolongation JrY of Y is defined 
by the iteration J1Y = JtYi JrY = ∕1(∕r-1y). In fact, the first order absolute differen
tiation with respect to a generalized connection Γ is of the same form as in the 
classical case of a principal connection. On the other hand, the absolute differen
tiation of higher order requires quite new procedures. We first explain how such an 
operation can be defined in terms of the successive vertical prolongations of Γ. 
However, this approach has somewhat “static” character and cannot be applied 
to higher order connections. That is why we develop a “kinematic” approach based 
on the idea of a parametrized jet. (It seems that the latter concept can be useful 
in some other higher order theories as well.) Then we deduce that the iterated ab
solute differentiation with respect to the vertical prolongations corresponds to the 
construction of the product of connections, [8]. In particular, the use of the successive 
vertical prolongations of a first order connection Γ is equivalent to the use of the 
prolongations of Γ in the sense of Ehresmann, [1], [2].

1. Vertical prolongations

Consider a connection Γ'. Y → J1Y. In local fiber coordinates xl, yp on Y, the 
equations of Γ are

(1) dyp = Ff(x,y)dxi

with arbitrary smooth (i.e., infinitely differentiable) functions Ff. Given a vector 
field ξ on X, denote by Γξ the Γ,-lift of ξ. Using flows, we prolong Γξ into a vector 
field V(Γξ) on the vertical tangent bundle VY of Y, [4]. The mapping ξ ι→ V(Γξ)
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determines lifting with respect to a unique connection VΓ on VY → X with the 
following equations

(2) dyp = Fp(x, y)dxi, dηp = SF'η9dxl,

where ηp = dyp are the induced coordinates on VY. By iteration, we obtain a connec
tion VrΓ = V(yr~1Γ) on the rth vertical tangent bundle VY = V(Vr~1Y).

The connection map ωr'. TY → VY assigns to every vector of Ty Y its projection 
into Vy Y in the direction Γ(y), y eY. The equations of ωr are

(3) ηp = dyp-Ff{x,y}dxi.

Given a manifold M and a smooth map f: M → Y, the composition Vr∕ of the 
tangent map Tf: TM → TY and ωr is said to be the absolute differential of f with 
respect to Γ, Vrf := ωr ° Tf: TM → VY. Denoting by

J1(M, Y,π)=(J J'(M, Kt)
xeX

the space of all 1-jets of M into the individual fibers of Y, the absolute differential 
of f can also be interpreted as a mapping Vr/: M → Jl(M, Y,π).

Taking into account VΓ and \rf: TM → VY, we can construct the absolute 
differential Vf-∕ := Vrr(Vr∕)ι TTM → VVY called the second absolute differential 
0f f w^h respect to Γ. By iteration, we obtain the rth absolute differential of f with

-> respect to Γ

(4) Ψrf: = Vyr.lr (yrr1f): T^M → VY,

where T{r)M = T... TM. We recall that every non-holonomic r-jet A e Jp(M,N)q
∣∙-times

determines a map ∠4φ: Tff*M → TqryN by the following induction, cf. [7]. In the 
first step, the identification Jp(M,N∖ = Hom(T,pΛf, TqN) is trivial. For r > 1, 
we have A = jpf where/is a section M → Jr~1(M, N}. By the induction hypothesis, 
f determines a map/*: Tf∙r~lyM → Tlr~1,N and we set
(5) A* = Γp(Λ) : Tff>M → TpN.
Analyzing (4), we prove

Proposition 1. For every p ∈ M, there exists a unique semiholonomic r-jet 
AeTp(M,Yx), x = πf(p), satisfying

= V'rf(p)-. 1ΓM→ V}wY = ‰(Γ,).
(We remark that Proposition 1 follows immediately from formula (26) below.) 

Hence we can also write
vrf∙. M→ Jr(M, y, π) := U Jr(M, YJ.

xeX

In particular, if σ is a section of Y with equations yp — σp(x), then we deduce by 
(2)-(4) that the coordinates of Vp∕ are ∂σp∕8xl-Ff(x,σ) and 

82βp _ 8Fj _ ∂Ff ∂ctq _ ∂Ff 8aq ∂Ff
∂xi8xj 8xj ∂yq ∂xj ∂yq ∂xl ∂yq l ‘(6)
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We recall that the curvature of Γ is a section Ωr'. Y → VY<g)∕X1T*X with the 
following coordinate expression, [3],

(7) rf ≈ (fijFj + F? δqFj)dxi λ dxj.

Applying alternation to (6), we obtain

Proposition 2. For every local section σ of Y, σ(x) = y, we have 

d(V∣σ(x)) = -βr(y),
where Δ means the difference tensor, [2].

2. Parametrized jets

Let M, N, P be manifolds and C∞(N, P) the space of all smooth maps of N into P. 
(Hence Cx(N, P) is not a manifold in the classical sense.) A map f'.M→ Ca(Ni P) 
will be called smooth if the induced map

f∙.M×N→P, f{p,q) = f(p)(q), pεM,qeN,

is smooth; the set of all such maps will be denoted by Cco(M, Cx(N, P)). We shall 
say that two smooth maps fg: M→ CafN,P) are r-equivalent at peM, if

(8) jrpf(~ , q) = j⅛(-, q) ∈ Jrp(M, P) for all q ∈N.
The equivalence class A = jpf will be called r-jet of M into C00(A, P), p = α∠4 or 
f = βA is the source or target of A, respectively. Similarly to the classical case, 
we write Jr(M, C∞(N, P)), Jrp(M, Ccf>(N, P))f, etc.

Every jpf e Jp(M, Ctx,(N, Pj) determines a map jrpf{-, q)'- N → Jp{M, P). 
Conversely, given F: N → Jp{M, P), one can prove that there is a neighbourhood 
p e U ⊂ M and f: U → Cx(N, P) such that F(q) = jpf(- , q)∙ Thus, we have an 
identification

(9) Jrp{M, C∞(N, P)) = C∞(N, Jrp(M, P)).

That is why the jets of this type will be said to be parametrized jets. Obviously, any 
element of Jp(M, C'c(N, Pj)f is a mapping F: N → Jp(M, P) satisfying βF = f.

Example 1. The tangent space TpM of a manifold M can be defined as Tp{M) 
= Jo(R,M)p. If we introduce similarly 7}Cc0(A, P) = ∕⅛(P, C00(7V, P))∕, we 
obtain the standard interpretation of the elements of T∕Cx,(N, P) as mappings 
F: N → TP over f which are called vector fields along f In this case, identification
(9) gives Γ(Cx(yV, P)) = C0°(A, TP).

If Q is another manifold and B = jig e Jrt (Q, M)p an ordinary jet, we have the 
composition
(10) A » B : = j',(f °g)eJ',(Q, C"(N, i>)),

A = Λfε Jrp(M, Cm(N, Pj). Further, any smooth map F: P → Q transforms jτpf 
into 
(∏) f «(;;/(«»=a(F ∈ j'(m, c∞(n, e)), «∈ m.



156 I. KOl λf<

On the other hand, any F∈C00(g,A) transforms jrpf into

(12) (y;/(«)) C F = j'r (f(u) o F) ∈ Jr(M, C∞(Q, P)).

Consider a fibered manifold π∙. Y → X and the space

co°(a, y, π) := U c∞(a, yx) ⊂ coo(a, y)

of all smooth maps of N into the individual fibers of Y. We have an induced map 
b: Cco(N, Y, π) → X. Obviously, we have

(13) Jr{M, C∞(N, P)) = C∞ (N, Jr(M, P), a),

a: Jr(M, P) → M. A mapping f: Q → Jr(M, Cx(N, Pj) will be called smooth 
if it is smooth under identification (13).

The non-holonomic parametrized jets can be introduced by the following 
induction. For r = 1, we have the above holonomic case. Given a smooth section

/: M → Jr~i(M, C00(N, P)),

√p∕will be called a non-holonomic r-jet of M into C0°(7Vr, P). Analogously to (13), 
we have

(14) J'(M, Cx(N, P)) = C∞ (A, Jr(M, P), a).

Formulae (10)-(12) are naturally extended to non-holonomic jets. The semi-holo- 
nomic parametrized jets are introduced in standard way.

If A eJ⅛(M, C∞(N, Y, π)), then bA Ejrp(M, X) is an ordinary r-jet. Denoting 
by

⅛ Jr(M, Y)→Jr(M,X)
the map derived from π, we easily find an identification

(15) Jrp(M, C∞(N, y, π)) = Co0(N, Jrp{M, Y), πrff).

In other words, the elements of Jrp(M, Cς°(N, Y, πj) are maps of N into Jrp{M, Yj 
over the same element of J⅛(M,X). We shall use the symbol

Jrp(M, C∞{N, Y, π))z,β ⊂ j'p(M, C∞(N, Y, π))y, B e Jrp(M, X), 
for the subspace of all jets over B.

Example 2. Take N = Yx, f = ex = idγχ, M = R, p = 0 and put
(16) LxY=J10(R,C∞(Yx, y,π)‰.
Every element of LxY is a vector field along Yx over the same vector of PxX, i.e., 
a projectable vector field along Yx.

3. Fiber jets

We shall say that two maps /, g: Y → N have r-th order fiber contact at x eX if 
yp∕ = j$g for all y e Yx. Such an equivalence class √x∕ will be called a fiber r-jet 
of y into N. Using local coordinates, we easily find that any two of the following 
three conditions are equivalent:
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(i) jxf = jxg,
(ii) jχ(f o σ) = Jχ(g o cr) e ⅛(X, A) for all local sections σ of Y,

(iii) for any local trivialization of Y, fif(-,y) = fig(-,y) e Fx(X,N) for all 
y≡Yx.

If vλ are some local coordinates on A, then a fiber jet of Y into A is determined 
by smooth functions fλ(y), fi(y), ... ,fλl...ir(y) defined on the corresponding fiber 
of Y and symmetric in all subscripts.

Given another fibered manifold ρ: W → Z, we denote by Jf(Y, W) the set 
of all fiber r-jets of fibered manifold morphisms of Y into W. If U → V is a third 
fibered manifold and /: Y → W or g: W → U a morphism over fQ: X → Z or 
g0: Z → V, respectively, then we define
(i7) (Λrg)°σω=Λ(g√), ^=∕o(χ).
Hence the fiber r-jets of fibered manifold morphisms form a category Jfi with a 
canonical functor into the category Jr of ordinary r-jets.

Let C0°(π, Y, A) := (J Cx(Yx, A) be the space of all smooth maps of the
xeX

individual fibers of Yinto A and a: C00(π, Y, N) → X the natural projection. A map 
/: M → C00(π, Y, A) will be called smooth if

(a) af: M → X is smooth,
(b) the derived map /: (af)~1Y → A, f(p, q) == f(ρ)(q) is smooth, provided 

(af)~1Y means the induced fibered manifold over M. In particular, a section σ∖ X 
→ C0°(π, Y, A) is smooth if the derived map u: Y → A, σ(y) = σ(πy)(y) is smooth.

Example 3. Set LY = (JFxΓ. A smooth section cr: X → LY corresponds 
xeX

to a projectable vector field on Y. The bracket of such fields defines a bracket oper
ation on the sections of LY, what endows LY with a Lie algebroid structure in the 
sense of [6]. We remark that LY is the Lie algebroid of the groupoid GY defined 
in § 4 below.

Let μ: 5, → X be a fibered manifold and F: S → Y a base-preserving morphism. 
Then we have an induced map

F*: C∞(M, C∞(π, Y,N)) → C∞(M, C∞(μ, S, A)), (F*∕)(p) = f(p) o (F‰>).

In particular, any section σ: X → Y determines a map σ*∕: M → N.
Two smooth maps fig: M → Cc0(π, Y, A) will be called r-equivalent at p ∈ M 

if jp(<j*f) = jrp(σ*g) e Jrp(M, N) for every local section σ of Y. If af = ag =: h, 
this condition is equivalent to the fact that the derived maps / g: h~1Y → N have 
rth order fiber contact at p. In this situation, we shall also use the classical notation 
√p∕, Jrp(M, C00(π, Y, A)), etc. In local coordinates wα on M, an element of 
Jr(M, Cx,(π, Y,Nj) is determined by smooth functions fλ(y), f£(y), ∙∙∙,fa1...ar(y) 
on the corresponding fiber of Y.

To introduce non-holonomic fiber jets, we first present the construction of 
ordinary non-holonomic jets in a convenient form. First of all, any A eJp{M,N)
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is of the form A = jlpF, where F is a section M → J1(M, N). Every F(pj), p2 ∈ M, 
is defined by F(pj) = jl2f(~,p2)- Hence we have a smooth mapping/: M×M → N 
and we can write A = jpf : = 7p(jp2∕(-,p2)) ∈∕J(M, A). For arbitrary r, we take

r ~ ~
similarly a map /: × M → A and construct yp∕ = 7p7p2 ...7'pr∕∈ ∕p(Λf, A).

The space Jr(M, Cx,(π, Y, A)) is defined by the following induction. For
r = 1, we have the above holonomic case. Assume by induction that we have defined 
~ ~ r— 1
jrp-1feJr~1(M, Cx(π, Y, N)) for any smooth map /: × M → C00(π, Y, A). A 
section

<p: M→Jr~i(M, Cco(π, Y,N)) 
will be called smooth if there is a smooth map

r-l
/: M× ×Λf → C00(π, Y,N)

such that
φ(μ) =jru~1f(u, -)

for all u ∈ M. Let
r. M→ Jr~l{M, C‰ Y,N)), y> =jru^1g(μ, -) 

be another smooth section. Then we define
jlpψ = j1pψ e fr(M, C∞(π, Y,N))

by requiring
jrp^f = jrp^g^Jrp(M,N)

for every local section σ of Y.
If ρ: W → Z is another fibered manifold, then

C00(π, Y, W, ρ) ⊂ C∞(π, Y, W)

means the subspace of all smooth maps of one fiber of Y into one fiber of W. Any 
C e Jrp{M, C00(π, Y, W, ρ)) determines aC ∈ Jrp{M, X) and bC ∈ Jrp(M, Z). Given 
A e Jl(M, X) and B ∈ Jrp{M, Z), we denote by 7p,yl(Λf, C00(π, Y, W, ρf)f,β 
⊂ Jrp(M, Cx(π, Y, W, ρj)f the subspace of all jets over A and B. Any element 
A e JffX, C0°(π, Y, W, ρ)) satisfying aA = j⅛idx = : Fx will be called non-holonomic 
fiber r-jet of Y into W and Jr(Y, W) will denote the space of all such jets. If B 
∈∕2(JF, U), z = bβA, we define B ° A ∈ Jr(Y, U) by iterating (17). Thus we obtain 
a category Jr of non-holonomic fiber r-jets.

Consider further √4∈7p(JW, Γ) and B ∈ Jrp(M, Cc0(π,Y, A)) satisfying πA 
= aB e Jrp(M, X). We may write πA = aB = j⅛h, A = jrpfi B = jrpg, where / or g

r r
is a map of χ M into Y or C00(π, Y, N) over the same map h: jfi M → X. Then

(g∙ f)(pl, ∙∙∙>Pr) = g(j>l, ∙∙∙,Pr)(f(Pl, ~∙,PrS)
r

is a mapping of × M into A and we define
(18) BA = j'(g-f)ej'(M,ff).
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Assume that Y and W have diffeomorphic fibers and denote by 

∕00(π5 Y, W, ρ) ⊂ C∞(π, Y, W, ρ)

the subspace of all smooth diffeomorρhisms. For every

A = y;/6 ∕p'(Af, ∕∞(π, Y, W, ρ)),

we introduce its inverse

(19) A~1 -.= j'r(f-1)Ej'(M,Γ'(o, W,Y,π)),

where f~1 is the inverse diffeomorphism of f For non-holonomic r-jets of M into 
∕00(π, Y, W, ρ), such an inversion is defined by standard induction based on (19).

4. Elements of connection

Consider the groupoid GY := ∕c0(π, Y, Y, π) of all diffeomorphisms between the 
individual fibers of Y. Using an idea by Ehresmann, [1], we define the space of all 
non-holonomic rth order elements of connection on Y at x by

(20) &Y := /(,o; <X, GY),x,ei,
where 0x means the r-jet at x of the constant map tt→ x, t εX. Since any A e Qrx Y 
satisfies aA = 0x, we can also express Qrx Y as

(21) QrxY= Jrx(X, C∞(Yx, Y, n))eχ,εrχ.

By (15), every C ∈ QxY is identified with a section F: Yx → JrY. Hence any smooth 
section

C: x→ςrγ∙.= UβrχY
xeX

is identified with a section Γ∖ Y → JrY, i.e., C is a non-holonomic rth order connec
tion on Y.

The absolute differential ∖aB of BeJtp{M, Y) with respect to an element 
of connection AεQxY, x = πβB, is defined as follows. We have A~1 
∈ ∙⅛,Erx (X GY)eχι0rχ and nB ε Jrp(M, X)x, so that we can construct (A~1 ° (nB)) ∙ B 
ε Jrp(M, Yj by (10) and (18). Since bA~1 = 0rx, the latter jet belongs to Jrp(M, Tx). 
Then we set

(22) ∖aB := (A~1 o (πB))-Bεjrp(M, Yx).

In particular, if B εJrY, then (22) is simplified to VaB = A~1 - B. Given a map 
f∙.M→Y and a connection Γ∖ Y → JrY, we use the corresponding section 
C: X → QrY to define

(23) Vrf(j>) = ^c<x)jrpf ^Jrp(M, Yx), x = πf(p).

The map Vr/: M → Jr(M, Y, n) is called the absolute differential of f with respect 
to Γ.
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5. Product of connections

Consider an rth order connection C: X → QrY and a first order connection 
D: X→Q1Y. Let

F(x) = jx φ(t), φ(t): Yx→ Yt.
Since

c(i)ej⅛r,c∙(r,j,‰
we have

c(∕).jψ)e⅛,c"(r,,r,,))
by (12). Then
(24) j1x(C(t) o 9>(z)) ∈ ⅛÷ι(X, Cc°(Yx, Y, π))eχ,^÷1 = Qrx+'Y.

Hence we obtain a non-holonomic (r+l)st order connection C*D: X → Qr+1Y. 
(For principal connection, this operation was introduced by Virsik, [8].) Taking 
into account the corresponding sections F: Y → JrY and Δ: Y → J1Y, we deduce 
by (24)

Proposition 3. The section Γ* A: Y→ Jr+1Y corresponding to C*D: X → Qr+1Y 
is Γ* Δ = J1Γ o Δ, where J1Γ". J1Y → Jr+1Y is the jet prolongation of T: Y → JrY.

In particular, if F is a first order connection on Y, then F<r~1> = F*F* ...⅛F
r-times

is the (r— l)st prolongation of F in the sense of Ehresmann, [1]. The values of Γςr~ly 
lie in the rth semi-holonomic prolongation of Y, [2].

Given B e Jrp+1{M, Y), we determine a construction of the absolute differential 
Vc*d(x)77, x = πβB. We have B = ypF, where F is a section M → Jr{M, Y). Using 
F: Y → JrY, we construct VrF: M → Jr(M, Y, π). By (8), VrF can be interpreted 
as a map T(r)M → VY. Taking into account the rth vertical prolongation Vr∆ 
of J, we get

Vr√VrF)(p).∙ rg+1w→r÷1y,

which corresponds to an element of Jrp+l(M, Yx). By the definition of Vr∆, we deduce

Proposition 4. We have
Vc*d(.x)B — Vvrr(VrF)(p)∙

In particular, if we have r first order connections Γ1,Γ2, ..., Γr and consider 
their product F1 ⅛ Γ2 * ... * Γr, Proposition 4 implies

Proposition 5. For any f: M → Y, we have
(25) ^r1*r2*-*rrf — Vκr-1rr ∙∙∙ Vκr2Vrl∕.

If F1 = Γ2 = ... = Γr = F, then the right-hand side of (25) is ∖rrf in the 
sense of § 1. Hence we have

(26) VS√,= Vr<'-b∕.
This formula shows that the rth order absolute differentiation with respect to a first 
order connection F on Y in the sense of Section 1 coincides with the absolute 
differentiation with respect to Fσ-υ.
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