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Boundary value problems on [a, b) and singular perturbations

by M. CeccHi, M. Marint and P. L. Zezza (Firenze)

Abstract. In this paper we show the existence of a bounded solution for a non-linear
differential equation with a general boundary condition. We assume that the non-linearity is not
defined in {0} and we use degree arguments, because the solutions belong to a set without the
fixed point property with respect to compact and continuous operators.

The existence of a bounded solution of the boundary value problem
(*) x=At)x+f(t,x), Tx=p

on a non-compact interval has been studied by many authors. We recall the
admissibility theory developed by J.L. Massera and J.J. Schéffer; further
contributions are due to C. Corduneanu and W. A. Coppel. From among the
resuits obtained in this theory we mention only the papers by Avramescu
[1], [2] and by Corduneanu [8].

Boundary value problems like (*) on a compact interval can be solved
by the alternative theory (L. Cesari [7]), the coincidence degree theory
(Mawhin [12]), or by the more recent theory of the O-epi functions (Furi,
Martelli, Vignoli [9]). They can be more easily solved by the Leray-
Schauder degree theory, from which the above-mentioned theories are de-
rived. We mention here only the papers by Villari [14], [15], who used these
methods in the study of ordinary differential equations. A rather complete
bibliography is in Mawhin [13].

Problem (*) on a non-compact interval has been taken up, with use of
topological methods, by Kartsatos in [10], [11], under the hypothesis that
problem (%) for f(¢, x) = 0 has a unique solution, and by the authors in [3],
[4], [5], without this hypothesis.

On the other hand, we assume here that f(t, x) is defined in R"—{0}.
Such a condition implies that the operator associated to () is defined on a
non-convex set; so the Schauder theorem cannot be used while the degree
theory may be applied.

In Section 1 notations and symbols are given; we construct an operator
needed in the following section and we prove that it is compact and
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continuous. In Section 2 we prove an existence theorem using the Leray-
Schauder degree theory.

1. Let us consider the linear boundary value problem
(1.1) x=A({t)x+f(t, x)
(1.2) Tx =¢, ¢€R"-{0},

where: teJ =[a, bh), —0 <a<b< +00;t—> A(t) is a continuous function
from J into U the algebra of endomorphisms of R"; u —f(t,u) is a
continuous function from R"—{0} into R" for each reJ; x> Tx is a
continuous linear operator from dom T= BC (the space of bounded con-
tinuous functions from J into R") into R".

We are looking for solutions of (1.1)-(1.2) that belong to BC; this is a
Banach space with the norm

lIx]] = sup|x (1))
ted

Defining certain operators we shall identify R” with the subspace of BC
consisting of constant functions; we denote by I the identity operator in BC.

From now on we assume the following hypotheses:

(1) the linear system associated to (1.1)
(1.3) y=A()y
is strongly stable;

(2) there are two integrable functions t — p(1), t = q(t) from J into Rg
= [0, +o0) such that

Sl W < pO—+q(), ucR—{0), teJ

|u|
and
b b
fpdt =T < +cc, [q)dt =A< +o0;

(3) T restricted to the space D of the solutions of (1.3) is onto R".

Remark 1.1. The hypothesis of strong stability ensures that, for each
yveD, y # 0, the following cannot be true

inf|y ()l = 0.
1eJ
Moreover, from (3) we can deduce that the linear problem associated to
(1.1)-(1.2),
y=A@®y, Ty=p, 0eR-{0},
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has a unique solution y such that, setting
R = {ueR" r<|uy <R}, r,ReR*=(0, +x),
we have
y(t)e o}
for suitably choosen 7, R and telJ.

Let X (t) be a fundamental matrix of (1.3), principal at a; from (3) we see
that the operator T, = TX (t) (T applied to the columns of X (r)) belongs to
A and is invertible: let Ty ' be its inverse.

Remark 1.2. If system (1.3) is strongly stable, the boundary value
problem (1.1)-(1.2) is equivalent to

(1.4) t=g(t,2), <Lz=9, eR -0},
with the change of variable
zZ() = X~ 1) x(o).

Our main theorem, stated without loss of generality for A(r) =0, 1s:
THEOREM 1.1. Under hypotheses (1)—(3), if e R"— {0} is such that

(1.5) ITs ol > I-Tg ' T A+2/II-Tg 'T|| T,
then the boundary value problem (1.1)~(1.2) (with A(t) =0) has at least one
solution x. Moreover, there are r, Re R* such that x(t)e®X, teJ.

We shall prove it in Section 2.

The solutions of (1.1)—(1.2) are (see [10]) the fixed points of the operator

M: domM < BC - BC

defined by
(1.6) t>(Mx)(t) = X(t) Ty *(e—TP(, x))+ P(t, x),
where
P(t, x) = jX(t)X (9)f(s, x(s))ds
and

domM = {xeBC: 3¢ >0: |x(¢)] > ¢, te}.

From (2) it follows that the operator M is well defined and that Im M < BC.

Let o/ < R" be an open set, and S < &/ be a closed set with non-void
interior. We write

Sy ={ceRg: c=|d|, deS};
the following theorem holds (see [6], Theorem 1):
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THEOREM 1.2. Suppose that, for each ue o/, t - h(t, u) is a continuous
function frem J into R"; for each ¥e€J, u — h(t, u) is a continuous function from
of into R" such that

.7 lh(t, )l < glt, lul), ted, ues,

where g: JxS; — Ry satisfies the following conditions:
(i) for each teJ, v—g(t, v) is continuous, veS,;

(i) t —»g,(t)= max g(t,v) is integrable on J, pues,.
ve[0,u] NSy

Let L: BC — BC be a bounded linear operator and let
K: domK < BC - BC
be defined by K = LoK, where K is given by

(1.8) t > (Kx)(t) = 'jh(s, x (s))ds

a

and
domK = {xeBC: x(t)eS, teJ}.

Then K is a continuous and compact operator.
The domain of the operator M is not closed; nevertheless, setting

AR = {xeBC: x(t)edR, 1eJ}
we have AX < dom M and:

LemMa 1.1. AR is closed in the topology of BC and, setting

B= U 4Rr,  F=|xedF: inf|x(t)] =r or sup|x(t) = R},
0<£<-1—(R-r) teJ re
2

we have B = AF and F = @4AR, where A, 0A denote respectively the interior
and the boundary of the set A.

Proof. For G < BC, G # @, xeBC, let d(x, G) denote the distance
from x to G: d(x, G) =inf{||x—y||: yeG}.

Let H = {xeBC: |x(t)) = R, teJ}. Furthermore, let Z(G, ), XZ(G, )
denote, respectively, the sets: {xeBC: d(x, G) <8} {xeBC: d(x, G) <8}
(6 > 0). Clearly, Z(G, d) is closed, X(G, 8) is open in BC for any G < BC,
G # Q.

Now, 4% = ¥ (H, R—r)n 2 ({0}, R), which implies that 4% is closed.
Moreover, for ¢, <e¢

ARZE c Z(H, R—r—26,) nZ({0}, R~¢,) = A5,

r+¢1 s

therefore B is open and B < AR.

Let x¢ B;if x ¢ A% then x ¢ 4R; suppose: x € 47. Then we have the following
possibilities:
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(a) |x(ty)] = R or |x(t,)] =r for some t,eJ,
(b) limsup|x(¢t)) = R or liminfix(¢)] =r.
[l b~

For example, let liminf|x(t)] = r. Let & > 0 be arbitrary, fixed, and let x,(t)

t=b

= x(t)— 14, teJ. Obviously x,eX({x}, 5. We show that x,¢ 4. Since
lim inf|xo (1)) = r— 15,
t—b "

there exists t,, such that |x,(t,,)| <7, i.e, Xo ¢ AX; this implies X ({x}, 8) & 4X for
each 6, hence x ¢ AR In the other cases the proof is quite the same; thus B = 4R,
Hence we also deduce that F = ¢4R.

Remark 1.3. Condition (ii) of Theorem 1.2 is fulfilled if
gt,v)=p(t)v+q(1), veS,, tel,

with t - p(r), t = q(t) two integrable functions from J into Rg; or if
1
g(ts U)=P(t);+qm, UESl—{O}, tEJ’

with the same hypotheses as above.

CoroLLarY 1.1. Under hypotheses (1)—(3), the operator M defined by (1.6) is
continuous and compact on AR r ReR™.

Proof. This follows from Theorem 1.2 and Lemma 1.1, on account of
Remark 1.3.

Remark 1.4. The set 4® does not have the fixed point property with
respect to continuous and compact operators. For example, the operator

Q: 4F > 47
defined by
t=(@Qx)(1) = —x(a)
is continuous and compact but has no fixed point.
2. In this section we suppose A(t) =0, teJ. The operator M becomes
(2.1) t > (Mx)(t) = Ty '(e—TP(-, x))+ P(t, x),

where

t

P(t, x) = [ f(s, x(s))ds.

a

For 1€[0, 1], let I—M, be the operator
22  t=[(I=M)x]() = x()~ Ty 'e—A(P(t, ¥)— Ty ' TP(:, x)).
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Lemma 2.1. Under hypotheses (2) and (3), if oe R*— {0} is such that

(1.5) ITo el 2 =T '"THA+2/II =T ' TII T,

it is possible to choose r, Re R™ such that

I(f —M;) x|l >0
for xecAR, ie[0, 1].
Proof. Let xec4X; from (2.2) we have
(2.3) (I = M) (I = lIx—T5 el =AU = Ts *T) P(-, x)ll;

x belongs to ¢AR if ||x]l < R and ml'lx(r)l =r or ||x|]| = R. In the first case,
choosing

(24) r<|Ty ‘el

we have

lix— Ty ‘ell = suplx()— Ty ‘el = || Ty ‘el =Ix ()| = Ty ‘el —r > 0.

teJ
Since, for each xe 4R, 1/||x|| < 1/r, from (2) we have
AU =T '"TVP(-, 0l < 1= Tg 'TI(I/r+ A),
and then from (2.3)
(2.5) (I =M) x| > |Tg *ol —r—IlI=Tg " TII(I'/r+ A).
Setting
2=|Ty o= II-Tg 'TIA, B=|I-Tg'TIT

from (1.5) we have

1
x> 2 /I—T; 'T|IT =267 >0

and then
x2—48 > 0.
Formula (2.5) becomes
—p2 -
=Myl 2—r b = 232 F
r r
and if we choose r such that
1 1
(2.6) Yx— (22 =4p)2) <r < Yx+(22—4p)2),

we get

I —M;) x| >0
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for

2.7 —5(1—(9(2—4[3)%) <r <=« +(a2—4ﬁ);_) <a<|Ty Y9l
In the second case from (2.3) we have

=Ml > X = |5 to+ A= T3 ' T) P(-, )|

=R—||Tg "o+ 2(—Tg ') P(-, X)lI;
but
IT5 'e+AI-To '"TYP(-, XN < | Ty [+ =Ty ' T (I'/r + A)
and so, for
(2.8) R>|T5 "ol + I/ = T ' T(Tir + A)
we get
(1 —M;)x|j > 0.

We can now prove Theorem 1.1.

Proof. We show that the operator M, has a fixed point in A} for
A2 =1. This operator is continuous and compact in 4% by Corollary 1.1;
moreover, by Lemma 2.1 we can choose r, Re R such that

x#M;x, xecd® and 1i€[0,1];
then the Leray—Schauder degree
dis[I—M;, 4%, 0]
is defined. From the homotopy invariance theorem we have
dus[1—My, 47, 01 = dis[1—M,, 4F, 0] = dis[1- Ty *e, 47, 0].

To 'e€ 4R because of (2.7), (2.8), and so this degree is different from zero.
Thus

dis[I—-My, A48, 0] =d;s[I-M, A}, 0] #0,
l1e.,

Ixed® such that Mx=x.
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