Boundary value problems on [a, b) and singular perturbations

by M. Cecchi, M. Marini and P. L. Zezza (Firenze)

Abstract. In this paper we show the existence of a bounded solution for a non-linear differential equation with a general boundary condition. We assume that the non-linearity is not defined in $\{0\}$ and we use degree arguments, because the solutions belong to a set without the fixed point property with respect to compact and continuous operators.

The existence of a bounded solution of the boundary value problem

$$\dot{x} = A(t)x + f(t, x), \quad Tx = \varrho$$

on a non-compact interval has been studied by many authors. We recall the admissibility theory developed by J.L. Massera and J. J. Schäffer; further contributions are due to C. Corduneanu and W. A. Coppel. From among the results obtained in this theory we mention only the papers by Avramescu [1], [2] and by Corduneanu [8].

Boundary value problems like (*) on a compact interval can be solved by the alternative theory (L. Cesari [7]), the coincidence degree theory (Mawhin [12]), or by the more recent theory of the 0-epi functions (Furi, Martelli, Vignoli [9]). They can be more easily solved by the Leray-Schauder degree theory, from which the above-mentioned theories are derived. We mention here only the papers by Villari [14], [15], who used these methods in the study of ordinary differential equations. A rather complete bibliography is in Mawhin [13].

Problem (*) on a non-compact interval has been taken up, with use of topological methods, by Kartsatos in [10], [11], under the hypothesis that problem (*) for $f(t, x) \equiv 0$ has a unique solution, and by the authors in [3], [4], [5], without this hypothesis.

On the other hand, we assume here that f(t, x) is defined in $\mathbb{R}^n - \{0\}$. Such a condition implies that the operator associated to (*) is defined on a non-convex set; so the Schauder theorem cannot be used while the degree theory may be applied.

In Section 1 notations and symbols are given; we construct an operator needed in the following section and we prove that it is compact and

continuous. In Section 2 we prove an existence theorem using the Leray-Schauder degree theory.

1. Let us consider the linear boundary value problem

$$\dot{x} = A(t)x + f(t, x)$$

$$(1.2) Tx = \varrho, \varrho \in \mathbf{R}^n - \{0\},$$

where: $t \in J = [a, b)$, $-\infty < a < b \le +\infty$; $t \to A(t)$ is a continuous function from J into \mathfrak{A} the algebra of endomorphisms of \mathbb{R}^n ; $u \to f(t, u)$ is a continuous function from $\mathbb{R}^n - \{0\}$ into \mathbb{R}^n for each $t \in J$; $x \to Tx$ is a continuous linear operator from dom T = BC (the space of bounded continuous functions from J into \mathbb{R}^n) into \mathbb{R}^n .

We are looking for solutions of (1.1)–(1.2) that belong to BC; this is a Banach space with the norm

$$||x|| = \sup_{t \in I} |x(t)|.$$

Defining certain operators we shall identify \mathbb{R}^n with the subspace of BC consisting of constant functions; we denote by I the identity operator in BC.

From now on we assume the following hypotheses:

(1) the linear system associated to (1.1)

$$\dot{\mathbf{y}} = A(t)\,\mathbf{y}$$

is strongly stable;

(2) there are two integrable functions $t \to p(t)$, $t \to q(t)$ from J into R_0^+ = $[0, +\infty)$ such that

$$|f(t, u)| \le p(t) \frac{1}{|u|} + q(t), \quad u \in \mathbb{R}^n - \{0\}, \ t \in J$$

and

$$\int_{a}^{b} p(t) dt = \Gamma < +\infty, \quad \int_{a}^{b} q(t) dt = \Lambda < +\infty;$$

(3) T restricted to the space D of the solutions of (1.3) is onto \mathbb{R}^n .

Remark 1.1. The hypothesis of strong stability ensures that, for each $y \in D$, $y \ne 0$, the following cannot be true

$$\inf_{t\in J}|y(t)|=0.$$

Moreover, from (3) we can deduce that the linear problem associated to (1.1)–(1.2),

$$\dot{y} = A(t)y, \quad Ty = \varrho, \quad \varrho \in \mathbb{R}^n - \{0\},$$

has a unique solution y such that, setting

$$\Phi_r^R = \{ u \in \mathbb{R}^n : r \leqslant |u| \leqslant R \}, \quad r, R \in \mathbb{R}^+ = (0, +\infty),$$

we have

$$y(t) \in \Phi_r^R$$

for suitably choosen r, R and $t \in J$.

Let X(t) be a fundamental matrix of (1.3), principal at a; from (3) we see that the operator $T_0 = TX(t)$ (T applied to the columns of X(t)) belongs to \mathfrak{A} and is invertible: let T_0^{-1} be its inverse.

Remark 1.2. If system (1.3) is strongly stable, the boundary value problem (1.1)–(1.2) is equivalent to

(1.4)
$$\dot{z} = g(t, z), \quad \mathscr{S}z = \varrho, \quad \varrho \in \mathbb{R}^n - \{0\},$$

with the change of variable

$$z(t) = X^{-1}(t) x(t).$$

Our main theorem, stated without loss of generality for $A(t) \equiv 0$, is:

THEOREM 1.1. Under hypotheses (1)–(3), if $\varrho \in \mathbb{R}^n - \{0\}$ is such that

$$(1.5) |T_0^{-1}\varrho| > ||I - T_0^{-1}T|| \Lambda + 2\sqrt{||I - T_0^{-1}T|| \Gamma},$$

then the boundary value problem (1.1)–(1.2) (with $A(t) \equiv 0$) has at least one solution x. Moreover, there are r, $R \in \mathbb{R}^+$ such that $x(t) \in \Phi_r^R$, $t \in J$.

We shall prove it in Section 2.

The solutions of (1.1)–(1.2) are (see [10]) the fixed points of the operator

$$M: \operatorname{dom} M \subset BC \to BC$$

defined by

(1.6)
$$t \to (Mx)(t) = X(t) T_0^{-1} (\varrho - TP(\cdot, x)) + P(t, x),$$

where

$$P(t, x) = \int_{a}^{t} X(t) X^{-1}(s) f(s, x(s)) ds$$

and

$$\operatorname{dom} M = \{x \in BC \colon \exists \varepsilon > 0 \colon |x(t)| > \varepsilon, \ t \in J\}.$$

From (2) it follows that the operator M is well defined and that $\text{Im } M \subset BC$. Let $\mathscr{A} \subset \mathbb{R}^n$ be an open set, and $S \subset \mathscr{A}$ be a closed set with non-void interior. We write

$$S_1 = \{c \in \mathbf{R}_0^+ : c = |d|, d \in S\};$$

the following theorem holds (see [6], Theorem 1):

THEOREM 1.2. Suppose that, for each $u \in \mathcal{A}$, $t \to h(t, u)$ is a continuous function from J into \mathbb{R}^n ; for each $t \in J$, $u \to h(t, u)$ is a continuous function from \mathcal{A} into \mathbb{R}^n such that

$$(1.7) |h(t, u)| \leq g(t, |u|), \quad t \in J, \ u \in S,$$

where $g: JxS_1 \rightarrow R_0^+$ satisfies the following conditions:

- (i) for each $t \in J$, $v \to g(t, v)$ is continuous, $v \in S_1$;
- (ii) $t \to g_{\mu}(t) = \max_{v \in [0,\mu] \cap S_1} g(t, v)$ is integrable on $J, \mu \in S_1$.

Let L: $BC \rightarrow BC$ be a bounded linear operator and let

$$K: \operatorname{dom} K \subset BC \to BC$$

be defined by $K = L \circ \tilde{K}$, where \tilde{K} is given by

(1.8)
$$t \to (\tilde{K}x)(t) = \int_{a}^{t} h(s, x(s)) ds$$

and

$$dom K = \{x \in BC: x(t) \in S, t \in J\}.$$

Then K is a continuous and compact operator.

The domain of the operator M is not closed; nevertheless, setting

$$\Delta_r^R = \{x \in BC: x(t) \in \Phi_r^R, t \in J\}$$

we have $\Delta_r^R \subset \text{dom } M$ and:

LEMMA 1.1. Δ_r^R is closed in the topology of BC and, setting

$$B = \bigcup_{0 < \varepsilon < \frac{1}{2}(R-r)} \Delta_{r+\varepsilon}^{R-\varepsilon}, \quad F = \{x \in \Delta_r^R : \inf_{t \in J} |x(t)| = r \text{ or } \sup_{t \in J} |x(t)| = R\},$$

we have $\mathbf{B} = \mathring{\Delta}_r^R$ and $F = \partial \Delta_r^R$, where \mathring{A} , ∂A denote respectively the interior and the boundary of the set A.

Proof. For $G \subset BC$, $G \neq \emptyset$, $x \in BC$, let d(x, G) denote the distance from x to $G: d(x, G) = \inf \{ ||x - y|| : y \in G \}$.

Let $H = \{x \in BC : |x(t)| = R, t \in J\}$. Furthermore, let $\bar{\Sigma}(G, \delta)$, $\Sigma(G, \delta)$ denote, respectively, the sets: $\{x \in BC : d(x, G) \le \delta\}$ $\{x \in BC : d(x, G) < \delta\}$ $\{\delta > 0\}$. Clearly, $\bar{\Sigma}(G, \delta)$ is closed, $\Sigma(G, \delta)$ is open in BC for any $G \subset BC$, $G \neq \emptyset$.

Now, $\Delta_r^R = \bar{\Sigma}(H, R-r) \cap \bar{\Sigma}(\{0\}, R)$, which implies that Δ_r^R is closed. Moreover, for $\varepsilon_1 < \varepsilon$

$$\Delta_{r+\varepsilon}^{R-\varepsilon} \subset \Sigma(H, R-r-2\varepsilon_1) \cap \Sigma(\{0\}, R-\varepsilon_1) \subset \mathring{\Delta}_{r+\varepsilon_1}^{R-\varepsilon_1};$$

therefore B is open and $B \subset \mathring{\Delta}_r^R$.

Let $x \notin B$; if $x \notin \Delta_r^R$, then $x \notin \mathring{\Delta}_r^R$; suppose: $x \in \Delta_r^R$. Then we have the following possibilities:

- (a) $|x(t_1)| = R$ or $|x(t_1)| = r$ for some $t_1 \in J$,
- (b) $\limsup_{t \to b^{-}} |x(t)| = R$ or $\liminf_{t \to b^{-}} |x(t)| = r$.

For example, let $\liminf_{t\to b^-} |x(t)| = r$. Let $\delta > 0$ be arbitrary, fixed, and let $x_0(t) = x(t) - \frac{1}{2}\delta$, $t \in J$. Obviously $x_0 \in \Sigma(\{x\}, \delta)$. We show that $x_0 \notin \Delta_r^R$. Since

$$\lim_{t\to b^-}\inf|x_0(t)|=r-\tfrac{1}{2}\delta,$$

there exists t_m such that $|x_0(t_m)| < r$, i.e., $x_0 \notin \Delta_r^R$; this implies $\Sigma(\{x\}, \delta) \notin \Delta_r^R$ for each δ , hence $x \notin \mathring{\Delta}_r^R$. In the other cases the proof is quite the same; thus $B = \mathring{\Delta}_r^R$. Hence we also deduce that $F = \partial \Delta_r^R$.

Remark 1.3. Condition (ii) of Theorem 1.2 is fulfilled if

$$g(t, v) = p(t)v + q(t), \quad v \in S_1, t \in J,$$

with $t \to p(t)$, $t \to q(t)$ two integrable functions from J into R_0^+ ; or if

$$g(t, v) = p(t)\frac{1}{v} + q(t), \quad v \in S_1 - \{0\}, \quad t \in J,$$

with the same hypotheses as above.

COROLLARY 1.1. Under hypotheses (1)–(3), the operator M defined by (1.6) is continuous and compact on Δ_r^R , $r, R \in \mathbb{R}^+$.

Proof. This follows from Theorem 1.2 and Lemma 1.1, on account of Remark 1.3.

Remark 1.4. The set Δ_r^R does not have the fixed point property with respect to continuous and compact operators. For example, the operator

$$Q: \Delta_r^R \to \Delta_r^R$$

defined by

$$t \rightarrow (Qx)(t) = -x(a)$$

is continuous and compact but has no fixed point.

2. In this section we suppose $A(t) \equiv 0$, $t \in J$. The operator M becomes

(2.1)
$$t \to (Mx)(t) = T_0^{-1} (\varrho - TP(\cdot, x)) + P(t, x),$$

where

$$P(t, x) = \int_{a}^{t} f(s, x(s)) ds.$$

For $\lambda \in [0, 1]$, let $I - M_{\lambda}$ be the operator

$$(2.2) t \to [(I - M_{\lambda}) x](t) = x(t) - T_0^{-1} \varrho + \lambda (P(t, x) - T_0^{-1} TP(\cdot, x)).$$

LEMMA 2.1. Under hypotheses (2) and (3), if $\varrho \in \mathbb{R}^n - \{0\}$ is such that

$$(1.5) |T_0^{-1} \varrho| \geqslant ||I - T_0^{-1} T|| \Lambda + 2\sqrt{||I - T_0^{-1} T|| \Gamma},$$

it is possible to choose $r, R \in \mathbb{R}^+$ such that

$$||(I-M_1)x||>0$$

for $x \in \partial \Delta_r^R$, $\lambda \in [0, 1]$.

Proof. Let $x \in \hat{\Omega}_{r}^{R}$; from (2.2) we have

$$(2.3) ||(I-M_{\star})(x)|| \ge ||x-T_0^{-1}\varrho|| - ||\lambda(I-T_0^{-1}T)P(\cdot,x)||;$$

x belongs to $\partial \Delta_r^R$ if ||x|| < R and $\inf_{t \in J} |x(t)| = r$ or ||x|| = R. In the first case, choosing

$$(2.4) r < |T_0^{-1}\rho|$$

we have

$$||x - T_0^{-1}\varrho|| = \sup_{t \in J} |x(t) - T_0^{-1}\varrho| \ge ||T_0^{-1}\varrho| - |x(t)|| \ge |T_0^{-1}\varrho| - r > 0.$$

Since, for each $x \in \partial \Delta_r^R$, $1/||x|| \le 1/r$, from (2) we have

$$\|\lambda(I-T_0^{-1}T)P(\cdot,x)\| \leq \|I-T_0^{-1}T\|(\Gamma/r+\Lambda),$$

and then from (2.3)

$$(2.5) ||(I - M_{\lambda}) x|| \ge |T_0^{-1} \varrho| - r - ||I - T_0^{-1} T|| (\Gamma/r + \Lambda).$$

Setting

$$\alpha = |T_0^{-1}\varrho| - ||I - T_0^{-1}T|| \Lambda, \quad \beta = ||I - T_0^{-1}T|| \Gamma,$$

from (1.5) we have

$$\alpha > 2\sqrt{\|I - T_0^{-1}T\| \Gamma} = 2\beta^{\frac{1}{2}} > 0$$

and then

$$\alpha^2 - 4\beta > 0$$
.

Formula (2.5) becomes

$$||(I-M_{\lambda})x|| \geqslant \alpha-r-\frac{\beta}{r} = \frac{-r^2+\alpha r-\beta}{r},$$

and if we choose r such that

we get

$$||(I - M_i)x|| > 0$$

for

$$(2.7) \frac{1}{2}(\alpha - (\alpha^2 - 4\beta)^{\frac{1}{2}}) < r < \frac{1}{2}(\alpha + (\alpha^2 - 4\beta)^{\frac{1}{2}}) \le \alpha \le |T_0^{-1}\varrho|.$$

In the second case from (2.3) we have

$$||(I - M_{\lambda}) x|| \ge ||x|| - ||T_0^{-1} \varrho + \lambda (I - T_0^{-1} T) P(\cdot, x)||$$

= $R - ||T_0^{-1} \varrho + \lambda (I - T_0^{-1} T) P(\cdot, x)||;$

but

$$||T_0^{-1}\varrho + \lambda(I - T_0^{-1}T)P(\cdot, x)|| \le |T_0^{-1}| + ||I - T_0^{-1}T||(\Gamma/r + \Lambda)$$

and so, for

(2.8)
$$R > |T_0^{-1}\varrho| + ||(I - T_0^{-1}T)||(\Gamma/r + \Lambda)|$$

we get

$$||(I-M_{\lambda})x||>0.$$

We can now prove Theorem 1.1.

Proof. We show that the operator M_{λ} has a fixed point in Δ_r^R for $\lambda = 1$. This operator is continuous and compact in Δ_r^R by Corollary 1.1; moreover, by Lemma 2.1 we can choose $r, R \in \mathbb{R}^+$ such that

$$x \neq M_{\lambda}x$$
, $x \in \partial A_r^R$ and $\lambda \in [0, 1]$;

then the Leray-Schauder degree

$$d_{IS}[I-M_i, \Delta_r^R, 0]$$

is defined. From the homotopy invariance theorem we have

$$d_{LS}[I-M_1, \Delta_r^R, 0] = d_{LS}[I-M_0, \Delta_r^R, 0] = d_{LS}[I-T_0^{-1}\varrho, \Delta_r^R, 0].$$

 $T_0^{-1}\varrho\in\Delta_r^R$ because of (2.7), (2.8), and so this degree is different from zero. Thus

$$d_{LS}[I-M_1, \Delta_r^R, 0] = d_{LS}[I-M, \Delta_r^R, 0] \neq 0,$$

i.e.,

$$\exists x \in \mathring{\Delta}_{\bullet}^{R}$$
 such that $Mx = x$.

References

- [1] C. Avramescu, Sur un problème aux limites non linéaire, Rend. Acc. Naz. Lincei (8) 44 (1968), 179-182.
- [2] -, Sur l'existence des solutions convergentes des systèmes d'équations différentielles non linéaires, Ann. Mat. Pura Appl. 81 (1969), 147-168.
- [3] M. Cecchi, M. Marini, P. L. Zezza, Linear boundary value problems for systems of ordinary differential equations on non-compact intervals, ibidem 123 (1980), 267–285.

- [4] -, -, -, Un metodo astratto per problemi ai limiti non lineari su intervalli non compatti, Equadiff 78, Conti, G. Sestini, G. Villari eds, Firenze (1978), 395-405.
- [5] -, -, Linear boundary value problems for systems of ordinary differential equations on non-compact intervals. Part II: Stability and bounded perturbations, Ann. Mat. Pura Appl. 124 (1980), 367-379.
- [6] -, -, -, A compactness theorem for integral operators and applications, Proceed. Int. Symp. Funct. Differ. Eqs. Appl., São Carlos 2/7 July, 1979, Lectures Notes in Math. no 799, Springer, 1980, 119-125.
- [7] L. Cesari, Functional analysis, nonlinear differential equations and the alternative method, Nonlinear Funct. Analysis and Differ. Eqs., L. Cesari, R. Kannan, J. D. Schuur eds, M. Dekker, New York 1976.
- [8] C. Corduneanu, Integral equations and stability of feedback systems, Mat. Sci. Eng. 104, Acad. Press, New York 1973.
- [9] M. Furi, M. Martelli, A. Vignoli, On the solvability of non-linear operator equations in normed spaces, Ann. Mat. Pura Appl. 124 (1980), 321-343.
- [10] A. G. Kartsatos, The Leray-Schauder theorem and the existence of solutions to boundary value problems on infinite intervals, Ind. Un. Math. J. 23, 11 (1974), 1021-1029.
- [11] -, A boundary value problem on an infinite interval, Proc. Ed. Math. Soc. 2, 19 (1974–1975), 245-252.
- [12] J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differ. Eqs. 12 (1972), 610-636.
- [13] -, Topological degree methods in nonlinear boundary value problems, Reg. Conf. series in Math. 40, Amer. Math. Soc., Providence (1979).
- [14] G. Villari, Contributo allo studio dell'esistenza di soluzioni periodiche per sistemi di equazioni differenziali ordinarie, Ann. Mat. Pura Appl. 69 (1965), 171-190.
- [15] -, Soluzioni periodiche di una classe di equazioni differenziali del terzo ordine quasi lineari, ibidem 73 (1966), 103-110.

ISTITUTO DI MATEMATICA "G. SANSONE" UNIVERSITA DI FIRENZE

Reçu par la Rédaction le 5.05.1980