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ON ORTHOGONAL DECOMPOSITION
OF TWO-DIMENSIONAL VECTOR FIELDS

Construction of difference approximations (of arbitrary order) of
the operators grad and div is given for the two-dimensional case. Moreover,
a theorem is proved, providing a difference analogue of Weyl’s theorem
on orthogonal decomposition of two-dimensional periodic vector fields
into two subspaces of divergence-free vectors and vectors having the form
of a gradient.

1. Introduction. Let u: R" — R™ be a sufficiently regular vector
field. According to Weyl’s theorem [8], if certain additional conditions are
fulfilled, thisfield can be uniquely represented as a sum of two mutually ortho-
8onal components # = %4+ 4, the first one being a divergence-free field,
Le. divay; = 0, and the second taking a gradient form %e = grade, where
¢: R*>R.

In this paper we are concerned with two-dimensional periodic vector
fields u: R®*— R? with period one in both variables. Introducing the square
grid R, X R, (0 < b denotes the mesh width with respect to each of the
Variables) we define the discrete periodic fields u,: R:—R? for which we
Prove the difference version of Weyl’s theorem.

Weyl’s theorem plays a fundamental role in solving the Navier-Stokes
€quations [4], similarly as the difference version of this theorem formulated
below does in the construction of difference schemes for these equations
(ef,, e.g., [1]).

To this aim, for a given natural m we construct in Section 2 (on the
basis of interpolation methods) the (fundamental in further constructions)
difference operators DGy, DDY, D@}, DDy approximating with the order
™ the differential opera,tors 0/0x and /8y on the grid R} (see Theorem 2.1).
Dsmg the operators DGy, DD}, DG}, DDy we introduce (see Definition 2.7)
the operators Grad,, and Div,, bemg dlfference analogues of the differential
OPerators grad and div.

In Section 3 we examine the properties of the constructed operators

rad,, and Div,,. We derive also conditions for the choice of the parameter
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h (h = 1/N) of the grid R} in order to satisfy tbe implication
Grad,, f, = 0=f, = const

for an arbitrary discrete periodic function f,: R;—R (see the proof of
Theorem 3.1).

In Section 4 we deal with divergence-free discrete vector fields, i.e.
with fields such that Div,, 4, = 0. We construct divergence-free fields
in a certain special form, we investigate their properties, and we prove
that they form the basis of the subspace D, of all divergence-free fields
of the space U, of discrete periodic fields.

We determine also the basis of the subspace @, of all periodic vector
fields of the form w, = Grad,, ¢,, where ¢,: Ri—R.

We prove that both subspaces @, and D, are mutually orthogonal and
that the space U, can be uniquely expressed as & direct sum of the spaces
G, and D,: U, = G+ D,.

The present paper is an extension and generalization of the results
.obtained by Krzywicki [3] who proved a similar theorem for flat periodic
fields, restricting himself, however, to first order approximation.

Because of complexity of calculations needed in the proofs we divided
the proofs into appropriately labelled parts which, we hope, will make the
paper easier to read.

In Section 2, where basic expressions are defined and well-known
facts are used, we decide to distinguish neither particular theorems nor
conclusions, apart from Theorem 2.1 which is fundamental for this paper
and to which we refer frequently in further parts of the paper.

The sets of real and integer numbers are denoted by R and Z, respect-
ively.

I am greatly indebted to Professor Dr. Andrzej Krzywicki for valuable
discussions during the preparation of this paper.

2. Construction of difference operators Grad,, and Div,. Let us be-
gin with seme facts connected with the interpolation of a real function of
a single variable f: E—~R and with the approximation of its derivative-

Definition 2.1. The set R, = {x; € R: #; = ih, i € Z}, where h = 1/N
for a fixed natural number N, is called a gud of eqmdzstant nodes x;.

Put f; = f(x;) for x; e R,. %

Let us construct, for the functlgﬁoﬁ the Lagrange interpolating poly-
n)mial based on the values of theifutiction f at the nodes {,, #,, ..., T}
where n is a fixed natural numbel‘;. It f € C**1(R), then for z € R the equality
2" (0—ag) L (@, ) (@0 —2y,,) ... (8—5,)

(

T;— %) .. (@ — 2 ) (B — %y 4y) oo (0 —2,)

(2.1) f(2) =

f1+r(w)

=0
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holds, where the remainder r(x) is given by

o) 1

@ = e L

(. —w;),

&, being an intermediate point between min{z, z,} and max{z, z,}.
Introducing a new variable ¢ such that * = x,+th we can rewrite
(2.1) in the form

(=1 t(E—1) ... (E—
fat) = > i!(nli)! ( 1—72( " fbr(a ),

i=0

Assume now that fe C"t*(R) and differentiate the equality with
Tespect to ¢ (v = 2o+ th) at ¢ = k (0 < k < n). Then we obtain the equality

1 v .. (d —1)...(—
(2.2) f'(wk>=mg’c:,{7ﬂ[t“ oot ")]}Lkmrl(k),

Where (i = (?) denote the Newton binomial coefficients, and

hnf(n+l) ( 'Sk)

23) i) = —a T

{_gt_ [{(t—1)... (t—’ﬂf)]}

=k
(see [6], p. 86).

Renumbering the nodes z,, ,, ..., z, from —% to n —k we can write
(2.2) in the form

n—k

(2.4) ¢’ = ﬂ 2' N
d [E+E)(E+k—1)... t+k—n)
i Jl o

Denote the difference expression appearing on the right-hand side
of equation (2.4) by (D™*f),. More generally, assume that

__1\ntk n—k
(2.5) (Dn'kf)p — ( ’:n)' 2 ( _1)1’0:«:L+i X
Y=k
d [(t+k)({E+k—1)... (t+F—n)
% {-Et—[ t—1¢ ]} t=ofp+i

for p e and 0 <k <n.
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By (2.3)-(2.5), for f € C"**(R) and any arbitrary , € R, we have the
equality

(2.6) f'(@p) = (D™*f),+ O(H").

Hence we get the expression for calculating the value of the derivative,
taken at the point x,, of the Lagrange interpolating polynomial constructed
at the nodes @, _;, %y 115+ Zp_pin € Bye

In derivation of (2.3) for the remainder r, (k) it is necessary to assume
that f € C"*?(R). This assumption could be weakened to the form f € C"*!(R)
if we were interested only in the determination of the order of magnitude
of the remainder (with respect to k). To show this, note that (2.5) is of
the form

1 n—k
(2.7) D)y =3 D aifyrs

i=—k

where the coefficients a; do not depend on h, whereas (2.6) means that
after introducing into the right-hand side of the above formula, instead
of the function f, a finite sum of its Taylor series at the point z,, and after
grouping all terms containing derivatives of the function f of the same
order at the point #, (denote them by f{? for j = 0,1, ...) we can write

(2.7) in the form
(-Dn’kf)p 2 3 1(5’)7
i=>0

where the coefficients b; satisfy the following equalities:
b0=b2=b3=...=bn=0’ b1=h.

Now, if only the (n+1)-st derivative of the function f is continuous,
then using the equality

Vi n+1
Fori = 2 S eI

!
“ (n41)!
fori = —k, —k+1, ..., —k+n we get, taking into account previous con-
siderations,
D™y = 5, 2 bif (%) = f'(@,) + 7 (R)

i=0

where
n—k
1 7)) n+1
ro(k) = — _(1)_f(n+1)

a.
h T+

te=—k
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Hence we can write
ry(k) = O(W").
Finally, we may conclude that if f e C"*'(R), then for x, € R, the
€uality
(2.8) f'(@p) = (D™*f),+O(h")

holds, whereas if f e C"*t?(R), then the error appearing in this equality
could be written in the explicit form using formula (2.3).

Let us write now the complete formulae for calculating the values
of the expressions (D*™"f),, (D*"+*f) , and (D***“"*f)  which are the
only ones we shall use later on.

By the equality
0 for ¢ =0,
= [ (—1)"(n!)*
t=0 —_—

{i[(t-}-n)...(t—n)]}
dt t—1 for —n<i<n,? #0,

We get from (2.5) the relation

N ) R S T G
29) D™ = =3 . (n+@)z(n—i)!@fp+"'

i#0

Analogously, from the equality
{i[(t+n)...(t—(n+1))]}

dt t—1i o
(—1)"(n!)? for ¢ = 0,
=1 (—1\y! 1
|( 1) n..(n—}-l). for —n<i<n+1l,i #0,
)
We get
ntl i1, (s
(2.10 ity _ (D7 (=1)*a@)
) D e h ,-;_’:1 (n+14)! (n+1—i)! Fotir
Where
1 for ¢ =0,

al) = {(n-{—l)/i for —n<i<ntl,i#0,
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and since

{i[(t—l—n—!—l) (t—n)]l
dt T J li=o

{(—1)”('11,!)2 for i = 0,

(—1)*(n-+1)n!

- for —(n+1)<i<<n, 1 #0,
—1

‘we can write

n

2n+1,n _ (n!)? )H-lﬁ("')
(2.11) (DPrHimtlf) A =f(§n;,_1) m+1+4)(n—i) Fo+is
where
N for + =0,
pli) = {(n+1)/i for —(n+1)<<i<n, ¢ #0.

As an example we give the explicit form of the expressions defined
by (2.5) for several values of n and k:

1 1
(D¥Np = 5 Fpr=Fa)y  (DVf)p = - (fp—=Fp-1),

1
(Dz’lf)p == E (fp+1 _fp—l) .

We shall need also an expression which, using the values of the func-
tion {fy_xy ..y Focts forts -3 foin_i}s PErmits us to calculate an approxi-
mate value of f(x,) with the accuracy O(h").

This problem is solved again by an interpolating polynomial con-
structed at the nodes {@, ;, ..., Zp_ 1y Tpi1yeees Tpin—if:

NI P
n+i *
+i " Ppyij

i=—k j=—k
i#0 J#1,5#0

Denoting its value at the point # = x, by (8™*f), we get the relatiol

n—k
{2.12) (8™Ef), = (CB™F D' (=Y,

‘l;f;—ok
for p € Z, and we note that if f € C"*(R), then for arbitrary z, € R,
(2.13) flxy) = (8™%f), + O (A",

where 0 <k<n
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As an example we give an explicit form of (8™*), for a few values
of n and Fk:

(Sl’of)p = fp+17 (’Sl'lf)p = fp——l ’
(Sz,lf)p = %(fp—l +fp+1)'

From now on we shall be concerned with periodie functions and vector
fields defined on the plane RZ.

Let us denote by F the set of functions f: R*— R satisfying the con-
ditions

fle+1,y) =f(z,y+1) = f(z,y) {or all (x,y)e R,
and by U the set of vector fields %: R®— R? of the form
% = [u®, '7"'(2)]’

Where 4@, u® e F.

Definition 2.2. By a discrete grid function or a discrete scalar field
We mean the mapping f,: R;—R, where we put f, ; = f;(«;, y;) for arbit-
Tary (w;, y;) € R;.

Due to the one-to-one correspondence between the discrete grid
function fs» and the numerical sequence {f;;};;.z of its values, we write
and use both symbols interchangeably. (The name discrete scalar field
has been introduced because the name vector field is commonly used for
Mappings in R* for & > 2.)

The mapping u,: R2—>R? of the form u, = [u{), ()], where w, 4l
are discrete scalar fields, is called a discrete vector field.

. Hence we can also assume that u;, = {[u{)}, )1}, ;cz, Where [u{), u{)]
¥ the value (in R?) of the mapping u, at the node (;, y;) € R3.

The discretization mapping 7, is defined by »,f = f|R}, where
I: R*SR, rof: RE>R.

Definition 2.3. Define (for h = 1/N) the sets

o, ={(p,9):0<p,q<N—-1,p,q€Z},
Qh. = {(a’p) yq) ER%&: (pi Q) € wh}'

Let 7, denote the linear space of periodic grid functions with the period
®Qual to one with respect to each variable, i.e.

fh th iff fi+N,f =f1',.’i+N =f1',j fOI' aall ’l:,j EZ.

Tn the space F, we define the scalar product

(far G = B 2 f1.19:,3

(ilj)ewh

T
Zastos, Mat. 18.3
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and the norm

1fale = V(far Fan

Let U, = {uy: u, = [, u{?], u, ul? € F,} denote the linear space
of discrete periodic vector fields with the scalar product

{(un5 v3))p = (u), D)+ (u? ) vP),

and the norm

gl = l/(("l';n ’“h))h .

The elements of F, will be called simply periodic with period N.

Note that for the full description of a function f, € I, or a vector
field u, € U, it is sufficient, due to their periodicity, to know their values
on 2, only.

Let us introduce now some auxiliary operators defined on the space
F,-and approximating partial derivatives. They play an essential role in
the next parts of this paper.

Definition 2.4. Let D¥*, D¥*, 8%*, 8»* denote, for any arbitrary
fixed » >0and k = 0,1, ...,n, the operators mapping the space F, into
itself and defined by the following relations:

n—k

]_n+k
(214) (Do = 0 N (—1y0kHx

!
i=—k

d [(t+k)(@E+k—1)... (E+k—n)
“farl J

t—1

fp+i,q
=0

for all p,q€eZ,

. (__1)n+k n—k .
(2.18)  (Dy"fape = —5 17— (—1)yCp+ x
’ hn!
fm—k
y {_«Jz_[(t+k)(t+k—1)...(t+k—n)
dt t—j ]} ‘=0fp.¢1+3
for all p, g € Z,
n—k
(2.16) (82l = (€D D (~1)FC5 Yy, forall p,geZ,
t;#—ok
. n—-k
(2-17)  (83%fa)pq = (OB D) (—1P*1CEYf, s for all p,geZ.
i=—k

i#0
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Let us define also
DG7 = S;””‘ng"" , DG = S;"”"oDzl"f,

(2.18)
DD = 8™loD™,  DDT = S™loDml,

Where m >0, k = entier(m/2), | = entier((m+1/2)), and the symbol o
Ineans the operation of the composition of operators.

The above operators, as will be seen later, are difference approxima-
tions of the derivatives appearing in the operators grad and div.

It is easy to note that if the function f/o : R—R is defined by
flo(z) = f(@, y;,)
(for a fixed Jo €Z), then
2.19) (DZ*orf)y, = (D™HfP);

for an integers ¢ (see (2.5)). Using (2.5) and (2.12) we can write similar
Telations for the expressions (2.15)-(2.17). This allows us to use formulae
(2.8) and (2.12) also in the case of grid functions.

Denote by C**(R?) the class of functions from R* in R, differentiable
Continuously % times with respect to the first variable and I times with
Tespect to the second one.

THEOREM 2.1. Let m > 0. If f € C™*™(R?), then for all integers p, ¢
We have

(2.20)
0
D6Tor ) =L +Om™), (DDPor),e=-L|  +omm.
0% (@) 0% |z ).0,)
8’i’milarly, if f e ™™ (R?), then
(2.21)
0
(DGZ‘orhf)p’q = -% .y )—|—O(hm)’ (D_DL"orhf)p,q p— a_; . )+ O(hm).
Tp¥g Tp¥q

(We say that the difference operator DGT approximates with the order m
the differential operator 0/0x on the grid Ri (see [7], p. 19), and similarly
Ot the operators DD™, DG}, DD}}.)

. We now write the full formulae defining (DGZf;), , and other expres-
Slons of that form corresponding to the operators given by formulae
(2-18). We do that separately for even and odd values of the parameter m.

The case of even m = 2n (n > 0). Taking

(2.22) IO = {(i,): —n<iy,j<n, ij #0, i,j €2}
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and using (2.14)-(2.18) and (2.9) we get the relations

(2.23) (DG fr)p,q = 2 @;,ifptiativ
ierl)

where
(—1)"*(nl)*

(2.24) Y%= Bm— it (=)t
and
(2.25) (DG} fu)pg = 2 @; i fptiativ
G,j)eI(1)
where
-1 i+ ! 4
(2.26) a,; = (7

h(n—i)(n+d)(n—§)(n+j)j"

It is easy to see that formulae (2.26) and (2.26) can be also obtained
by interchanging the indices ¢,j in the coefficients a;; of f,, ;,.; (see
(2.23) and (2.24)).

In order to obtain expressions analogous to (2.23)-(2.26) for the op-
erators DD and DD;" it suffices to use the identities

(2.27) (DDZfi)pq = (DG fadpas  (DDyfaog = (DGyfa)pq

following from (2.18).
The case of odd m = 2n+41. Let us put

(2.28) I® = {(i,§): —n<i,j<n+1,j#0,4,jeZ},
(2.29) I® = {@G,§): —n<i,j<n+l, i#0,14,jeZ}.
By (2.14)-(2.18) and (2.11) we get
(2.30) (DG fi)pe = D) bigforigess
(i,§)e1(®)
where
—=T1)eHi ()3 1ali
(2.51) b, = ()@Y e+ Dlal)
' h(n+i)(n+1—3)(n+4)(n+1—j)!
and
(2'32) (-DG:n-!-lfh)p,q = 2 5i,:ifp+i,1l+h
4, 9eI(®)
where
1\ T (4013 1 .
Y ket n4+1 =) (n+ ) (n+1—j)!
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and

(i) = {1 for ¢ = 0,

)= (n+1))i for —n<i<n+1,i#0.

~ For the case of operators DD2**' and DD}"*!, we define the sets of
Indices
(2'34) 19 ={(4,9): —(n+1)<4,j<n,j #0, ¢,jeZ},
(2.35) I® = {(i,§): —(n+1)<i,j<n,i#0,i,jeZ}
and we additionally use (2.11). Then we get

(2‘36) (D-Dzzcn+lfh)p,q = 2 ci,jfp+z’,q+j ’
Wher (#,5)e1®)
e
(2.37) o — (=1 (n))* (n+1)!B(3)
Y 1+ (=) (1) (e —j) ]
and
(2'38) (D-Dgzln+lfh)p,q = 2 ai,jfp+i,q+j ’
Where (i,7)eI()
(2.39) L (=L@ (n+1)80)
an B (4148 (m—4) (n+ 1 +5)Nn —j)!
n

-1 for ¢ =0,
(n+1)/s for —(n+1)<i<n, ¢ #0.

Similarly as for even m, formulae (2.29), (2.32), (2.33) can be obtained
also from (2.28), (2.30), (2.31), and formulae (2.35), (2.38), (2.39) from
(2.34), (2.36), (2.37) by interchanging the indices 3, j.

As we see, the operators DG™, D@y, DD}, DDy} are completely defined

Y the coefficients a;, @, ;, b, , byjy ¢; ;5 G; in formulae (2.23), (2.25),
(,,2'30); (2.32), (2.36), (2.38). It will be useful to introduce auxiliary scalar
nl‘e. 8 V.Vith values at the nodes equal to the above-mentioned coefficients.

'his will enable us to calculate the values of DG™,, DG™f,, DD"f,, DD™f,

;“.t the nodes of the grid R} by taking scalar products of the appropriate
lelds and the function fi

P Definition 2.5. For arbitrary integers I, k the translation operators
= and P} are defined by the formulae

(P’::fh)p,q = fp—k,q and ('P:Ifh)p,q = fp,q—l
for ay integers p, ¢ and f, € F,,.

i = |
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From now on the translation operators acting on vector fields are
also denoted by the same symbols.

Definition 2.6. A discrete scalar field dgi-™° for even m = 2n (n > 0)
is defined on R} in the following way:

We first specify the values taken by the field at the nodes (z;, ¥;)
for (i,7) € IM by the formula

( 2n,0, )z,y = & ;,

where a; ; are given by (2.24). Then we translate these values on the whole
grid R in a periodic way (with the period equal to N). At the remaining
grid points let us put zerc.

In what follows we assume that m < N, which is necessary for the
correctness of the above construction.

Let us now define the family of scalar fields {dg; "%}, 4z by putting
dgmPe = PPoPlagm"’
for all integers p,q.
Similarly we define the families of scalar fields

{dy ::n+ 1,p,Q} P,qeZ ) {dg m’p’q}p.qez ’ {ddzm’p’q} D,q€Z ? {dd;n'p’q}p.fIEZ

starting with the fields
(AdZ )y = (A3 *"Veq = 1,
(AdIO0), , = (dgi™®®),, = @, for (k,1) eIV,

(Bgz" Ty = by for (B, 1) € IO,

(dgy" ey = by for (%, 1) eIV,

(d@zmt100), = ¢, for (k,1) eIV,

(ddg "), =Gy for (k,1) e IO,
where the coefficients a;;, @;;, b;;, b;;, ¢;;, €;; are defined by (2.24)
(2.26), (2.31), (2.33), (2.37), (2.39) and the sets I“’) for a =1,2,...,5 by
(2.22), (2.28), (2.29), (2.34), (2.35), respectively.

Using the above scalar fields we can write (DGTf3),, @S a scalar
product:

1
(2.40) (DG?fh)p,q = F (dgz""?5 fadn

and similarly
1 1
(DG fi)p,g = ﬁ(dgi,'"”’q,fh)h, (DDZ fi)p,e = 7; (daz"®?, fadns
(2.41)

1
7 (ddy™; fadn

(D‘D:lnfh)p.a = B2

for all integers p, gq.
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Since the introduced fields are periodic, in every family there are N2
different fields; in particular, they are the fields corresponding to the
elements (p, q) € w;.

As an illustration we present now the values of the scalar fields dg7-"?,
dgy»?e, gdm™re, dgq™r? for m =1, 2, p = 0, and ¢ = 0.

It is sufficient to determine the values of the scalar fields dg™™°,
dg»%°, ddz*°, dd° at the grid points (x;,y;) such that (¢, j) belong to
the appropriate sets I, and then to follow the procedure outlined in
Definition 2.6 in order to determine their values at arbitrary nodes of
the grid R:. In the cases m = 1 or m = 2 the scalar fields, which are of
interest to us, take only three different values. For the case m = 1 they
are equal to 0, 1/h, —1/h, respectively, and in the case m = 2 they are
0, 1/4h, —1/4h. The fields can be presented visually if we denote by o the
grid points (w;, ¥;) where the fields are positive, and by e the nedes where
they are negative. Such figures provide a clear picture of the fields in ques-
tion (see Fig. 2.1).

The above considerations were necessary to define the basic operators
Which are the difference equivalents of the grad and div operators.

Definition 2.7. By the symbol Grad,, we denote the operator
Grad,,: F,—~ U,
defined by the formula

Grad,fn = [DGZ fas DGYfi]  (fu € Ta),

and by the symbol Div,, the operator

DiVm: Uh_>Fh
defined by

Div,, u, = DD™u{’ +DD™u?, where u, = [4, 4] € U,.

It follows from Theorem 2.1 that the above-defined operators Grad,,
and Div,, approximate with order m the classical operators grad and div.

3. Properties of the operators Grad,, and Div,,. Now we formulate
and prove some theorems concerning the operators defined in the last
Section. They will be used in the construction and investigation of the
Properties of discrete and divergence-free vector fields in the next section.

The condition N > m imposed on N still holds.

THEOREM 3.1. For an arbitrary natural number m and arbitrary hy > 0
there exists 1, (0 < b < hy) such that if Grad,,f, = 0, f;, € I, then f;, = const.
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Fig. 2.1

Proof. By assumption the function f, satisfies the equations

(3.1) (DGZ fr)i,; = 0 for all (¢,5) € oy,
(3.2) (DG fr)i; =0 for all (4,)) € w,.

By Definition 2.4, equations (3.1) can be written in the form
(3.3) (8y"%g);; = 0 for all (2, )) € oy,

where g, = D™kf,, k = entier(m/2).
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The theorem will be proved if we show that
(a) Equations (3.3) have only null solutions (which follows from the

Non-vanishing of any eigenvalue of the matrix of system (3.3)).
(b) The equation

(3.4) DI, = 0

has the only solution f;, = const with respect to the variable . Similarly,
We show that from (3.2) it follows that f;, is independent of y. Hence

fn = const.

~ Step I. (3.3)=g, = 0. Let us write equations (3.3) for arbitrary
fixed 4,€{0,1,...,N—1} and for j = k, k+1,...,N—1,0,1,...,k—1
(for arbitrary k (0 < k < N)). By (2.17) we get a set of linear homogeneous
®quations with respect to the unknowns g; o §i,1s---s 9i,n—1 having
the cyclic matrix

a:o al a2 cee aN_l
(3.5) aN_l ao al XK aN_2
a, ay, @y ... a

_ The matrix elements a,, a,, ..., ay_, can be expressed by the coeffi-
Clents appearing in formula (2.17).
It can easily be checked (see [9], p. 231) that the cyclic matrix (3.5)
33 eigenvalues of the form

(3‘6) lk = ao+a18k+a28,2c+ Iy +aN_1£]‘1:v_l

?r k=0,1,...,N—1, where &, — exp{i-2kn/N} (i = V—1), and the
envector z;, corresponding to the eigenvalue 4, is of the form

1
&
(L‘k — ei

s;’f‘l

The eigenvectors «,, @,, ..., #y_, form a linearly independent set of
Vectors in RY.
the We prove now that the eigenvalues Ay (for £ =0,1,...,N—1) of

Matrix (3.5) are nonzero. To do this we consider separately the case
®ven and odd m.
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The case of odd m = 2n-+1. The quantities a; for 0 <j< N -1
are given by (see (2.17))

(3.7)
a, = {(ogn+1)_l(0gn+1)(_1)n+j+1 for j =0,1,...,2n+1,j #n,
/ 0 for j = n,20+2, 2043, ..., N—1.

Assume that there exists ke {0,1,..., N—1} such that 1, = 0.
Using (3.6) and (3.7) we can write this condition in the following form
(a, = 0, see (3.7)):

2n41 2701: }
= 0,

; i . 2kn v .
Z Coni1(—1)exp Y —(—1)"C3,.8Xp Gl

i=0

i.e.

L 2km )\ v . 2kn
1—exp @T = (—1)"C3,,.XPp {¢ ¥ Ny,

Multiplying both sides of the last equality by exp{—ikn(2n+1)/N} we
get

[ k= k|2t i [ kn
exPl—@—ﬁ' —€xp ’&’f = (—1) 2n+1eXP'l'_7/Tf‘ ’
and since its left-hand side is equal to
N Z AN P .
(—2zs1n7) = (—1)r+122n+1igin? +IT’
we get
. . ke n kr .. kn
(3.8) -22"+1zsm2”+17 = O} 11 (cos—f —isin—].

The left-hand side of (3.8) is purely imaginary, and % should satisfy
the inequality 0 < k¥ << N —1; hence (3.8) could be satisfied only if & = N /2
or k = 3N /2. In this case, for (3.8) we have 2°"*!' = (7, ...

To complete the proof that the eigenvalues 4, of the matrix (3.5) aré
nonzero for all k€ {0,1,..., N—1} it is sufficient to use the inequality
22+l > ¢n . holding for any » > 0. This can be easily proved by induction:

The case of even m = 2n (n > 0). The elements {a,, a,, ..., dN—l}
of the matrix (3.5) can be expressed in this case as
a; = {(ng)—l(_l)n+1+jogn for j =0,1,...,2n,j #n,
A for j = n, 2n+1, 20+2,...,N—1.
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The condition for any the eigenvalues 4, (0 <% < N —1) to be equal
to zero takes the form of the equality

2n
L 2k 2k
Z(—l)’Cénexp {'1, i j} = (—1)"C;,exp {z Nn n}
=0 “

V

(since a, = 0).
After writing the left-hand side of this equality in the form

el

and multiplying both sides by exp{ —ikw-2n/N} we get

(exp{_i—ki} TP {z "]‘T})zn — (—up i)

N N (n1)2’
ie,
(3 9 . om I
-9) S = = Wy,
Where
(2n)!

It s easy to check that 0 < w, < 1. ‘

Since » is fixed, there exist infinitely many natural numbers N such
that for all % €{0,1,..., N—1} equality (3.9) is not satisfied.

Therefore, we have proved that for N chosen as above, for the case
fm = 2n, all eigenvalues 2, of the matrix (3.5) are nonzero. For example,
t°1' 7 = 1 one should choose N from natural numbers prime with respect

0 4,

We have shown, therefore, that for m even as well as for m odd, for
Properly chosen N >1/h, and h = 1/N, the matrix of the homogeneous
S¥stem (3.3) is nonsingular, and hence the function g, which is the solution
of this system, vanishes at every node of the grid.

Step II. (3.4)=f, — const with respect to the variable z. In the
I)L;e‘?ious step we have proved that the function f, satisfying equations
‘1) has to fulfill equation (3.4), i.e.

(8.10) (DEf)s5 = O

for ay integers 4, j and k = entier(m/2).
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Fixing j, €{0,1,..., N—1}, we can treat the infinite sequence of
numbers {f;; }..z, Which are the values of the function f, satisfying the
system of equations (3.10), as a solution of a homogeneous recurrence linear
equation with constant coefficients, which for the case m = 2n41 (n > 0)
takes the form

n+1

(3.11) Z afisii, = 0,

l=—n
where

1
T al(n+1)
(—1)* (n+1)
4+ (n+1-01

forl =0,
a1=
for —n<I<n+1,1%0

(see (2.14) and (2.10)). For the case of m = 2n this recurrence equation is
of the form

n
(3.12) 2 Bifisrzy = 0,
l=—n
where
0 for 1 =0,
b = (—1)y*

for —n<<Ig<n, 1 #0

(n+DH(n—-0N

(see (2.14) and (2.9)).

Since the function f; is periodic, so is the sequence {f;; };.z-

As is known (see [2]), every periodic solution of a homogeneous linear
recurrence equation with constant coefficients is a finite linear combina-
tion of sequences, each one of which being formed of consecutive powers
of one of the roots, of modulus one, of the characteristic polynomial of
the recurrence equation.

Hence, in order to show that the function f, is constant with respect
to the variable « it is sufficient to prove that the only root, of modulus one,
of the characteristic polynomial is equal to 1. We show that this is true for
infinitely many N.

Let us notice first that z = 1 is the characteristic root of every one
of the considered recurrence equations (see (3.11) and (3.12)) for m > 0-
Since m is positive, for every constant function f, we have D™ f, = 0
i.e. the sum of the coefficients of the characteristic polynomial is zero-
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Similarly as in the first part of the proof, we consider separately the
cases of even and odd m.

The case of odd m = 2n+1. Denote by 2 some of the characteristic
roots, of modulus one, of the recurrence equation (3.11). Then a sequence
of the form {?'},, is one of the possible periodic solutions of equation
(3.11), which means that the following equality must hold:

(=) (n+1) , (=1)""*"(n+1)

an+1 —n n+0;n+l —-(n—l) zl—(n—l)+ eee +
—141 _ 1)
+C!'ln_} ( 1) 1(n+1)zl—l+(—1)an+1zl+0g':.:1()l—‘(n_—*_1)zl+l+ ee
(=1)" (n+1) 0 g (=12 (0 +1)
+Con i " 2t +C§ni% ntl Fintl — 9,
Multiplying this equality by (—1)"7}/(n-+1) we get
1 n _1 n+1 .
) (Cons12— gn—-il-lz_l) + '—2‘)_ (03:4?122 ;Lnflz N+
( _1)2n—— 2n -n n+1 n—lC —
+ T (Con 12" C2n+lz )+ (z +(—1) 2n+1) =0,
Which ecan be transformed into
(3.13)
(—1) . (=1)"* _——
0}, a(n(e—277) +22) + TCznw((n—l)(z —27%) +42%) + ... +

+ _Tl Ciny2((#® —27™) +2n2") + (—1)"V05F L, + 22" = 0.

Then substituting # = €%, using the identity
6" _¢~% — 2isinky,

and equating the real part of the left-hand side of (3.13) to zero, we get

—1 n+1
2 [“(—2)—‘ Ol +(—1)"Cf 1 pco8p+ ( —1)" 05,7, 00829+ ... +

+(—1)0§n+2cosmp+02n+zcos(n+1>¢] —o.
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We prove now that for n > 0 the following identity holds:
(3.14) 2" '(1—cosgp)® = 303, —Cpleosp+ ... +(—1)"CY,cosng.
Using this identity we can write the previous equality in the form
2"+t1(1 —cosg)" ™! = 0.
It is obvious that only ¢ = 0 fulfills this equality. Hence the only root,

of modulus one, of the characteristic polynomial of the considered recur-
rence equation, is the number 1.

Proof of identity (3.14). Using the formulae
(3.15) cosp = 1—2sin%p/2 and T,(cose) = cosky,
where T, is the k-th Chebyshev polynomial, we can write (3.14) as

n
(3.16) 22"‘lsin2"g — Z°0§n( —1)"T,_(cosg),
=0

where the symbol >'° means that the summand containing the polynomial
T, is to be multiplied by 1/2.
Substituting = sin%p/2, we get

n

n
2l = 0L (— 1", (1-20) = D CLT7 (),

=0 1=0
where
Th(x) = Tp(22—1) = (—1)*T,(1 —2z).

Finally, (3.14) takes now the form of the identity

221" 2 O;n —i(®),

which was proved in [5], p. 29.

The case of even m = 2n(n > 0). Similarly as in the case of odd m,
by (3.12), for z being a characteristic root, of modulus one (i.e. z = ¢),
of the recurrence equation, we get the following equality:

( )l+l n+l ipl
(3.17) —— O Figie
lea—n
Since O = (2!, we obtain

Z (— 1)th AT opiet ey — 0,

=1
i.e.
(3.18) H(g) =0,
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sin(n —1) el ] s
——G;nTl——"i+... +(—1)*10 sing.

Note that equation (3.18) has at least two solutions, ¢ = 0 and ¢ = =,
belonging to the interval [0, 2m).

We show now that there are no other solutions to that equation, or,
lore precisely, we prove that H(p) does not vanish in the interval (0, =),
Which suffices because the function H is odd.

Let us consider the derivative H'(g):

H'(p) = 03,008n9 —CL,c08(n—1)p+ ... +(—1)""C2 cosg.
Using the identity
(—1)"H'(¢) + 303, = 2" (1 —cosg)”,
fOllowing from (3.14), we can write immediately
H'(p) = (—1)"2"7'[(1 —cosgp)" —27"CF, ],
and then

\ ['4
(3.19) H(p) = (—1)"2"! f [(1 —cosg)"—27"C3, 1dg
0

becange H(0) = 0.
Using the relation

1 -1
f (1 —cosg)"dp = _Tn_(l—cos<p)"‘lsin<p+(1+ nT)f(l—COSqJ)"-ldtp
Ve write the first part of the integral in (3.19) in the form
4 1
of (1—cosg)"dp = —;(1—008¢)”“8in¢+
2n—1 1 n—2 .t
+ - [— p— (1 —cosg)" “sing+
+ 2(n—1)—1 [— 1 (1 —cosp)* sing+ ... +
n—1 n—2
5 1 . 3 .
+E[—E(l—cosqa)s1n¢+-§[cp-—smcp]]...]]
3:5:...(2n—1) . :1 -
— _ hat 1_00 n—1
P ey s
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2n—1 1 n—2
- [—fn—l (1 —cosg)" >+
2(n—1)—1 1 3 51 3] ]}
: 1— * e =11 - —1-.. .
+ — [%_2 (1 —cosg)" >+ -+ 3 [2 (1 —cosp)+ 2 ]

The second part of the integral in (3.19) is given by

? (2n)! 1-3:5-...(2n—1)
o n! )

Therefore, after summing up both parts we get H(p) in the form from
which it follows immediately that H(g) does not vanish in the interval
(0, =).

Finally, the only roots, of modulus one, of the characteristic poly-
nomial of the recurrence equation (3.17) are the numbers 1 and — 1. Conse-
quently, the only periodic sequences satisfying (3.17) are the sequences
of the form {¢,+¢,(—1)"},.z, where ¢, ¢, are arbitrary constants.

If we now require these sequences to be periodic and, moreover, if
we assume that N is odd, then these sequences are constant.

Of course, the intersection of the set of odd numbers and of the set
determined in Step I contains infinitely many elements.

Thus we have proved that there exists an arbitrary large N such that
for arbitrary fixed j,e{0,1,..., N—1} the sequence {f;; };, satisfying
(3.11) or (3.12) is constant. This means that the grid functions f, for
h = 1/N, satisfying the system of equations (3.1), are constant with
respect to the variable #, i.e. f;; = f;,,; for arbitrary fixed je{0,1,..

.., N—1} and all integers 1.

Now, considering the system of equations (3.2), by similar reasoning
we come to the conclusion that for the same N the functions f, satisfying
(3.2) are constant with respect to the variable v, i.e., f; ; = f; ;,, for arbit-
rary fixed ¢ €{0,1,..., N—1} and all integers j. Therefore, since equa-
tions (3.1) and (3.2) are satisfied simultaneously, we obtain f;; = cons®
for all integers ¢, j, which completes the proof.

Theorem 3.1 can also be formulated in the following way:

For an arbitrary fized m >0 there exists a strictly increasing sequencé
{NJ2, of natural numbers such that for h = h, = 1/N,; (1 <i < oo) thé
condition Grad,,f, = 0, f; € I, implies f, = const.

From now on we assume that, for a given m >0, N has been chosel
according to the thesis of the theorem.

Consider now the operator

{3.20) 4; = Div,,0Grad,,,
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Which is a difference approximation of the Laplace operator, and let us
Investigate with what error the grid function dyor,f approximates Af
(4 denotes the Laplace operator) for a sufficiently regular function f e F.
We use the notation 4, remembering, however, that this operator
depends on m.
Using the definitions of the operators Div,, and Grad,, we can immedi-
ately write 4, in the form

4, = DD™oDG™+ DDTo DG™,

Where DD™oD@™ approximates the second order derivative of the function
With respect to the variable #, and DD}J'oDG™ approximates the second
Order derivative with respect to the variable y. We can, therefore, expect
different regularity requirements for the function f € ¥ to make optimal
estimations from below for the orders r and s of the error in the equalities

82
(DDRoDETorf)ye = <L | +OW),

0% |(z, )

82
(DD )y = -2 | +0().

ay (‘vp»”q)

As the reasoning for the operators DD7oDGT and DD} oDG} is anal-
Ogous, we investigate only the first one.
Using (2.18) we write

(3.21) DD7oDGT = S™io DroSmko Dk,
Where
(3.22) k = entier(m/2), 1 = entier((m-+1)/2).

Note that the operators appearing on the right-hand side of equation
3.21) commute (this property follows from (2.14)-(2.17)). Hence we
Write (3.21) in the form

(3.23) DD™oDG™ — 8oD,
Where
8.24) 8 = 8lo8p*, D = DploDy*.

W Observe that the operators 8 and D have the following property: if
the Calculate the values of (Sf,),, and (Df;), . then we have to use only
.© Values of the function f, at grid nodes with one of the coordinates
Xed. Therefore, it is more convenient to return to functions of one variable
14 congiger g™* and D™* (see (2.12) and (2.5)) as operators acting on the

Wetions of one real variable f: R— R. To this aim it is sufficient to replace,

8
Zastos, Mat. 18.3

| -
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in (2.12) and (2.5), the discrete variable x, by a variable « taking values on
the whole real axis. Therefore, we deal with the operators § and D of the
form

8§ = 8™lo8™* and D = D™oD™*,

where k and ! are defined by (3.22).

As at the beginning of Section 2, let f; denote the value of the function
J: R—R at the respective node of the grid R,, i.e., f; = f(x;) for z; € K.
Assume additionally that

(3.25) feC™*(R).
Then the equality

m+1

(3.26) fow = 3 W g0y "“"’ ™)

=0

holds, where p, k are arbitrary integers, f,, () denotes the I-th order derivative
of the function f at the node z,, and &, is an intermediate point between
2, and x,,,

Now we investigate the operator D. The cases of even and odd m
will be considered separately.

The case of even m = 2n (n >0). Using directly (2.9) we write

_ 14 —1)+
1) (oD, — 2B Z Z( " O s

1' ‘0 _19&0
Making use of (2.6), (2.9), and the fact that f e C***2(R) (see (3.25)) we
get
2 2 ‘ 2 hi"e (2n+1)
D n,n D n,n — D n,n 4 n
Dmropmng), — (e[ s gy ||

2nc

p

—_ (D2n,nfl)p + (D2n,n [

WP

- S U S B w‘“ ens
= (£"(ap) +OEM) + —o ié i

i#0

p+z

where ¢ = (—1)"*(n!)2%. Consequently, we obtain
(3.28) (.D2"""O.D2n’nf)p =f”($p)+0(hr),

where r > 2n—1.
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We prove now that r > 2n.

Notice that in (3.27) the coefficients at f,,,,; for ¢ =k, j =1 and
= —k, j = —1 (where k and I satisfy the conditions —n <k,l1<n,
ks 0,7 # 0) are equal. Hence the coefficients at the values of the function
J at the nodes of the grid R, located symmetrically with respect to the
grid point #, are also equal.

Let us replace now the values f,,; ; of the function f appearing in
(3.27) by the expressions (3.26). Tt follows from previous considerations
that the expressions containing the values f},’) of odd order derivatives’
(_3f the function f vanish and, therefore, the order r of the error appearing
In (3.28) must be an even number. Since r > 2n—1, we have r > 2n.

The estimation from below of the order r of the error (r > 2n) cannot
be improved by increasing the regularity of the function. Indeed, it can
be illustrated by the following example for n = 1:

1
(-Dz’lf)p = 'ﬁ(fp+l _.fp—l)a

1

(.Dz’lO.Dz'lf)p = 4h2 (fp—2_2fp +fp+2)'

RePla;cing now the function f by its Taylor series at the point z, we get

1 o gt 16 4.0(4) ’” 2
Thz(fp—z_2fp+fp+2) = 4hfp +Ehfp + ... =fp +0(h )’

4h2
i.e_, r =2,

; The case of 0dd m = 2n+1. We use again formulae (2.7) and (2.8)
T two cases (D*"*1"f), and (D*"*"*Yf) . Similarly as for even m, we write

(3.29) (D2n+1,n+loD2n+1,nf)p —_ f,,(wp) 40 (hr) ,

Vhere > 2n for feC*"*3(R) (see (3.25)).
Notice that if f € 0>*+*(R), we cannot generally increase the order r
Of the error. We can only state that the error takes the form

B2n 2 c:’_f(2n+2)(£j) +0 (h2n+1)’
j=~(n+1)

Vhere §; are intermediate points between nodes «,_, and x,,,,,, and the

“onstants ¢; do not depend on the parameter h. We prove now that if,
:WeVer, f € C**+*(R), then it turns out that the order 7 of the error from
"mula (3.29) is at least equal to 2n+2, i.e., 7 > 2n+2.
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By (2.10) and (2.11) we have
(3.30) (D2n+1,n+loD2n+l,nf)p

n+1

_ (ny? (—1)*a(i)B(j) »
W& A )l 1)l L) — )t T
where
(,)_{1 for : =0,
* (n+1)/s for —m<i<n+1l,1 #0,
ﬂ(')—{—l for 3 =0,
P=lmn+1))i for —(n+1)<j<n,j#0.
Notice that the coefficients at f,,;,;fori =k, j = —land fori =1,
Jj = —k (where —n < k,l<n-+1) are equal. Therefore, if we introduce

into the right-hand side of equation (3.30) instead of the values f,,;,; of
the funection f the expressions (3.26) written for m = 2n + 2, then the coef-
ficients at the odd order derivatives f7*+V vanish for ¥ = 0,1, ...,n+1.
Therefore, the proof of the inequality r > 2n -+ 2 reduces to showing
that the coefficient at f¢"*? is also zero.
This coefficient is equal to

@R N (=1 Ya() ) (E45)n
(2n+2)! QS 28<n+nun+1—wun+1+nu -

j=—(n+1) i=—n
i4+j#£0

The double sum appearing in the above formula can be expressed a5
a sum of three components A, B, 0, where

n+1

)3+J(,l +j)2n+2
1 2 . ..
= (n+1) ]=—2(n+; ) 1_2 (’n—{-z)'(n-{-l—@)!(n+1+3)!(n_3)!m ’
J+0 1#0
ntl _ 1\i2n+l
B=:__ﬂji__§: (-yet
aln+1)! & (n+1—4)(n—i)!
12#—0%
d Ja2n+1
0—_"t1 3 (=i
nl(n+1)! s (n+1+5) (n—j)!
j#0

Replacing in the last sum the summation index j by —¢ we see i}
mediately that the second and third elements are equal (B = C).
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Let us investigate now the first component A changing the summation
Index j into —j. We get

n+1 (_1 j+1 n+l1 (_1)1
A4 = 2 s M2n+2,
(n+1) J_;_; (n+1—3)(n+3)1 i;n it D
J#0 1#0

and using the formula

2n+2
. . ( — 1)k'ikj2"+2—k
—a\2nt2 !
(i—3) (2n+2) g HEn T 2R
_ (2n+2)! n+1 (_1)n+k+lin+k+1jn—k+l
Km—(n-+1) (n+k+1)(n—Ek+1)!
We obtain
n+1 .
4 = (2n+2)! 1)2 -
(2n+2)(n+1) i m+h+1)(n—Fk-+1)! y(—k)y(k),
Where
n+1 _
(—1)%ntk
53 k) =
(3.31) » (k) ;_‘ T
i#0

for values of & under consideration. Hence

(3.32) 4 = (2n+2)(n+1)2x

n+1

(_]_)"' . ) (_1)n+k
. { [+ D)7 (O)+2,% mrrrDim—krr ‘k)y(’”)}-

We can obtain some information about y(k) from the relation

(D*+Enf), = fo+ O(R*™FY)

Using additionally formulae (3.26), i.e., the expansion of the function f.
Namely, writing the above relation in the form

2n+1

(Dnf), = 3T W6 ()fD+0(IY,

Jm0



460 A. Szustalewicz

Where, by (3.26) and (2.10),

(3.33)
M+l B (=)
_rwray for 1<j<2n+1,
3 Z(n—i—l—i)!(n—i—i)! orl<j<zn+
. 120
o(J) = n+1 (—1) 1
—_n! ! — ) —
n(n+1)=2_n(n—|—1—z‘)!(n+i)i! w1 OrJ=0
1#0

we conclude that the quantities o(j) satisfy the equalities

{1 for j =1,

3.34 i —
(3.34) W =\o torj=0,2,3,.., 2m+1.

Using (3.31) and (3.32) we can express y(k) by means of o¢(j). From

the above relations and from (3.34) we deduce that y(k¥) = Ofork = —n-+
+1, —n+2,...,n. Hence in expression (3.32) only those factors remain
which correspond to the values ¥ = —(n+1), n+1. We get

4 = —2(n+1)’y(—n—1)y(n+1),

and since
(=n—1) = 1
Y T T Tt
we obtain
n+1 ,
2 (_1)1i2n+1
A= -
(n!)? i_z_;z (m+1—2)!(n+1)!
i%0

Comparing the formula obtained with those defining the components
B and C we see that A +B+C = 0, which is just the coefficient at f(z"”’
Therefore, we eventually obtain the inequality r > 2n +2.

In general, it is impossible to increase the order r of the error (r > 2n +
+2) by increasing the regularity of the function f. This is illustrated bY
the following example for n = 0:

1
(DI'IODl’of)p = 7 (fp—l —2fp +fp+l)

;[ 2f,,+2(fp+ f;,'+ fm )] e f,‘," .

hence r = 2.
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The error we make if we replace the value of the function f at the
grid point x, by the expression

(8f), = (8™ 8™f),

(sce (3.24)) under the assumption that fe C™(R) is determined by the
formula

(8f)p = fl@,) +0(B™),

following from relation (2.13) and from the fact that the coefficients in
the cxpression (8™'f), (see (2.12)) do not depend on the parameter h.

The above considerations for a funection of one variable can be gener-
alized in a straightforward way for functions of two variables in the space
F (provided we treat functions of two variables with fixed value of one of
the variables as a one-parameter family of one-variable functions) and
for operator compositions in question (see (3.33) and (3.24)) D™, D™,
82+, 8mi for ¢ = k, 1 (see (3.22)). Hence we obtain

THEOREM 3.2. For arbitrary m > 0 and a function f € F the following im-
Plications hold:

if f e C™*t»™(R?), then

2
(DDPo DA™ or,f)y, = _a_]_:_ +O0(h"™);
aw (zp’uq)
if f e C™™+2(R?), then
m m 82f m
(DD} o DG oryf)p, = - + 0 (h™);
(zpvg)

if feCmt3mt2(R?), then
(Ahorhf)p,q = Afl(:cp,yq) + O(hm) .
We prove now one more property of the operators Grad,, and Div,,,

Which will be used later.

~ THEOREM 3.3. For an arbitrary function f;, € F, and an arbitrary vector
Field U, € U, the following equality holds:

(3.35) (DiV,, Uy fidn = — (3, Orad,, f3)a

(scalar products (-, -), and (( ))n have been determined in Definition 2.3).

Proof. Since an arbitrary vector field u, = [4{, 4{¥] can be expres-
Sed as a sum of the fields of the form [%{’, 0] and [0, (], it is sufficient
% prove the thesis for each of the fields separately. We do this for the field
“), 0], Analogous calculations for [0, u{?)] are omitted. Let us consider
Separately two cases: of even and odd m.
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The case of evenm = 2n (n > 0). The complete form of the left-hand
side L of equality (3.35) is

N-1

L = # 2 (-DDM'“’ ))p.qu,q = 2 2 2 A;u +1q+1fp.q’
»,9=0 D,g=0 i=—n j=—n
1#£0 J#£0
‘where
(___1)i+:f
A, = h(n)?

(n—8)l(n+0)l(n—g)l(n+j)l4

(by (2.22)-(2.24) and (2. 27))
Since the functions w{ and f, are periodic, we can transform the
equality obtained to the form

L = 2 2 A;; Z UG foig—i-

i=—n j=-n »,q=0
1#0 J#0

Replacing the summation indices ¢, j by —1¢, —Jj, respectively, and
using the equality 4;; = —A_;_;, we get

N-1 = n
= — 2 2 ZAi,j'”'g,)quH.qH’

0,q=0 i=—n j=-n
10 j#0

which, by (2.22)-(2.24) and (2.27), takes the form

N-—1
L=—1 D ul(DE fi)pqg

»,9=0

This is just the right-hand side of equality (3.35), which completes the
proof for even m.

The case of odd m = 2n+1. Following the procedure of the pre-
vious case we obtain

N-1
L= D (DD )y ofy
0,9=0
N-1 n n

- 2 Z 2 B() By 43 s04ifpar

0,q=0 i=—(n+1) j=—(n+1)
j#0
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where, by (2.34), (2.36), and (2.37),

( _1)i+5
(n+14+)(m—8) (n+14+5)(n—75""’

B.; = h(n!)3(n+1)!

Bli) = { -1 for ¢ =0,

) (n+1))z for —(n+1)<i<n, ¢ #0.

Since the functions #{’ and f; are periodic, we obtain
N-1 n n

L= > D B@&)B N g

p,g=0 i=—(n+1) j=>(n+1)
Jj#0

After changing ¢ into —4, j into —j, and applying the equality

B—i,—a = 01 >3 ?
Where
(_1)i+.’i
01'=hn!3’n+1! . N ] ]
g (nl)( ) (n4+1—9)(n+i) (n4+1—75)!(n+j)!

we get

N-1 n+1 a4+l

= — 2 2 Z 7')011 qup+1q+37

0,4=0 i=—n j=—n

j#0
Where

. 1 for ¢ =0,
y(i) = { .
(n+1)/i for —n<i<n+1, 1 #0.

Using (2.28), (2.30), and (2.31) we obtain

N-1

L= —1 D ul (DG f)p 0

p,q=0

Which completes the proof.
CororrARY 3.1. If A4,f, = 0 for f, € F,, then f, = const.

Proof. From the formula 4, = Div, 0Grad,, and from Theorem 3.3
It follows that

0 = (dufn) fu)n = (Div,,0Grad,, f5, fa)s = _((G'ra'dmfh’ Gra'dmfh))h
= ||Grad,, f4ll3-
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Hence we get Grad,, f,, = 0, and further, applying Theorem 3.1, we con-
clude that f, = const.

4. Construction and properties of discrete divergence-free vector fields.
Orthogonal decomposition of the space U,. As before, m is a fixed natural
number and N is chosen in such a way that if Grad,, f, = 0, then f;,, = const
for arbitrary f, € F,. The condition N >m imposed on N still holds.

Definition 4.1. By discrete divergence-free vector fields we mean
such elements u, of the space U, which satisfy the equality
(4.1) Div,, 4, = 0.

Notice that every constant vector field w, = [}, )], i.e., such
that u{) = ¢, = const and u{® = ¢, = const, satisfies condition (4.1).
From Theorem 3.3 we obtain

COROLLARY 4.1. FEach discrete divergence-free vector field u, € U, 8
.orthogonal to each vector field of the form Grad,, f;, f € F.

Proof. The corollary follows from the equalities

((“}u Gra‘dmfh))h = —(Div,, %, fa) = 0.

In this section we deal with the construetion of all discrete divergence-
free vector fields.

We associate with the operator Div,, the family {ddj-*%, ., of peri-
odic vector fields dd;"*?e U, defined by

(4.2) ddpr9 = [ddmPe, dam-P]

for all integers p and g, where dd7?%, ddi»*?c F, were determined il
Definition 2.6.

We can write now a relation valid for an arbitrary vector field u, € Ux’
i 1.
(4°3) (Dle uh)p,q = ?’ ((ddin’p'q, uh))h'

As we can see, by the periodicity of the introduced fields, there exist
precisely N? different fields dd™??; they are in one-to-one correspondenc®
with the elements (p, q) of the set w,. The fields dd™?? are used in definibé
-discrete divergence-free vector fields.

Definition 4.2. We define the opera,tors'
Refl: U,—~U, and Rev:U,—U,
as follows: for u,, v,, w, € U,

v, = Reflu, and w, = Revuy,



Two-dimensional vector fields 465

2
o) = a0} =l

wi) = u),

) = —uf}
(up = [ud), uP] and similarly for v, and w;).

THEOREM 4.1. If u,eU,, then for arbitrary integers s, t the field v3*e U,
defined by

(4.4) vy' = RevoRefloPioPlu,

is orthogonal to the field uy, i.e. (%, v‘?;‘))h = 0 (the tramslation operators
PZ, P! have been determined in Definition 2.5).

Proof. For i,j € Z denote by [, u{)] the value of the vector field

%y, at the node (x;, y,) € R;. By (4.4) and the definition of the operators
appearing there, the vector

[ -1 — 8 sran—G+n]

Is the value of the field o3 at the grid point (;, ;) € R3. Since the fields
%, and o}’ are periodic, the equality

2 N-1 N-1
(4.5) F((“h’ v = 2 2 (WP s o),y — W D0y, ) F
i=0 j=0
—8 —i
+ Z (ugﬂl,)lu(—z)(k+s),—(l+t) —“gc?“(—l)(kﬂ).—(lw))

k=—N-8+1 l=—N—i{+1

FOldS. Changing in this formula the summation indices %, ! into 4, j accord-
I0g to the rule ¥ = —s—4,l = —t—j, we conclude that the right-hand
Side of (4.5) is zero, which means that (5 59 = O.

. Using Theorem 4.1 we are able to construct a finite family of discrete
divergence-free vector fields. We use them together with constant vector

f];(?lds for forming a basis in the space of vector fields u, € U, such that
lvm uh = (.

COROLLARY 4.2. Vector fields 21" defined by
(4.6) P2 — RevoReflddjpN—7N-¢

Jor al'l integers p and q are discrete divergence-free vector fields of the space
hy €., Div, ™2 — (,

(The choice of indices of the form N —p and N —q appearing in (4.6)

iflads to the simplest and easiest formula (4.7) which gives the field 2?4
an explicit form).
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Note that the family {3"*?}, ., contains exactly N* different vector
fields. This follows from the fact that there is a one-to-one correspondence
between these fields and the vector fields ddy**.

It is easy to check, for the complete form of the field 23?2 (by (4.2),
(4.6) and Definitions 2.6 and 4.2), that discrete divergence-free fields
2p»?? can be expressed as

(4.7) zm,p,q [dg ,p,q dggt,p,q]’

where the scalar fields dg;»**? and dg;»**? have been determined in Defini-
tion 2.6.

COROLLARY 4.3. Discrete, constant vector fields are orthogonal to the above-
constructed fields 2372 for all (p, q) € w,,.

Proof. It is sufficient to use the form (4.7) of the vector fields z/??
and the fact that the operators DG and DG} fulfill equations (2.40),
(2.41) and (2.20), (2.21).

Let us assign to the operator 4, the family of scalar fields 7?7 € F,
for (p, q) € w, such that the equalities

(4.8) (41fn)pe = 535 (82°2 % fuln

hold for all (p, ¢) € w, and arbitrary f, € F.

Remark 4.1. The scalar fields 6/, similarly as the fields assigned
to the difference operators DGY, DD, ... determined earlier are given by

m,p,d __ PP q sm,0,0
P — P20 PIsm0,

where PZ and PZ are the translation operators introduced in Definition 2.5-
Therefore, it is sufficient to determine the values of the field &7%° only
at the nodes of the grid R;. We follow here the procedure from Section 2,
i.e., we define first the set I of nodes of the grid R}, and we specify values
of the field 87~*° at each of the grid points belonging to this set. Next, W
transfer the values of the field from nodes belonging to the set I ont0
the whole grid R} (with a period equal to N), taking zero as the value of
the field at the remaining grid points.

We consider separately the cases of m even and odd.
The case of even m = 2n (n > 0). By (3.20) and (2.22)-(2.27) WO

have
(difdon = 2 37 3 (g 3 Sty

Pp=—n g=—n i=m—n jm—n
_'paél) q#90 1£0 §#0
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w(p !1)
¢ Z 2 fp+z q+j}
i
1
- Mp.q,g_nw s Q)’W(z, J) /& QJ fp+z q+3?

DPgij#0

Where M = (n!)®[h* and
( _ 1)i+.‘i

(n—) (n+4) (n—j)(n+j)"

(4.9) (i, §) =

As we see, to calculate (4,f;),,, we use the values f,; of the function
Fafor —m <k, 1< m.

Remark 4.2. In order to define scalar fields ¢;»?¢ € F, having prop-
erty (4.8) and not to go into complicated calculations, we impose on N
the condition

(4.10) N >2m,

Where m is a fixed natural number. An additional complication for N <
Is connected with the fact that the intersection of supports of factors of
the scalar product to appear later (equality (4.13)) contains more than
One component.

Condition (4.10) is not a serious restriction, as the ultimate goal of
1(31716 approximation is to make possible calculations for arbitrary small A

= 1/N).

From now on we restrict ourselves to the case of sufficiently large N
Satisfying inequality (4.10).

Hence we can assume that

(1) I = {(z,y)eR;: —m<k,l<m}

and, as can be easily checked, the field 62™*° takes at the nodes (u, y,) € I
he values

min(n,k+n) min(n,l+n) 1 1
(4'12) G0 = M Z 2 w(p, Q)w(":’j)[_."l' "’—.]7
i=max(—n,k—n) j= - v v
= -n j=max(—n,l—n)
i£0,4%k J#0,5#1

Vhere p — k—; and q = 1—j.
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There is also another way, which we shall use later, to determine the
values 03%%° of the scalar field 6;™*° for (k, 1) such that (@, y;) € I. Namely,
we prove that

1 ,
(4.13) O = — (AP, ),

where 23"/ are discrete divergence-free vector fields introduced in Corol-
lary 4.2.

Proof of equality (4.13). Using the periodicity of the fields z:™*,
equality (4.7), and Definition 2.6, we obtain

min(n,k+n) min(n,l-+n)

((z%n,o,o’ z%n,k,l )h _ (,n!)s 2 Z {’LU(;,]) w (4 J_,lj l) +

t=max(—n,k—n) j=max(—n,l—n)
1£0,i%k J#0,j#1

+ w("'y.?) 'w(":‘.‘kaj“‘l)},
% 1—k

where w (%, j) are given by (4.9). Comparing the above expression with the
right-hand side of formula (4.12) we see at once that for even m equality
(4.13) holds.

The case of odd m = 2n+1. To simplify the notation we pub

N )1 for ¢ =0,
() =V(n+1))i fori =0,
. —1 for 1 =0
Al) = {(n-}—l)/i for § # o:
. __J0 fori =0,
(@) = 1 for ¢ #0,
—1)i+s
W) = —— DT _
(n+i)(m+1—0)(n+)(n+1—j)!
,D(,': .) B (_1)1'+J'
D i) m—a) (1) (n—j)
o _ Lt DT @)
h? ’
Now, by (3.20) and (2.28)-(2.39), we obtain
n n n+1 n+1

(fdoo =M D D X D o(®, 9w, ) x

p=—(n+1) g=—(n+1) t=—n j=-—n

X {y(0)B(p)y(j) a())+ B(Q) 7 (P) a(§) ¥ ()} S psigti
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After simple transformations we see that the values 6%+ of the field

837 +1:9.0 gt the grid points (2, y;) € I (the set I is still defined by (4.11))
are given by

min(n+1,k+n+1) min{n+1,l1+n+1)
(414) gneroo = M D ok~ l—jw(i, ) x

t=max(—n,k—n) j=max(—n,l—n)
X {y(1—4)B(k—i)y(j)a(e)+ B —])y(k—i)a(j)y(i)}.

Let us calculate now (("+5%?, »+154)), for (k, 1) such that (¢, y,) € I.
We get

1
(@15) o (o0, gk,
min(n+1,k+n+1) n.lin('n+1,l+n+1)
=M ) D w,wi—Fk,j—Na(jei—1)+

i=max(—n,k—n) j=max(—n,l-n)
i#0,i#k

min(n+1,k+n+1) min(n+1,l+n4+1)

+M X > w(i, jw(i—k,j—1)a(i)a(i—k)
i=max(-n,k—n) j=max(-—n,l—n)
3#0,5%1

min(n+l,1k+n+l) min(n+1,l+n+1)
=M D w(i,jwE—k,j—1) X
t=max(—n,k—n) j=max(—n,l-n)

x{y@)y(i—k)a(j)a(j—1)+a(@)ali—-k)y({r([—D}.

It is sufficient now to use the relations
a(t) = —p(—1), w(,j)=0(—1i, —J)

:0 €nsure, by comparing the right-hand sides of equalities (4.14) and (4.15),
hat for all k, 1 considered the equality

1
(4.16) 6,’2’,0'0 _ - ((z;:.,o o’ z?,k,l))h

hOIds for m = 2n+1

Thus, we have proved that the values &7 of the scalar field of*°
8¢ given by (4.16) at all grid points (z, ¥;) € I where I is determined by
(4, ) and 2i»*! gre discrete divergence-free vector fields defined by (4.6).
. By Remark 4.1 the obtained values of the field 67*° permit to deter-
© the values of this field on the whole grid R:.
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The above considerations prove the following
THEOREM 4.2. The values 6352, of the periodic scalar field o3 "% e F,
are given by

6z';p,q —_ — _l_((zhm:p,q
s

m,p+lc,q+l))
A bt

» %n
Using this theorem we can formulate
COROLLARY 4.4. For an arbitrary function f, € F, the relation

1 s
(Afidoa = = F((z;‘n,p'q’ Z fp+k,q+lz;»"’p+7"q+l))h

(k,l)ewh

holds for all integers p and q.

Now we prove the following

THEOREM 4.3. In the set of discrete divergence-free wvector fields
{5 p.q)eay, €OCH sUbSEL of N 2 —1 different elements forms a system of linearly
independent vector fields in the space U,.

Proof. We prove this theorem by showing that if the equality

(4.17) D ot =0
(p,9)eop,
holds, then c,, = const for all (p, q) € w,.
Let us treat the sct of coefficients {c, ,} as a discrete function defined
on 2, and denote by ¢, its periodic continuation on the whole grid Rj.
By (4.17) the equality

(3 cogon, ), =0

(p,9)ewy,
holds for every (k,1) € w,. Therefore, from Corollary 4.4 we infer thab
(4pep)i; = 0 for all (k,1) € wy, i.e. 40, = 0. Hence, by Corollary 3.1
we get equality ¢, = const, which completes the proof.

COROLLARY 4.5. In the sct of wvector fields {ddy™% e ea, (se€ (4.2)
every subset of N*—1 different elements forms a system of linearly indepen-
dent vector fields in the space U,

Proof. It is sufficient to use formula (4.6) and the fact that linear
dependence (or independence) of the functions u, € U, (u;: Ri—>R’) 18
invariant with respect to the transformation

u,—~>RevoReflow,,

‘where the mappings Refl: R}— R} and Rev: R*—>R? are linear and non-
singular.
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Now we investigate the set of vector fields of the form Grad,, f, for
Jn € F,, forming a linear space. We determine the dimension of that space.

Let us consider the set of special, periodic grid functions { f;’f’l}(/c,z)
< I, of the form

ewp

(31—
Li = 5i,k51,jy

Where
5 = 0 for ¢ #j,
11 for i =3
for (4, j) € ap
It follows directly from (2.22)-(2.27) (for even m), from (2.28)-(2.39)
(for odd m), and from Definition 2.6 that for all (%, 1) € w, We have

Grad,, fi' = —[ddp-®, dd»*'], ie., Grad,fi' = —ddp*,

Hence, by Corollary 4.5, we obtain

COROLLARY 4.6. Every subset of N*—1 different elements from the
family {Grad,, T tpeay, 8 @ set of linearly independent vector fields in the
$pace U,

Since every field of the form Grad,, f,, f € I's, is a linear combination
of the fields Grad,, fi* defined above, the following theorem is true:

THEOREM 4.4. The dimension of the space Gy, of all vector fields of the
Jorm Grad,, f,, fn € Fy, is equal to N*—1.

Using the results obtained we know that in the space U, of all discrete
Periodic vector fields there exist two orthogonal spaces:
the space G,, spanned by the fields Grad,, f&':

Gh = Lin {{Gra'dm fl’:’l}(k,l)emh} 9

the space D,, spanned by the fields 2?7 and by two constant fields:
Dy, = Lin{{zi"*%, gy [1, 01, [0, 1]}.
Moreover, we know (Theorems 4.4, 4.3, and Corollary 4.3) that
dim@, = N°—1 and dimD,> N?+1.

sslnee the dimension of the whole space U, is exactly equal to 2N?, and the
I}a:ces D, and G, are mutually orthogonal (see Corollary 4.2), we get
D, = N* 1.

CororraRY 4.7. We have U, = D,+G,.

dig This gives the desired orthogonal decomposition of the space U, of
“rete periodic vector fields.

Y.,
astos, Mat, 133

| .
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