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STABILITY ANALYSIS OF A DIFFERENCE SCHEME
FOR THE VIBRATION EQUATION
WITH A FINITE NUMBER OF DEGREES OF FREEDOM

0. INTROD UCTION

Approximate solutions of the boundary or initial value problems
can be obtained by using the method of finite differences provided it is
correctly posed. According to the fundamental theorem of Lax and Filipov
(cf. [3], [7], [8]), approximation and stability properties of a difference
Scheme are sufficient conditions for its convergence.

The subject of the present paper is stability analysis of a weighed
difference scheme which approximates the linear matrix equation of vi-
brations of a system with a finite number of degrees of freedom. The
Problem of stability of finite-difference methods for non-stationary prob-
lems, in particular for vibration problems, is discussed in the monographs
of Samarskii [8], Samarskii and Gulin [9], and Richtmyer and Morton [7].
In [8] some energetic criteria for stability of a three-level scheme (see (21)
below) are given. The energetic criteria for stability of the equivalent
two-level scheme are derived in [9]. In the present work we study the
Stability of the explicit two-level scheme (24). In the analysis we use some
general criteria for stability of the two-level schemes. One of our purposes
I8 to compare the bounds for the time-integration step, which can be
Obtained by using different stability criteria.

The stability of difference schemes for vibration problems was also
discussed by engineers ([6], [10]). We show that stability criteria given
In the above-cited books are equivalent to the necessary and sufficient
Conditions for stability written in energetic norms.

At the beginning of the paper we recall some basic information about
Stability in Lyapunov’s sense. We give also some energetic “a priori”
estimations, the difference analogs of which form the energetic criteria of
Stability of the finite-difference method (52).
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1. REMARKS ON THE STABILITY OF VIBRATIONS OF A SYSTEM
WITH A FINITE NUMBER OF DEGREES OF FREEDOM

Linear vibrations of a system with n (»n < oco) degrees of frecedom
are described by the second-order differential equation
d’x
dt?

dx
(1) +T — +Ex(t) = f()

with the initial conditions
dm —

2 0) = — = ¥,.
(2) x(0) Loy @t |, 0

Here M, T, Ke %,,, denote symmetric, real, and time-independent
matrices. They are referred to as the mass matriz, the damping matriz,
and the stiffness matriz, respectively. ®(t), f(t) € #,, are the column vec-
tors of the generalized coordinates and the external forces, respectively,
and x,, v, € %, are given scalar vectors.

In the case of free vibrations, the damping matrix T (called also
Rayleigh’s matrixz) vanishes identically. When damping occurs, 7' is posi-
tive definite (cf. [4]). The mass and the stiffness matrices are then also
positive definite, as the potential energy E, and the kinetic energy F,

(3) E, = }(Kz,x), B, =4}Mv,v) (v =dx/d)
are positive. Thus
(4) M=M">0, T=T">0, K=K'>0.

Notice that K is a singular matrix in the case where there are no stiff
boundary conditions.

We assume also that all free vibration frequencies w; (j = 1, 2, ..., n)
calculated from the characteristic equation

(5) det(— wiM+K) = 0,
are pairwise different, i.c.
(6) w; # w; for ¢ #j.

The vectors a,, @,, ..., @, € %, of free vibration amplitudes are therefore
linearly independent. Property (4) implies the existence of real and positive
roots of (5) (cf. [2], p. 115).

"~ Problem (1)-(2) is equivalent to the initial-value problem

(7) dy/di+Ay = p(t), Y(0) = y,,
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where

y = colon(x, v), 1y, = colon(mx,, v,),
A=W7'Z, pt)=Wlq(), q() = colon(f(),0),
0 M K T
W=[E 0 ]’ z _[0 —E]'
The vectors y, y,, P, and q belong to the phase space %, DX,,. The exist-
ence of W! follows from the assumption about non-singularity of the
mass matrix. We assume that problem (7) has a solution. It follows from
(6) that the characteristic roots of the matrix 4 with the real part equal

to zero have simple elementary divisors. By (4), the real parts of the roots
Ayy A3y ...y Ay, of the characteristic equation

det(A*M—AT-+K) = 0,
following from the equation det(4—AE) = 0, are non-negative:
Rei =0 (j=1,2,...,2n).

We see that the assumptions of the well-known theorem on stability in
Lyapunov’s sense are satisfied. The “a priori” estimation

t
(8) ly )1 < ¢ [lyall+ [ lIp()l1du]

holds. It is interesting from the physical point of view to specify the con-
Stant (, given properties of the matrices M, K, and T. We show that for
free vibrations without damping (T = 0, f = 0) the inequality

(9) Iy ()1 < === (cond K)o

min

holds, where

WDpax = max O)i, wmin = Imin w,;.
i T

Define the normal coordinates &(f) by the equation
X = Qg’

Vhere & — [q,, a,,...,a,] €®,,,. By (6), ® is non-singular. The system
(1) takes the separated form

a’§(?)
at

+?s(t) = 0,
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where o = diag{w,, w,,..., ®,}. Solving this system with the appro-
priate initial conditions following from (2), and then coming back to the
variable x(f), we obtain

(10) y@t) =Uy,, U = (p2)U(p02)7",
(11) ¢ = diag{®, #}, 2 = diag{E, o},

U =[ c s]’
—-s C
¢ = diag{cosw,t, ..., cosw,t},

s = diag{sinw/t, ..., sinw,t}.

The matrix U’ is similar to the orthogonal matrix U. Normalizing the
vectors @, according to the rule #TKé = E, we get

(12) o0" = K, |&7' = |K|'°.

It is easy to show that the matrix & @ is similar to K~'. Hence
(13) Bl = IK.

From (11)-(13) it follows that

(14) condg = (cond K)'%.

We can assume that (1)
(15) cond 2 = cond® = wpye/Opin-

The obtained results enable us to give an estimation of the norm of y(?).
Starting from (10), using (14), (15), and some elementary properties of norm,
we obtain (9). Thus, the constant ¢ occurring in (8) depends on the condi-
tion of the frequency matrix » and the stiffness matrix K.

1.1. Energetic “‘a priori”” bounds. We assume that the solution of
the initial-value problem (1)-(2) exists. The total energy of the vibrating
system E, = FE,--E,, where E, and E\ are given by (3), for every 7 € [0, t]
satisfies the inequality

(16)  Hy(v) < E.(0)+

t
+2exp(ot) | sup (Df(z), f(x))+o™ [ (Dfizy), firy)dn]

<t

(1) The vector y(t) contains coordinates of different dimensions. Let us put ¥
= colon (, w~'x), where w € 2. Then the role of the matrix 2 is played by the matrix
2 = diag{E, o~ o} which has the condition number equal t0 wmax/®min provided
Wnin < ® < Wmax.
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Here ¢ is a fixed time interval, o is a certain vibration frequency, f = df/dt,
and D = K%,
If T >0, we can choose a parameter » such that

(17) T—nE >0.
Then we get the inequality

4
(18) Bo(7) < B(0)+ 77" [ (f(m), fz))dz, (v €[0,1])

which is different from (16), as the coefficient # does not depend on ¢.
Notice that (16) can be proved by applying the well-known lemma
of Gronwall and Bellman (see [1]).

2. ANALYSIS OF A DIFFERENCE PROBLEM

In the sequel we analyze a difference approximation to problem
(1)-(2). The matrix equation (1) is approximated by means of the symmetric
Wweighed scheme

(19) M&t’g—l—TJ}‘—l—K[% (6k—1+5k+1)+”5k] — F*

(k=1,2,...,K—1; Kh = T = const).
The initial conditions have the standard equivalents
(20) 8 =x,, Mo} = Mv,+h[f(0)—Tv,—Kux,]/2,
Where

of = (6" =6 )b, &f = (8" —8"7")/2h,
o) = (81 —28"+ &)W, F* = f(kh),

h being the time-integration step. We assume that » < 1. The notation
Used above is that of [8] or [9].

The difference scheme (19)-(20) approximates the original problem
With the error O (h%). Equation (19) can be written as the three-level scheme

(21) B&** 1248 +C8* ' = hF* (K =1,2,...,K—1),

Where the square matrices 4, B, C are defined as

22) g4_*g 1 {B}=1
2K hM’ Cc

L\:>|lv-l
m— a—

N~
u_\,—a

2
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From (4) we obtain
(23) B>0, B4C>0.
The problem of stability of (19) will be discussed later.

2.1. Stability of an explicit two-level scheme. The difference problem
(21) can be transformed into the explicit two-level scheme
(24) Y*!' = RY*+hp* (k=1,2,...,K—1;Kh =T = const),
where
Y* = colon(é*, z6¥), p* = L,J*  J* = colon(F*, F**'),

(25)
—2(C+B)'A 2k’ (C+B)~'C
Rh = 1 _ _ _ _ _ ’
[—h(w 14(C+B)"'A—B-'(C+B)) —2B'A(B+C) ‘C]
(B+C)™! 0
(26) L = [_ ! B-14(B+C)"! -2—%3—1]’

and A" = h/z. Here 7 denotes a fixed time period. We assume that v is
the first value of the integration step. Hence & < 7. By (23), matrices B
and B+C are non-singular.

A sgufficient condition for stability of scheme (24) in the sense of the
inequality
(27) max ||V < C[IY'|+T max [|F],

2<I<K 1<j<E-1

where C does not depend on h, is the existence of the constants D and L
(both independent of &) such that (cf. [8])

(28) IRl <1+Dh  and ||l < L.

A necessary condition is the existence of the constants D’ and '
(both independent of %) such that

(29) u(R)<1+Dh and u(L,)<I,

where u(R,) and u(L,) denote the spectral radii of matrices R, and L
respectively. The first inequality of (29) is known as Neumann’s criterion.
In the next scctions we analyze criteria (28) and (29) using the Euclidean
norm.

2.1.1. Analysis of Neumann’s condition. We show that the first in-
equality of (29) holds under the assumption

(30) (L —2%)(h wyag)?+4 >0
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which is equivalent to
(31) (1—2%)PK+4M >0 or B+C—-24>0.

The meaning of this condition will be explained in Section 2.2.
Consider the characteristic equation

Where u; € %,®%,, 4%, j=1,2,...,2n. Writing the vectors u; in
the form

(33) u; = colon(e;, b)),

R |
Where ¢;, b; € ¢, by (32) and (25) we obtain the following two equations:
(34) (4;B+24,A+C)e; =0, }(4—4")e; = h'b;.
Let T > 0. The roots 4; of the characteristic equation
det(A;B+24,44+C) = 0

ay be real or complex. Scalar multiplication of the first equation of (34)
by the vector e; gives us

Where o, — (Be;, e;), b; = 2(A4e;,¢;), and ¢; = (Ce;, e;). From (4) it

J
follpws that a;e 2., b;,c; € £ The matrix C—B = —T is negative
definite. Thus we have
(35) ¢la; < 1.

From the second inequality of (31) it follows that

(36) a,j -+ Cj > b]"

Since B 10424 — KK >0, we have

(37) a;+¢; > —b;.

§elat.ions (35)-(37) are necessary and sufficient conditions for the in-

fqua,hty .|}.].| < 1 to hold (cf. [1], p. 221-222). Neumann’s condition is there-
e fulfilled for D’ — 0.

The In the case where no damping occurs, we have B = C and a; = ¢;.
... Second condition of (31) simplifies to the form B —A4 > 0. It is not
ficult to show that the roots A; lie on the unit circle |2;| = 1, and Neu-
n’s inequality is true for D’ = 0.
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Condition (30) is stronger than Neumann’s criterion, as it implies
the inequality |4;| <1 which is stronger than the first inequality of (29).

2.1.2. Sufficiency of the stability criterion. We have shown in the pre-
vious section that y(R,) = 1 for T = 0 or u(R,) <1 when damping oc-
curs, provided % satisfies (31). Notice that ||R,||> u(R,) ([6], Theorem
6.1.3), where equality holds when R, is normal, which occurs in the rather
rare case of KM = MK.

In the case of vibrations without damping we thus have

IRl > u(Ry) = 1.

Without loss of generality we may assume that ||[R,||> 1.

We will examine some conditions which imply the first inequality
of (28). To this end we show that the matrix R} R, is analytic in a closed
interval [0, h,] and RiR, = E for h = 0. Assume that the integration
step satisfies (c¢f. [56], Theorem 7.1.1)

1— 1
(38) H T”WBI“K—I— SHhMOT| <1,

which implies the existence of the expansions
[A(C+B)]7' = I[E— (1 —x)h?y+ ..M,
[kB] ' = [E—h¥+ ...]M™!,

where y = 1M'K and ¥ = }M~'T. Using these expansions, we can repre-
sent the submatrices of R, (see (25)) in the form of power series

_2(C+B)'A = E—hy+ ...,
2’ (C+B)~'C = —2—E+ ey
—2B'A(B+C)7'C = E—2h¥+ ...,
2—;;[4B‘1A(B+C)'1A—B‘1(B+C)] — —2htyt ...

We thus have

0 v 'E
N U A

[0 E
R’T‘R’L=E+h[E 0]+...

Hence the matrix R} R, is analytic in the interval [0, &,] defined implicitly
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by (38). The equality
(39) R'R, — E

holds for » = 0. By Rellich’s theorem ([5], Section 7.9), all the eigenvalues
of RTR, are analytic. The function
f(h) = Ryl = max 2;(RGR,)
1<j<en
is analytic in a certain interval [0, h,]. For some positive constants M
and N the inequalities f(h) < M and f'(h) < N (0 < h < h,) hold. From
(39) it follows, by the continuity of the norm, that f(0) = 1. Now, it is
€agy to obtain the estimation f(h) <1+Nh (0 < h < h,) which implies

(40) IRyl < 14 .

In the remaining part of this section we show that the first part of
(28) is satisfied under the assumption

(41) (1—2x%)hwlez+40* >0 (0<1),

Which is weaker than that obtained above and a little stronger than (30).
Therefore, it will be clear that the first part of (28) holds no matter how
large is the interval of analyticity of f(h). We restrict ourselves to the case
of non-damped vibrations.

An upper bound for ||R,| follows from (41). To see this, we introduce
the normal coordinates for the scheme (21) in a manner analogous to that
Used in Section 1. Let

(42) Jk == ¢h§k .

Where ®, = [e,e,,...,e,], and e, are the vectors appearing in (33).

gll’le can assume that e; € #,. The first equation of (34) takes the form
= 0!)

(43) (Beosg;+A)e; = 0, 1; = exp(ig;).

.me (6) it follows that the roots 1; are simple, which implies the linear
ndependence of the vectors e;. We normalize e; by

Ma*king @ change of variables in (24) according to the rule (42), we obtain
the System

€k+l ék' —c,, WE
[15,5‘“:'/"11" i=1, ’

if
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where ¢, = diag{cos¢,, ..., cosg,}. This system can be also written in
the form
§k+l fk —e S i
—1gk+1 =Uh —1£k 1 Uh= h . ’
Ty, & 0, & =8, —¢
where
s, = diag{sing,, ..., sing,}, @, = s;/h.

The matrix U, is orthogonal. Let
(45) o, = diag{®,, @,}, 2, = diag{E, o,}.
We have

Y = (0,9,) U, (9,92,)Y",
which by (24) implies

(46) R, = (9492,) 7 Uy (912
Thus, the matrices R, and U, are similar. Using (44) we can show that
(47) cond ¢, = (cond (hB))"*.
Moreover,

min A;(hB) > min A;(M),

1<j<n 1<i<n

1—=x
max 4;(hB) < | K|+ | M].

1<jisn

This follows from (22) and a theorem on the eigenvalues of matrices P
and Q such that P—Q >0 (cf. [2], p. 129). Using (31) we obtain

(48) cond (AB) < a,,
where
3x—1
—_— M 1/2 1
52 —1) cond 12<x<1),
R P K]
—X
72 +1) condM (x <1/2).
( TR 2)

We give an upper bound for the condition number of the matrix a,. Com”
paring (43) and (5) we obtain

sing; = hw;[1+ (hw;/2)* (1 —2x)1/d,

(49)
cosg; = (1—Ka?[2)/d,
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where d = 1+ (1 —x)h’0}/2. By (41) we have

(50) B < |h_15in9’jl < B
Where
(0= o) @ — 1)y, (12 < x< 1),
b= {wmjn/[1+(1 — %) onag 2] (2 <1/2),

Omax 12<x<1),
B: 2 2 1/2

[14 (1 —2x) 0l AT (% < 1/2).
Hence condw, < f./8, and
(51) cond 2, < a;, @, # ay(h).

From (46)-(48) and (51) we obtain |R,||< M = ayVay, M # M(h).
Notice that (40) holds whenever h < h,. For kL satisfying » > h, and
(41) we have

M—
IR <1+

2

2.1.3. Stability relative to the right-hand sides. We shall show that
there exists a constant I such that ||L,|| < L. Starting from (26) and using
known relations between the spectral and Euclidean norms, we obtain

1
4h'?

I < 73l Lyl = 73 [II(B +C)7 iz + 1B~ |1+

+(®)"*B'A(B +C)‘1||§;] ;

WL < (ryfry)? [INB 4+ €)M+ (23 B) ' +

+ 4 /(2w B)~'|* b’ AI*|| (3 (B+C)) |17 -
NOW, the existence of the upper bound L for the norm ||L,|| follows from
he inequalities

-1 ’ -1 ’ ny—1 T 3 Z. M -1
max [II(B+C) I, I(2A'B)~"Il, ||(h (B+0)) H] <5(mm ;(M))
; 1<i<n

ief- the theorem on the eigenvalues of matrices with positive definite dif-
rence [2], p. 129) and

|x]7?

2

2
b’ A2 < 1“2( &+ IIMII) .
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Thus, the second inequality of (28) (and, obviously, the second inequality
of (29)) holds independently of the choice of the time-integration step.

2.2. Energetic criteria of stability. Samarskii derived difference

analogs of the energetic “a priori” estimations given in Section 1.1. The
analog of (16) is

(52) max E. V¢ < E'4+C max [(DF*, F*)+<*(DFY, F¥)],

I<k<K ISk<K
where
(53) 2EEVE = }K(6*' 4 6%), 6"~ +6) + (M7, 87),
(54) M, = (1-2)KK/4+M, & = (6*—d"")/h,
(55) Ff = (FF*—F*")h, C #C(h).

The analog of (18) is

K
1
(56) max Bi < BY 4 oo 2 h(F*, ¥,
k=1

1<k<K

where 7 is the constant satisfying (17).

The above inequalities can be considered as the stability conditions
if and only if the matrix M, given by the first equation of (54), is positive
definite. This is equivalent to the restrictions discussed previously (see (31))-
Thus, (31) is the necessary and sufficient condition for the energetic in-
equalities to hold.

In [9] Samarskii and Gulin analyze the stability using the method
of reduction of the three-level scheme to the two-level one. The stability
of the scheme obtained is examined by the method of energetic inequalities.
The results are identical to those presented here.

3. CONCLUDING REMARKS

In Section 1 we have briefly discussed the problem of stability of
linear vibrations of a system with a finite number of degrees of freedom.
The use of normal coordinates in the case of free vibrations without damp-
ing enabled us to obtain the “a priori” estimation

Omex (cond K |y, .
Omin

ly (Ol <

The greater is the ratio w, . /w,, the weaker becomes the estimation:
The condition of the stiffness matrix K is less important.
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In Section 2.1 we examined the stability of the two-level explicit
Scheme, equivalent to the three-level scheme (19). The analysis showed
that the conditions

(1—2#)(hw)?+402>0, o<1,i=1,2,...,m,

are sufficient for stability in the sense of (27), while the necessary conditions
of stability (29) are satisfied whenever the inequality

(57) (1—2%)(hw;)2+4>0 (i =1,2,...,7n)
holds.

In Section 2.2 we showed, using some results of Samarskii, that (57)
is the necessary and sufficient condition for stability in the sense of the ener-
getic estimations (52)-(56). These estimations imply that the damping
Strengthens the stability relative to the right-hand sides of the difference
Scheme used.

Finally, we show that in the case where no damping occurs the con-
Sidered difference scheme is unstable with respect to the initial conditions
In the sense of the inequality

(58) oIt < C (6%l +lI8'l), € # C(h) (k =1,2,..., K).
Changing the variables in (21) as described in (42), we obtain the equation
F(EH ) +edt = 0.

SOlving this system of recurrence equations with appropriate initial con-
ditions we obtain the formula

0" = 0,0, 850" + B;8,,,(5,9;,'6"' —¢,8;, ' ®;'6"),
Where
¢, = diag{cosg,k, ..., cosg,k},
8, = diag{sing,k, ..., sing, k}.

Assume that 6° = 0. Then &% = (&,8,,5; ;") s". Now, we obtain easily
the estimation
6%l _, = min [4;(8y,8;) I6*1,—1
<j<n A

s 1<4
Where

(59) 164, = Il 8|
h

I3 Phe properly defined vector norm (see [5], Section 6.2, Problem 7).
8ing theorems about the upper and the lower bound for the norm (59)
([5), Sections 6.3 and 6.5), we get

(60) lo¥llcond @, > min |4;(sys7 )| 16"

1<j<n
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The matrix s,s;' takes the form
s Syt = diag{sing,k/sing,, ..., sing,k/sing,}.
From the second part of (50) we obtain

min |4;(s,87Y)] > B sinkgl/b (i =1,2,...,7n).

1<ji<n
For k¥ = K we have
(61) B:lIsinKe,| /b = B3k sin [K (ho;+ O (B))] >0 (h—>0)

because Kk = T and, by (49), ¢; = hw;+ O (h*). Using the first part of
(45), (47), (48), (60), and (61), we obtain

Va, [65]| > cond &, 05| >c0  (h—0),

which means the instability of the difference scheme (21) in the sense of (58).

Let us remark that the criteria of the choice of the integration step
given in [6], [10], and in (57) are the same. However, it is easier to examine
whether a matrix is positive definite than to calculate its eigenvalues.
Therefore, it should be more convenient to use (31) rather than (57).
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