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Introduction

The contents of the main part of my lecture held at the Banach Center
in Warsaw during the semester on Computational Mathematics — a gen-
eral description of iterative methods for solving rectangular linear
gystems — was already published in [2]. Thercfore in part 1 there are
only given the most important results without proofs. Part 2 contains
an extension of the semi-iterative (CebySev) method to rectangular linear
systems.

1, Stationary one-step iterative methods

To solve the linear system

(1) Az =b, A: RN5>R(4A)< RM

iteratively we use the equation

(2) v=a4+Qr, Q: R¥-R(Q) < R?,

where ¢ and » denote a given I xN-matrix and the residual vector
(3) r =b—Arzx,

respectively. Obviously, (1) is consistent to (2) but generally not recip-
rocally consistent (cf. [10], p. 65 ff.). A solution of (2) which is not sol-
ution of (1) we will call a (with respect to Q) generalized solution of (1).
Equation (2) yields the iterative process

(4) z® = Tz* 1 +0b, ok Q-1

(5271
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for the approximations and the residuals, respectively. The iteration
matrices T' and S are defined by

(b) T=1Iy—Q4, 8 =I,—AQ.
Using the changing rules

(86) ATr = 8*4, T"Q =Q8"
we obtain the explicit representations
{7 #° = T*a®+ B, b, 1* = 8Fyo
with
e—1 k-1
() By=DTQ =D a5
ne=0 n=>0
and
{9) T = I,—B,A, 8" =1,—AB,.

Under the assumptions
(Al) it exists B, = lim B,

K—o

(A2) N(AQ) = N(Q), R(Q4) = R(Q),
(A3) N(Q4) = N(4), R(4Q) = R(4),
(Ad) b e R(A) (solvability condition),
(AbB) rank AQ = M,
(AG) rank QA =N
we can prove the following propositions (cf. [2], pp. 25-31):

TEroREM 1. From (Al) it follows: There exist the limit matrices T
and 8%,

{10) T =1y—B, A, 8°=1I1,—AB_,

which are projectors with the properties

(11) (IT®)? =T* =TT =TT, (8~) =8%° =8%8 =88
and the following nullspace and range relations

(12) R(T*) = N(Q4), R(8®) =N(4Q),

(18) R(T™) = R(Q4), RN(5") =R(49).

There exist the limit vectors z° and r™ with the representations

(14) 4® = (Iy—B,A)z" 4B b, +° = (I—AB,).
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The matriz B, 18 an outer (generalized) inverse of the matrio A and z*™ is
a generalized (with respect to Q) solution of (1):
(18) B AB, = B,, Q(b—A42®) =0,

Proof. Here we only prove the last assertion since (15) was proved
in [2] under stronger conditions. From the identity 7B,+Q = B, we
get TB,+@ = B,, and with (5) and (10) further QA B, = @ and finally

(16) Q8™ = T™Q = 0.

So we have
D' T"Q8° = B (Iy—A4B,) =0
n=>0

and
0 =Q8%r" =@r° =Q(b—Az ). m

THEHEOREM 2. From (Al) and (A3) it follows: B, is an inner (gener-
alized) inverse of A,

@anmn AB A =A.
If in addition (A4) holds, then x= is a solulion of (1):
(18) Aa® =b.

THEOREM 3. From (Al) and (AB) (maximal row rank of A) it follows:
The matriz B, is an A¥**-inverse of A (for this terminology cf. for instance
the lecture of G. Zielke in this issue), §* and AB,, are equal to the null
and the unit matriz, respectively, and ™ is solution of (1).

THEOREM 4. From (Al) and (A6) (mazimal column rank of A) it
follows: The matriz B, is an A"**inverse of A, T and B A are equal
to the null and the unit matriz, respectively, and ™ = B b is the — in
this case unique — solution (or generalized solution) of (1).

At last we define the average and the asymptotic rate of convergence
according to [10], p. 84, by

1 00
(19) B (I) = — flogII(T—T‘”)"ll, B (T) = —loge(T'—-T%),
where ||-|| and p(-) denote a certain norm and the spectral radius, re-
spectively.

Until now one question has not been answered: how to choose the
matrix @, defining the iterative process? If the matrix A is non-singular,
the best @ is the inverse A~!, since in this case the iteration terminates
after one step. For this reason the Jacobi and the Gauss—Seidel methods
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use the inverse of diag 4 and of the left lower triangular matrix of 4,
respectively, as approximations of A~'. Varga [9] proposed a regular
splitting of 4 into a regular summand (which should be easy to invert)
and a nonpogitive summand. Plemmons [6] extended this idea to rec-
tangular systems by splitting 4 into the difference B —C and using Bt or
other g-inverses (B, B3, B“*) as . Other possibilities are given by
cyclic projection methods (ct. [1]) especially by approximation by columng
or rows of 4 (or linear combinations of columns or rows) (cf. [2]-[5],
[71, [8]).

Unfortunately, all the above-mentioned iterative methods con-
verge very slowly, so it is necessary to look for convergence-accelerating
methods.

2. Accelerating of convergence

Similarly to the semi-iterative (Ceby¥ev) method for linear systems with
a nonsingular matrix A (cf. [9], p. 134, [10], p. 345), we will construct
a sequence of linear combinations of the approximations a*

"

(20) \ ?/n = Z an,kwk

k=0
and asgk for coefficients such that {y"} converges faster than {«*}.
If condition (Al) is fulfilled then the sequence {z*} converges to the
limit vector a® = T*x°+ B, b. It is a solution of (2)
(21) 2® = Ta®+Qb

since I'T* =T and T'B,+Q = B,. Choosing x® as a starting vector,
we obtain

Therefore the new and — as we hope — “better” sequence {y"} should
yield #* in this case too. So we get the conditions

n
(22) dag=1, n=01,2,..

k=0

The difference of equations (4) and (21) yields
(23) ot — g™ = (T —T°) (20— 1*)

since T* = T°4 (T —T*)* and T*(z'—&*) = 0. With the help of (20)
and (22) we get

(24) Yy =™ = pp(T) (0 — 2)
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where we used the abbreviations

(25) T=T-1

and

(26) pall) = D) ap, 0"
k=0

With the Euclidean norm ||| it follows

(27) ™ — 2| < 19, (D) l® — 2]

To make |ly" —2%| as small as possible we have to minimize the spectral
norm of p, (7). Let us assume that the coefficients a, . are Teal and that
T is a hermitean matrix. Then p,(T) is also hermitean, and it holds
(28) 2, (T)]| = max [p,(%;)| < max [p,(t)],

1IN asi<h
where %; denote the eigenvalues of T and a and b are lower and upper
bounds of the spectrum of 7, respectively. If the sequence {I"} is con-
verging, then T has (with the possible exception of the eigenvalue z; = 1)
only eigenvalues with |7;| < 1. From T*y, = tfy, and the fact that the
projector I'™ has the eigenvalues 1 and 0 only, we have

~ O j.f T.i = 1,
(29) "= {ri if |7l <1.
So there exist bounds a and b with
(30) —l<ag|Fi<b<]

and we can use the theory of the semi-iterative methods: Instead of
I, (T)]] we minimize max |p,(t)] in the class of polynomials with p,(1)

n a<si<h
= 3 a,, = 1. The solutions are suitable normed Cebyfev polynomials
Km0
(31) Pall) = T,(t/6)/T,(1]0).

For simplicity reasons we regard here only the special case of a sym-
metric interval (a, b)

(32) e(<b = —a.

With the well-known recurrence relation for the CebyXev polynomials
T,(s)

(33) Tpya(8) = 2T, (8)—T,._,(s), nzxl,

one obtains, using (31) and (24),

T (L0) (1 —2%) =PI, (10) (" ) ~T (L) 4" — )
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and with the usual abbreviations

(38 @ur = 5 Tu(L ) Taa(1B) = 14Ty (L0} T (1)

finally

(35) Y = 0y (TY"+Q0 -y N+, w1,

gince I'®(y" —a™) = T“pn(T)(m°—w°°) = 0. The starting vectors are
(36) y° =% y'=Ty°+0Qb

since y'—a® = p,(T)(x°—2™) and p,(t) =¢ The parameters w,,, can
be computed directly from

1+ (w—-1)"
“T¥(@—1)"
or by the recurrence relation (cf. [9], [10])

(38) Wy = /(1 —b%w,/4), n=2, o,=2/(2-b),

(37)  wpy = nzl, o=2/1+V1—b2)

o

To estimate the rate of convergence we now must use p, (1) instead of
™ (cf. (19)). It the bound b is sharp, b = o(T), we obtain

Ipn (D) = LT, (1/B),

so the average rate of convergence is

(39) R,(T-8I) = —}log(w—1) — (1/n)log (2 /(14 (w0 —1)"))
and the asymptotic rate of convergence reads
(40) B (T-8I) = —ilog(w—1).

From (37) it follows (for b—0)

w—1 = b2/440(bY),
therefore the rate of convergence of the SI-method is asymptotically
(41) Boo(T-81) = —log(b/2+0(b%)
instead of

B (T) = —logh
(ef. (19)) in the case of the initial process (4).
We summarize the results in the following

THEOREM 5. Let the iterative proocess (2) converge to the limit vector
a%, let the iteration matrix T be hermitean, and let b be a bound for the spectral

radius o(T) = o(T—T%); then the sequence {y"}, defined by the semi-iter-
ative method (35)—-(37) converges to the same limit vector ™ and has the

rate of convergence (40).
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