# ITERATIVE SOLUTION OF RECTANGULAR SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

#### GERHARD MAESS

Sektion Mathematik, Wilhelm-Pieck-Universität, Universitätsplatz 1, DDR-25 Rostock, DDR

#### Introduction

The contents of the main part of my lecture held at the Banach Center in Warsaw during the semester on Computational Mathematics — a general description of iterative methods for solving rectangular linear systems — was already published in [2]. Therefore in part 1 there are only given the most important results without proofs. Part 2 contains an extension of the semi-iterative (Čebyšev) method to rectangular linear systems.

## 1. Stationary one-step iterative methods

To solve the linear system

$$(1) Ax = b, A: \mathbf{R}^N \to \Re(A) \subset \mathbf{R}^M$$

iteratively we use the equation

(2) 
$$x = x + Qr, \quad Q \colon \mathbf{R}^{\mathbf{M}} \to \Re(Q) \subset \mathbf{R}^{N},$$

where Q and r denote a given  $M \times N$ -matrix and the residual vector

$$(3) r = b - Ax,$$

respectively. Obviously, (1) is consistent to (2) but generally not reciprocally consistent (cf. [10], p. 65 ff.). A solution of (2) which is not solution of (1) we will call a (with respect to Q) generalized solution of (1). Equation (2) yields the iterative process

(4) 
$$x^k = Tx^{k-1} + Qb, \quad r^k = Sr^{k-1}$$

528 G. MAESS

for the approximations and the residuals, respectively. The iteration matrices T and S are defined by

$$(5) T = I_N - QA, S = I_M - AQ.$$

Using the changing rules

$$AT^n = S^n A, \quad T^n Q = QS^n$$

we obtain the explicit representations

(7) 
$$x^k = T^k x^0 + B_k b, \quad r^k = S^k r^0$$

with

(8) 
$$B_k = \sum_{n=0}^{k-1} T^n Q = \sum_{n=0}^{k-1} Q S^n$$

and

(9) 
$$T^k = I_N - B_k A, \quad S^k = I_M - A B_k.$$

Under the assumptions

(A1) it exists 
$$B_{\infty} = \lim_{k \to \infty} B_k$$
,

(A2) 
$$\mathfrak{N}(AQ) = \mathfrak{N}(Q), \ \mathfrak{R}(QA) = \mathfrak{R}(Q),$$

(A3) 
$$\mathfrak{N}(QA) = \mathfrak{N}(A), \ \mathfrak{R}(AQ) = \mathfrak{R}(A),$$

(A4) 
$$b \in \Re(A)$$
 (solvability condition),

(A5) rank 
$$AQ = M$$
,

(A6) rank 
$$QA = N$$

we can prove the following propositions (cf. [2], pp. 25-31):

THEOREM 1. From (A1) it follows: There exist the limit matrices  $T^{\infty}$  and  $S^{\infty}$ ,

$$(10) T^{\infty} = I_N - B_{\infty} A, S^{\infty} = I_M - A B_{\infty},$$

which are projectors with the properties

(11) 
$$(T^{\infty})^2 = T^{\infty} = T^{\infty}T = TT^{\infty}, \quad (S^{\infty})^2 = S^{\infty} = S^{\infty}S = SS^{\infty}$$

and the following nullspace and range relations

$$\mathfrak{R}(T^{\infty}) = \mathfrak{R}(QA), \quad \mathfrak{R}(S^{\infty}) = \mathfrak{R}(AQ),$$

(13) 
$$\mathfrak{N}(T^{\infty}) = \mathfrak{R}(QA), \quad \mathfrak{N}(S^{\infty}) = \mathfrak{R}(AQ).$$

There exist the limit vectors  $x^{\infty}$  and  $r^{\infty}$  with the representations

(14) 
$$x^{\infty} = (I_N - B_{\infty} A) x^0 + B_{\infty} b, \quad r^{\infty} = (I_M - A B_{\infty}) r^0.$$

The matrix  $B_{\infty}$  is an outer (generalized) inverse of the matrix A and  $x^{\infty}$  is a generalized (with respect to Q) solution of (1):

$$(15) B_{\infty}AB_{\infty} = B_{\infty}, Q(b-Ax^{\infty}) = 0.$$

*Proof.* Here we only prove the last assertion since (15) was proved in [2] under stronger conditions. From the identity  $TB_k + Q = B_k$  we get  $TB_{\infty} + Q = B_{\infty}$  and with (5) and (10) further  $QAB_{\infty} = Q$  and finally

$$QS^{\infty} = T^{\infty}Q = 0.$$

So we have

$$\sum_{n=0}^{\infty} T^n Q S^{\infty} = B_{\infty} (I_M - A B_{\infty}) = 0$$

and

$$0 = QS^{\infty}r^{0} = Qr^{\infty} = Q(b - Ax^{\infty}). \quad \blacksquare$$

THEOREM 2. From (A1) and (A3) it follows:  $B_{\infty}$  is an inner (generalized) inverse of A,

$$AB_{\infty}A = A.$$

If in addition (A4) holds, then  $x^{\infty}$  is a solution of (1):

$$Ax^{\infty} = b.$$

THEOREM 3. From (A1) and (A5) (maximal row rank of A) it follows: The matrix  $B_{\infty}$  is an  $A^{1,2,3}$ -inverse of A (for this terminology cf. for instance the lecture of G. Zielke in this issue),  $S^{\infty}$  and  $AB_{\infty}$  are equal to the null and the unit matrix, respectively, and  $x^{\infty}$  is solution of (1).

THEOREM 4. From (A1) and (A6) (maximal column rank of A) it follows: The matrix  $B_{\infty}$  is an  $A^{1,2,4}$ -inverse of A,  $T^{\infty}$  and  $B_{\infty}A$  are equal to the null and the unit matrix, respectively, and  $x^{\infty} = B_{\infty}b$  is the — in this case unique — solution (or generalized solution) of (1).

At last we define the average and the asymptotic rate of convergence according to [10], p. 84, by

(19) 
$$R_k(T) = -\frac{1}{k} \log \|(T - T^{\infty})^k\|, \quad R_{\infty}(T) = -\log \varrho (T - T^{\infty}),$$

where  $\|\cdot\|$  and  $\varrho(\cdot)$  denote a certain norm and the spectral radius, respectively.

Until now one question has not been answered: how to choose the matrix Q, defining the iterative process? If the matrix A is non-singular, the best Q is the inverse  $A^{-1}$ , since in this case the iteration terminates after one step. For this reason the Jacobi and the Gauss-Seidel methods

530 G. MAESS

use the inverse of diag A and of the left lower triangular matrix of A, respectively, as approximations of  $A^{-1}$ . Varga [9] proposed a regular splitting of A into a regular summand (which should be easy to invert) and a nonpositive summand. Plemmons [6] extended this idea to rectangular systems by splitting A into the difference B-C and using  $B^+$  or other g-inverses ( $B^{1,2}$ ,  $B^{1,3}$ ,  $B^{1,4}$ ) as Q. Other possibilities are given by cyclic projection methods (cf. [1]) especially by approximation by columns or rows of A (or linear combinations of columns or rows) (cf. [2]-[5], [7], [8]).

Unfortunately, all the above-mentioned iterative methods converge very slowly, so it is necessary to look for convergence-accelerating methods.

## 2. Accelerating of convergence

Similarly to the semi-iterative (Čebyšev) method for linear systems with a nonsingular matrix A (cf. [9], p. 134, [10], p. 345), we will construct a sequence of linear combinations of the approximations  $x^k$ 

$$(20) y^n = \sum_{k=0}^n a_{n,k} x^k$$

and ask for coefficients such that  $\{y^n\}$  converges faster than  $\{x^k\}$ .

If condition (A1) is fulfilled then the sequence  $\{x^k\}$  converges to the limit vector  $x^{\infty} = T^{\infty}x^0 + B_{\infty}b$ . It is a solution of (2)

$$(21) x^{\infty} = Tx^{\infty} + Qb$$

since  $TT^{\infty}=T^{\infty}$  and  $TB_{\infty}+Q=B_{\infty}$ . Choosing  $x^{\infty}$  as a starting vector, we obtain

$$x^1 = x^2 = \ldots = x^n = x^\infty.$$

Therefore the new and — as we hope — "better" sequence  $\{y^n\}$  should yield  $x^{\infty}$  in this case too. So we get the conditions

(22) 
$$\sum_{k=0}^{n} a_{n,k} = 1, \quad n = 0, 1, 2, \dots$$

The difference of equations (4) and (21) yields

(23) 
$$x^{k} - x^{\infty} = (T - T^{\infty})^{k} (x^{0} - x^{\infty})$$

since  $T^k = T^{\infty} + (T - T^{\infty})^k$  and  $T^{\infty}(x^0 - x^{\infty}) = 0$ . With the help of (20) and (22) we get

$$(24) y^n - x^{\infty} = p_n(\tilde{T})(x^0 - x^{\infty})$$

where we used the abbreviations

$$\tilde{T} = T - T^{\infty}$$

and

(26) 
$$p_n(\tilde{T}) = \sum_{k=0}^n a_{n,k} \tilde{T}^k.$$

With the Euclidean norm | | · | it follows

$$||y^{n} - x^{\infty}|| \leqslant ||p_{n}(\tilde{T})|| \, ||x^{0} - x^{\infty}||.$$

To make  $||y^n-x^{\infty}||$  as small as possible we have to minimize the spectral norm of  $p_n(\tilde{T})$ . Let us assume that the coefficients  $a_{n,k}$  are real and that  $\tilde{T}$  is a hermitean matrix. Then  $p_n(\tilde{T})$  is also hermitean, and it holds

$$||p_n(\tilde{T})|| = \max_{1 \leq i \leq N} |p_n(\tilde{\tau}_i)| \leq \max_{a \leq t \leq b} |p_n(t)|,$$

where  $\tilde{\tau}_i$  denote the eigenvalues of  $\tilde{T}$  and a and b are lower and upper bounds of the spectrum of  $\tilde{T}$ , respectively. If the sequence  $\{T^n\}$  is converging, then T has (with the possible exception of the eigenvalue  $\tau_j = 1$ ) only eigenvalues with  $|\tau_i| < 1$ . From  $T^k y_i = \tau_i^k y_i$  and the fact that the projector  $T^{\infty}$  has the eigenvalues 1 and 0 only, we have

(29) 
$$\tilde{\tau}_i = \begin{cases} 0 & \text{if } \tau_i = 1, \\ \tau_i & \text{if } |\tau_i| < 1. \end{cases}$$

So there exist bounds a and b with

$$(30) -1 < a \leqslant |\tilde{\tau}_i| \leqslant b < 1$$

and we can use the theory of the semi-iterative methods: Instead of  $\|p_n(\tilde{T})\|$  we minimize  $\max_{a\leqslant t\leqslant b}|p_n(t)|$  in the class of polynomials with  $p_n(1)=\sum_{k=0}^n a_{n,k}=1$ . The solutions are suitable normed Čebyšev polynomials

(31) 
$$p_n(t) = T_n(t/b)/T_n(1/b).$$

For simplicity reasons we regard here only the special case of a symmetric interval (a, b)

$$\varrho(\tilde{T}) \leqslant b = -a.$$

With the well-known recurrence relation for the Čebyšev polynomials  $T_n(s)$ 

(33) 
$$T_{n+1}(s) = 2sT_n(s) - T_{n-1}(s), \quad n \ge 1,$$

one obtains, using (31) and (24),

$$T_{n+1}(1/b)(y^{n+1}-x^{\infty}) = \frac{2}{b} \tilde{T}T_n(1/b)(y^n-x^{\infty}) - T_{n-1}(1/b)(y^{n-1}-x^{\infty})$$

532 G. MAESS

and with the usual abbreviations

(34) 
$$\omega_{n+1} = \frac{2}{b} T_n(1/b) / T_{n+1}(1/b) = 1 + T_{n-1}(1/b) / T_{n+1}(1/b)$$

finally

(35) 
$$y^{n+1} = \omega_{n+1}(Ty^n + Qb - y^{n-1}) + y^{n-1}, \quad n \ge 1,$$

since  $T^{\infty}(y^n-x^{\infty})=T^{\infty}p_n(\tilde{T})(x^0-x^{\infty})=0$ . The starting vectors are

$$(36) y^0 = x^0, y^1 = Ty^0 + Qb$$

since  $y^1-x^\infty=p_1(\tilde{T})(x^0-x^\infty)$  and  $p_1(t)=t$ . The parameters  $\omega_{n+1}$  can be computed directly from

(37) 
$$\omega_{n+1} = \omega \frac{1 + (\omega - 1)^n}{1 + (\omega - 1)^{n+1}}, \quad n \geqslant 1, \quad \omega = 2/(1 + \sqrt{1 - b^2})$$

or by the recurrence relation (cf. [9], [10])

(38) 
$$\omega_{n+1} = 1/(1-b^2\omega_n/4), \quad n \geqslant 2, \quad \omega_2 = 2/(2-b^2).$$

To estimate the rate of convergence we now must use  $p_n(\tilde{T})$  instead of  $\tilde{T}^n$  (cf. (19)). If the bound b is sharp,  $b = \varrho(\tilde{T})$ , we obtain

$$||p_n(\tilde{T})|| = 1/T_n(1/b),$$

so the average rate of convergence is

(39) 
$$R_n(T-SI) = -\frac{1}{2}\log(\omega - 1) - (1/n)\log(2/(1 + (\omega - 1)^n))$$

and the asymptotic rate of convergence reads

$$(40) R_{\infty}(T-SI) = -\frac{1}{2}\log(\omega-1).$$

From (37) it follows (for  $b \rightarrow 0$ )

$$\omega - 1 = b^2/4 + O(b^4)$$
.

therefore the rate of convergence of the SI-method is asymptotically

$$(41) R_{\infty}(T-SI) = -\log(b/2 + O(b^3))$$

instead of

$$R_{\infty}(T) = -\log b$$

(cf. (19)) in the case of the initial process (4).

We summarize the results in the following

THEOREM 5. Let the iterative process (2) converge to the limit vector  $x^{\infty}$ , let the iteration matrix T be hermitean, and let b be a bound for the spectral radius  $\varrho(\tilde{T}) = \varrho(T - T^{\infty})$ ; then the sequence  $\{y^n\}$ , defined by the semi-iterative method (35)-(37) converges to the same limit vector  $x^{\infty}$  and has the rate of convergence (40).

### Literature

- [1] A. S. Householder and F. L. Bauer, On certain iterative methods for solving linear systems, Numer. Math. 2 (1960), 55-59.
- [2] G. Maess, Iterative Lösung linearer Gleichungssysteme, Nova Acta Leopoldina, Neue Folge, Nr. 238, Bd. 52, Leipzig 1979.
- [3] -, A projection method solving linear algebraic equations, Rostock. Math. Kolloq. 12 (1979), 77-85.
- [4] G. Maess und W. Peters, Lösung inkonsistenter linearer Gleichungssysteme und Bestimmung einer Pseudoinversen für rechteckige Matrizen durch Spaltenapproximation, Z. Angew. Math. Mech. 58 (1978), 233-237.
- [5] W. Peters, Lösung linearer Gleichungssysteme durch Projektion auf Schnitträume von Hyperebenen und Berechnung einer verallgemeinerten Inversen, Beiträge Numer. Math. 5 (1976), 129-146.
- [6] R. J. Plemmons, Direct iterative methods for linear systems using weak splittings, Acta Univ. Carolinae, Math. et Phys. 15 (1974), 117-120.
- [7] K. Tanabe, Characterization of linear stationary iterative processes for solving a singular system of linear equations, Numer. Math. 22 (1974), 349-359.
- [8] -, Projection method for solving a singular system of linear equations and its applications, ibid. 17 (1971), 203-214.
- [9] R. S. Varga, Matrix iterative analysis, Englewood Cliffs (N. J.) 1962.
- [10] D. M. Young, Iterative solution of large linear systems, New York and London 1971.

Presented to the Semester Computational Mathematics February 20 – May 30, 1980