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The aim of this paper is to derive some common aspects of different
sequential unconstrained minimization techniques by the use of the close
relation between the generated unconstrained subproblems and the per-
turbed primal optimization problems. Our approach leads also to certain
new optimization methods.

1. Imtroduction; general theory

Let W, F denote reflexive Banach spaces and X < W a closed subset.
In the space F a partial ordering “>” is induced by a closed convex
cone C according to

a<bob—aclC.
In this paper we investigate the following nonlinear programming problem
(1.1) folw)—>min! subject to 2 eX, f(z)<0.

Here f,: X—+R! denotes a given continuous functional and f: X—»F
a continuous operator. To shorten our notation we define the Banach

space H = R! xI' with the related norm ||z = ViR—+ | I% and the
partial ordering induced by the cone R! xC. Any h € H is assumed to be
represented by 7 = (hy, h) with 2, e R' and heF. We write

fl@) = (fol@), fl@) for any z e X.

The essential idea of the sequential unconstrained minimization
technique consists in transforming the primal problem (1.1) by means

of a functional T: X x Y—R := R'U{+ oo} into auxiliary problem
(1.2) T(x,y)—>min! st zeX.
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Here y denotes a fixed parameter ranging over a given parameter set Y.
The set Y can be of finite or infinite dimension. In the sequel we restrict
attention to functionals T defined with use of a functional B: ¥ xH-R
by the relation

(1.3) T(z,y) = inf{B(y, v)) o> f(x)}

for any z e X, y € Y. Then F is called the generating functional. It has
to be remarked that most of the sequential unconstrained minimization
techniques used in practice actually operate with auxiliary functionals T
which are representable in the form (1.3).

As an example of a general penalty technique let us consider the
method proposed by Babugka [2] for solving Poisson’s equation

—dz =q in £ 7
(1.4) with homogeneous boundary condition
=0 on [I.

£ denotes a bounded domain in R™ with a boundary I'e 0. A weak
solution # € W3(2) of the boundary problem (1.4) can be determined
by solving the optimization problem

n

(1.5 o) = [[ D(5e) |62 [ a-aae->min

f=1,

st. 2 =0 on I.

If we choose ¥ = L,(I'), then by imbedding theorems (see [14] e.g.)
the restriction operator f(z):= x|, is known to be continuous. Now, let
C ={0} and X = W = W;(£). Thus (1.5) forms a general optimization
problem of the type (1.1). Taking Y = int R} and T (y, v) = vo+y [vil,m),
we geli the auxiliary problem

J[Zn(;—z)z] dE_Z!quE‘I'?/lfwzda—nninI

=1
subject to « e W,(2)

‘which coincides with the technique described in [2].

In the same way we can apply the penalty technique to problems
with mixed boundary conditions as those considered in [10] by defining
an appropriate cone C.

Let

(1.6) Q@ ={veH| dxeX such that f(z) < v}

denote the characteristic set related to the optimization problem (1.1).
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If x denotes the primal functional of' (1.1) defined by
x(w) =inf{f,(»)] 2 e X, f(z) <u} for any ueF
then the rclations
@ cepiy and clQ = clepiy
with epiy = {# e H| v, = x(v)} hold.

Now, for fixed parameters y € Y we consider the following compari-
gon problem

(1.7) E(y,v)»>minl st. veq.

The following lemma shows the close relation between the two optimiz-
ation problems (1.2) and (1.7).

LEMMA 1. Let 6> 0 be a real number and y € ¥ a fized parameter.
Suppose the auxiliary problem (1.2) posseses an approzimate solution z°(y)
e X such that

(1.8) T(z* (), y) < T(x,y)+e for any v eX.

If a solution v°(y) of the related problem

(1.9) B(y, v)>min! s.t. v > f(z*(y)),

ewists then o°(y) also forms am e-solution of the comparison problem (1.7),
i.e. °(y) €Q and

(1.10) E(y, () <E(y,v)+e for any veq.

Proof. The constraints in the problem (1.9) and the relation #°(y) e X
guarantee that »°(y) belongs to ¢. Now, we suppose that there exists
v €@ such that

(1.11) E(y,9) +e< E(y, v*(y)).
Because »°(y) solves (1.9), according to (1.3), the equality
(1.12) E(y,v*(y) = T(=*(¥), 9)

holds. From 9 € @ and the definition (1.6) of the characteristic set we get
the existence of an @ € X such that f(#) <4. This together with (1.3)
leads to ’

(1.13) T@,y) < Ey, o).

Combining (1.10)-(1.13) we get a contradiction to the inequality (1.8). w
LuMMA 2. Tet ¢ >0, 2 € X and 9 € H be such that f(3) <V and

(1.14) 0 —0e¢Q for any o> &

where e = (1, 0) e H. Then & forms an & -solution of the perturbed problem

fol@)—>min! si. zeX, fa)< 0.
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Proof. It the claim does not hold then a point & € X exists such that
(@ < v and f,(#)+¢ < fo(@). Set § = (f4(#), ©). Then 7@ and
§=0—0e with o> f(2)—f@ > ¢
in opposition to (1.14). m
Remarks. 1. Investigating the behaviour of specific generating fune-

tionals F one can obtain estimates for the relation between the two accu-
racies ¢ and ¢'. In particular, if ¥ is represented in the form

(1.15) E(y,v) =v,+e(y,v) foranyyeX, veH
with a given functional e: Y x F—R then ¢ <e.

2. Lemmas 1 and 2 generalize the well-known theorem of Everett [4].
This theorem follows by setting ¢ = &' = 0 with

Y=C"={yeF"| [y,u]>0 Vuel)
and
B(y,v) = v+ [y, 2]

Here [y, 4] denotes the value of a continuous linear functional y at the
point .

3. If the parameter ¥ € Y can be chosen so that the point 2°(y)
defined by Lemma 1 satisfies the conditions
(1.16) v (y) =0,
(1.17) v(y)—oe® ¢Q@ for any o> 0,
then according to Lemma 2 the point 2°(y) solves the given optimization
problem (1.1), To guarantee (1.1), however, the auxiliary problem (1.2)
has in general to be solved exactly, i.e. with ¢ = 0.

Now we describe certain aspects of the general duality theory (com-
pare [8]). Let us introduce the following property:

(V) If €€ and 47— o6’ €@ for some o > 0 then
infE(y, v) < By, d).
ve@
Condition (V) concerns the family of functionals E(y, ), y€ ¥ as
well as the given nonlinear programming problem (1.1). It should be
remarked that (V) automatically holds if E can be represented in form

(1.15).
Let us define
(1.18) ©(y) = sup{t e R'| H(y, te°) < infE(y, v)}

vaR
for any y € ¥. Then ris a functional v: ¥Y—+R: = Ru{— oo}. The follow-
ing theorem characterizes weak duality and can be proved analogously
to [6].
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TEEOREM 1. Let property (V) hold. Then for any x e X with f(z) <90
and for any y € X the inequality
fol) = T(y)
holds.
According to Theorem 1 the optimization problem

(1.19) 7(y)—=sup! 8t yeX

can be interpreted as a dual problem with respect to the primal problem
1.1). Similarly to the well-known saddle point theorem for the Lagrangian

Lz, y) = fol [?/:f weX,yeG*,

we get the following theorem.

THEOREM 2. Let the functional E be of type (1.15) with e(y,0) =0,
for any y € Y. Suppose that
{fo(w) if @ is feasible for (1.1),

(1.20) sup T'(@, +oco  otherwise.

yeT
(If (#,4) e X x Y is a saddle point of the functional T, i.e.
T, 9)<T@,9)<Tw§) foranyoveX, yek,

then @ solves the p’mmal problem (1.1) and 3 solves the dual problem (1.19),
and we have fy(T) = ().

The proof given in [8] can be used just as well for the general spaces
considered here. Furthermore, in [8] it is shown that T has a saddle point
(@, §) if and only if the primal functional y of the problem (1.1) is @-sub-
differentiable at 0 in a certain sense. In the finite dimensional case this
can be ensured by the well-known second order optimality condition
involving strict complementarity and linear independence of the active

gradients,
Now we describe certain specific sequential unconstrained mini-

mization techniques.

2. Shifting methods
Let ¥ =F and
{2.1) E(y,v) = vy+e(v+y) for any veH.

Here ¢ denotes a certain convex Fréchet-differentiable and coercive

Tunctional ¢: F-R. Furthermore, suppose there exists a forcing function.
8 (i.e. &(t)> 0 for any t > 0 and 4(¢)—0 implies £—0) such that

(2.2) e(y) = @y +u)— @' (y Fu)u+ o (llul)
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for any y, % € I'. According to (1.3) the auxiliary functional T is given by

(2.3) T(x,y) = folz)+ inf p(v+y).
v2f(x)

We assume that the optimization problem (1.1) is convex, i.e. the set
X is convex and f,, f are convex. We remark that the convexity of f
is closely related to the partial ordering in I' induced by the cone C.

ALGORITEM 1
step 1: Seclect y* € ¥ and set k:=1.
step 2: Define 2* as a solution of the auxiliary problem

(2.4) T(x,y*)—»>min! s.t. =zelX.

step 3: Find 2 solution »" € I of the problem

(2.5) p(v+y¥)»min! st ®>fab).
step 4: Set y**!':= ¢* 40" and % := T +1. Go to step 2.

TEROREM 3. Let the primal functional y of (1.1) be continuous at the
point 0. Then any accumulation point of the sequence {x*} gemerated in
algorithm 1 forms a solution of the optimization prodblem (1.1).

Proof. Since the partial ordering in ¥ was induced by a closed convex
cone, the sets {v e ¥| v > f(#")} are nonempty closed and convex. Now,
by the properties of the functional ¢ and because F is a reflexive Banach
gpace we know that solutions »" of the subproblems (2.5) do exist.

By Lemma 1 the point (f,(z*), v*) e H solves the problem

-(2-6) v+ (y*4+v)—>min! st veQ.

The special structure of the generating functional H was taken into account
here. The optimality condition (2.6) leads to

(2.7) ——fo( J o' (Y 4o (o —v*) =0 for any v e@.
Let us define w* e H by w* =0 and
(2.8) = fo(2*) + ¢ (y* + 0 )"

Now, step 4 of alg01'it11111 1 guarantees that the Kuhn-Tucker conditions
for the problem

vy + @y 4v)->min!
(2.9) Subject to
—fol@") + ' (" +0") (v —v") = 0

are satisfied at the point w",

Because (2.9) is a convex optimization problem, the point w* forms
an optimal solution of the problem (2.9).
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With (2.7) this results in the inequality

B(y*+, w*) < inf B(y**?, v)
Ve
and according to (1.18) we get

T(¥*H) = By, wh)—o(y") = w4+ o(y*tT) - p(yh).
Now, using (2.2) we have

T(y") < v(yh) + S ("))
= Fo(@®) + @ (y® V%) — o (4*) + 8 (J0¥())
< fol@*) + o' (5% +000% = wk < v(y*t) < 2(0)

for any & = 1 2,
Thus {r{y } orms a bounded and monotonically increasing sequence.
Therefore {r(y*)} converges and
lim é(|[v*|) =

k—rc0

Using the forcing property (4(t)—>0 = t—0), we get

lim v* = 0.

ko0
By Lemmas 1 and 2, the points #* solve the perturbed problems
fo@)—min! st zeX, fla)<<o*

This results in fy(#*) = y(v*), &k = 1,2, ... From the continuity of f and
the closedness of € and X we get f(z*) < 0 and 5" € X for any accumnula-
tion point #* of the sequence {&*}.

Furthermore, f,(z*) = %(0) holds because f, is continuous on X and
x 18 continuous at 0. This completes the proof. m

We remark that the statement of Theorem 3 also holds for any
weak accumulation point of {#*}. This follows from the weak closedness
of closed convex scts and the weak lower semicontinuity of continuous
convex functionals, similarly to the proof of Theorem 3.

It should be noted that algorithm 1 generalizes the well-known
angmented Lagrangian technique (see [5], [13] e.g.) to a wider class of
auxiliary functionals.

3. A superlinearly convergent method

In [13] it is shown that algorithm 1 with ¢(v) = (u, 4> in Hilbert spaces
W, I generates sequences {v*} only linearly converging to 0. More general
classes of sequential unconstrained minimization methods for solving
finite dimensional problems are investigated in [7]. :
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Now we sketch the principles of a second order technique in shifting
‘methods.

We preserve the assumptions from Section 2. Furthermore, we
agsume the functionals ¥ and ¢ to be twice continuously Fréchet-differen-
tiable on a mneighbourhood U,(0) and on F, respectively. Additionally
let some y > 0 exist such that

(3.1) (¢” (w)w, w) > ylw|* for any u, we k.
AJTGORITHM 2

step 1:

step 2: ) the same as steps 1-3 of algorithm 1

step 3:

step 4: Find 4™ € ¥ such that

(3.2) @' (") = ¢’ (" H0F) 1 (VF)0

Set k:=k+1. Go to step 2.

We remark that condition (3.1) is sufficient for (2.2) with 8(¢) = }yi2
Furthermore, from %**' = y*-+o" in step 4 of algorithm 1 we get ¢’ (y**!)
= @' (y*+o*). Therefore (3.2) can be considered as a natural extension
-of step 4 in algorithm 1, taking into account second order information
on y.

TuEOREM 4. Let the auziliary problems be solvable for any parameter
y € ¥. Then there exists p > 0 such that algorithm 2 can be performed for
any ¥y € Y satisfying

(3.3) %" (0) +¢" (@ lpe < 0.
Furthermore, the sequence {v*} converges to 0 superlinearly.

Proof. Write N(y) = {uc F| z(u)+¢y+u) < z(0)+p(y)}. By the
-convexity of y (ensured by the convexity of the problem (1.1)) we get
by Taylor’s formula

1)+ +u) = 1(0)+o @)+ (2 (0)+¢ W)u+} [ (o (y+tw)u, u)dt.

Using (3.1) we hence obtain

(3.4) 7 (0) -+ (1)t = sup N2 @) 0" (@))20] 1

fhell=1 [l
for any % e N(y).

validl

Thus
(3.5) 12'(0) +¢' (@)llpe < ve/2 = N(y) = int T,(0).
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"The definition of the set N (y) implies
{3.6) argmin{y (u) +o(y+u)} = N(y).

From the differentiability of 4 on U,(0) we get

1
20 +¢' (Y +u)+ 1" (Wu = 2 (W) +¢ @+u)+ [ (1" () =y (tw) udt
0
for any w € U,(0).
This leads to '

(3.7) ' (0)+o'(y+u)+ 2" (W) ullp. < Iz (%) +¢" (g + )l pa -+ o (Jlul])
for any % e U,(0).

Because of lim ote)

= 0 and y > 0, there exists a > 0 such that
a—+0 a

{3.8) 0(a) < }ya for any a €0, a].
Let ¢ = $ymin{a, ¢}. Then, by induction
{3.9) lv*| < min{a, e}, k=1,2,...
Since F is of type E(y, v) = v,+¢(y +v), from the relation clQ = clepiy
and Lemma 1, we get
{3.10) v* eargmin{y(w)+ oy +uw)}, k=1,2, ...
for the points »* geng;zted in step 3 of the algorithm. Now, assumption
(3.3) yields
lx"(0) + ¢ (¥)llre < @ < pe/2.

‘With (3.5), (3.10) and (3.4) this leads to
2 -~
o< ¢ = min{d, e}.

Thus inequality (3.9) holds for & = 1.
Now suppose that (3.9) holds for some %. From the differentiability
of 4 and ¢ on U,(0) and on F, respectively, and from the relation (3.10)
we get
2 (V) o' (¥ +0") = 0.
Using (3.2), (3.6) and (3.8) we hence obtain

e (0) + @' (§* ) lpe < 2 ¥ll0* < %8,

and by (3.4), (3.6), (3.7) we get |o**!|| < }|v*|. Therefore the inequality
(3.9) holds also for k+1. On the way we have obtained Lm v* = 0.

Kk=»00
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Because the auxiliary problems are supposed to be solvable and
each of the problems (2.5) in step 3 of the algorithm has a unique solution,
the method can be performed without further restrictions.

From (3.2), (3.4), (3.6) and (3.7) we get W' = o(0¥|), & =1, 2, ..
Therefore the sequence v* converges superlinearly to 0.

The optimality for (1.1) of any accumulation point of the generated
sequence {z"} can be shown similarly to the proof of Theorem 3. m

We remark that algorithm 2 converges only locally. A result con-
cerning global convergence can be obtained by combining it with algorithm
1 (see [T]).

Another way for deriving superlinearly convergent methods is to
construct Newton-like methods for solving the gencrated dual problem
(1.19). The resulting procedure is closely related to the method proposed
here.

In computer codes the second order derivatives of the primal funec-
tional y are to be replaced by appropriate approximations.

4. Estimations for the dual value

In this section we will briefly consider a simple but powerful application
of the theoretical approach introduced in Section 1.
In the same way as in [7] we can show the following

LeMMA 3. Let (2%, a*) be a saddle point of the Lagrangian L, L(@, a)
= fol®) +[a, ()], velated to the problem (1.1). Further, let
(4.1) Q" = {v e H| 1,4 [a% v]> x(0)}.
Then the inclusion Q < Q* holds.

If we define a functional * similar to © by

7" (y) =sup{t e R'| B(y, te’) < inf B(y, v)}

veQ*

then Lemma 3 leads to the estimation
(4.2) T(y)<z(y) for any ye¥

for the dual functional 7.
In some specific methods the problems

(4.3) B(y,v)->min! st 0ve@*

can be solved explicitly. Then by (4.2) we get a practicable estimation
of 7(y). However, this bound is qualitative only because the component
a” of a saddle point (2, a*) of the Lagrangian is generally unknown,
as 18 the solution itself,
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Let us consider a simple example showing the advantage of the
proposed estimation. Let F be a Hilbert space and let

B(y,v) =v,+yw,v), Y =intR..
Then the problem (4.3) has the form
v+ y<v, ¥)—>min!
subject to
vo+<a,v> = 4(0), wveH.
Minimizing over v, we get the equivalent problem

x(0)+y<v,v>—<a,‘v)—>min! 8.t. vwel,

This problem is solved by o* =%a*. Thus we geb

_ 1
inf E(y, ») = 5(0) — —- [la*|1?,
VER™ 4y

and because of ¢(y, 0) = 0, we have

* _ 1 %10
T (y) = 1(0)—1—; lle” 1%

Ior further details the intferested reader is referred to [7].
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