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1. Formulation of the problem
We consider here systems of partial differential equations of mixed type,

o d on on
1) & _ (4 _py- 1,0<t<T
1) 3t 6a:( a.v)+B or Puth 0<@<l, 0< ’

where % and f are p-vectors, and €, A and B are diagonal p X p mafrices,
respectively, with elements e, a, and b,. The equations (1) are coupled
only through D = (d,;) which may be a full matrix. All functions depend
smoothly on « and t. Moreover, we assume the inequalities
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to lold. Along with (1) there are given boundary conditions of first,
sccond or third kind,
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(the type of the boundary conditions may vary with %, x and ¢) and initial
conditions
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The boundary value problem (1)~(3) serves to model a great varicty of
processes in chemics, biolegy, agriculture, water rescarch and physics,
gee, e.g., [1]-[p]. Often there are nonlinearities in the right-hand sides
functions. Then, (1)—(3) is the problem to be solved in every step of a New-
ton iteration. For this subjcct, see [6).

2. Numerical questions connected with (1)—(3)

In the applications, the relations () often take place. FFor example, in
chemical problems, (x) is found to hold if » represents the vector of the
coneentrations of appropriately chosen independent components of the
reaction.

If the relations (+) arc sharpemed somewbat (e, a, = ¢, > 0, some
condition excluding a zero cigenvalue in the case of second boundary
conditions), the maximum principle is known to hold, sce [7], p. 190.
The maxgimum principle and its consequences express important physical
properties (domination of the values ¢f state parameters by their values
on the boundary, preservation of positiveness and monotonicity). There-
fore, we are interested in discrete models of (1)—(3) which share with
that system those properties. Hence, for the numerical solution of (1)—(3)
we shall consider below a difference scheme which has, regardless of the
discretization, the property to be monotone, that is, to fulfil the con-
ditions of the maximum principle (see, e.g., [8], p. 245).

Tor the usual difference schemes (for instance, if the first derivatives
b"_é‘m_- in (1) are approximated by central differences) the conditions
of the maximum principle are fulfilled not in general but under restric-
tions like [b,%/2a,| <1, I being the spatial discretization step. In prob-
lems with strong convection and small diffusion (a frequent situation)
this is a cumbersome condition. To get stabilily, the first derivatives
are often approximated by one-sided differences (“upstream differencing”),
but this introduces an additional (numerical) diffusion of the magnitude
b,k /2]. The same is true for the scheme [8], p. 432.

Another approach has been given in [9] where for the case of a scalar
equation (1) with D = 0 a difference scheme is consfructed which ig
monotone for any discretization (%, z), 7 the time step and & the possibly
nonequidistant spatial step. The scheme [9] approaches the method of
characteristics if A—0 and |Br/Ch|—1. This property allows (by appro-
priate choice of h and ) for a reduction of the numerical diffusion which
becomes drastical for coefficients depending on z only.,

The idea of [9] has been developed further in {107 and [11] to cover
the case I # 0. Practically (see the computational results in [10]), the
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construetion of a difference scheme has been accomplished which is
maximum norm stable for any discretization if () is satisfied. All coeffi-
cients may degenerate, even jointly (if only there remains an equation
determining «), and in whole subintervals. Theoretically, 4 +C > 0 is
sufficient (pointwise) to satisfy the conditions of the maximum principle,
and C = €y > 0 (and some restriction on the possibility te pose second
kind boundary conditions) is sufficient to prove maximum norm stability.

In this paper, the scheme [11] is applied to (1)-(3), and numerical
results are given for systems with constant coefficients. Moreover, an
idea of [12] is used to construct a difference scheme which is maximum
norm stable for a certain class of nonlinear right-hand sides f.

Difference schemes for solution of systems like (1)-(3) have also
been considered in [3], p. 504, [15]-(18] (and in further papers cited
there), but those schemes, cven if constrained to one dimension in space,
are monotone not for any coceffivients satisfying (») and not for any dis-
cretization.

3. Notations

We need the following notations (essentially, those of [8]): Let o), := {2y,
i =1,..., N —1} be the nonequidistant spatial grid with &;_,, : = &, —w;_,
>0, 29:=0, ay:i=1 @)= o,uU &, 2y}. We put y(z;) = ¥, Yise
:= y(2; &Py ), and these notations are also used for expressions con-
taining grid functions. The forward and backward differences are

Yeit= Wi =Y isps  Yzt=Wi— Y1) iy
TWith respect to ¢t we have the nonequidistant grid o,:={, 7 =0, ...
vy =1}y Ti=1,,—4>0,1,:=0, 1, :=T, and we use the notations
Y=y, Y=y +1)2), ¥ = oyt +(1—0)y, and y, 1 = (-
—%)/r. (The time step 7 is not indexed since we are considering two-level
difference schemes only.)

4. The formulae of the difference scheme

Our difference scheme belongs to the three-point, two-level schemes and
ig defined by the following formulac which constitute the adaption of [11]
to the weakly coupled system (1):

/]
(4) R (e (W) = hAG(ay, D)y — b ZHi”"”(dk,)y,—{- R I,
i=1

k=1,...,p, t€w,

2 € in case of kind boundary values.
[} second
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Here
o ( — . {blﬁh/zafﬂ ay -+ Iblﬁl > 07
a=alg), g=4q:= 0, 4 — b, — 0
(5) a(z) 1= (e(z)—1)/2,

o(2):=zcothz or p(2):= (34321 +32°+221)/(3--3|2| -+ 22%).

The following definitions hold for z = %, € w, (excluding the special case
Gipipp =0y Dyprp <0y by >0 considered later):

(EMz(C) f’/t)i = 2(0‘07“{1&1((0, a))-g+1/2 Y541 -+
+[(eh(} + a—20max (0, @))errya (e (b — @ —20max (0, a)))i_a]y,:+
+2 (aohmax (O y -"ﬂ)),‘_llg Yii—1y

(EAz(a:, b)y)t = (d—l—bh(—%-l—-a))z_i_llquzlll 12 ( _ bh(% ))z ]/"y( i— 1/))

(RHZ™(d)y);
t= 2(Adhmax (0, o))y ¥ + (@ (+ a—24max (0, @)y e P +
+{dh (3 — a—24max (0, —a)));i_1y; P + 2 (Adhmax (0, —a))i_yz ¥,

(ﬁMafi&a))-i = U’f;(ca) (- a))i-l»ljz -+ (7"f/(ca)(‘]z‘ - a))i—]/! .

Here o, 4, 4, » are weighting parameters determined below in Seetion 6;
their dependence on I is not indicated. These parameters, as well as all
coefficients, are taken at the grid midpoints (@;y,p, tj)-

For a;.10 =0, b;1p <0, b;_1p >0, ¥ €y, we use the delinitions

(RMZ(0)y,);: =30(ch)iprya+ (Ch);_12) Y05
(hAi(a, b 'y) = 0,
(RE2* (@)y); 1= $(@R)ey 1+ (AR)_y ],
(7?»J'Imf1(sa) )i 1= 3L )0 + (MS3) i—lfz](m!
that is, formally we put b,.,, = 0 in the carlier definitions, Note, that

the weighting parameters are taken here at (z;, 4;,yp).
5. The boundary conditions

For the boundary conditions (2.1) we put, as usual,

@™ = D™, N =

The approximation of (2.2) is given by (4) where all nondefined syms
bols (those indexed —1, —1/2, N+1/2, N+1) have to be deleted and
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()P, )NV are added to (7 (3+ a))yzs (RfE (3 — @))y-1ya, Tespect-
ively. In this way natural difference boundary conditions are obtained.
Such boundary conditions are advantageous with respect to conserva-
tivity : they close the “discrete conservation law” obtained by summing
up the equations (4) over =m,.

Similarly, (2.3) is approximated by taking the natural difference
boundary conditions and adding —xg(y,) and —u(y,)x to (RAg(ag, b)Yk,
¢ = 0, N, respectively.

To be sure of the nnique solvability of the equations (4), the bound-
ary conditions must be posed properly:

(a) Second kind conditions must not be posed in boundary points
(@55 Ypap)y € = 0, N, where ayp =0, b, <0 or ay_y =0, by_;p >0,
respectively.

(b) If ¢,y = d;1pp = 0 for some ¢ =1;,,, and all ¢, then secoud
kind conditions must not be posed in at least one of the points (2, #;,1)
and ((L‘J\r, tj+1).

6. The weighting parameters

We restate now from [11] the definition of the weighting paramecters
o, 4, 4, v guaranteeing the maximum principle. In [10] it has been explained
how to get these conditions which are pointwise ones and do not inter-
connect values of the cocfficients at neighbouring points.

We remark that the weighting parameters are not determined
uniquely by the conditions of the maximnm principle. A eertain freedom
exists which has been used to diminish the magnitude of the artificial
digtributed sources introduced by the difference scheme. There are no
such sounrces, i.e. the scheme is conservative, in the Crank-Nicolson case
c=1=u =y =} and it showed to be possible to select the weighting
parameters in such a way that quite frequently there holds ¢ = p =9,
A=41

Below, in the formulae defining the weighting parameters, we have
adopted the following notations: The equation number k is omitted.
All symbols without an index are to be taken at (2;_5, ;1) If @ occurs
without argument then it is (only in this section) equal to |a(q)|, see (B).
Finally,

r=drf2¢, A =(a/h+bl(}+a)r/ch, d = di.

(a) special cases:

o; =v =3+ alf), Fri=z[(dh)syyp+(dR);1p]/21(ch); 1+ (€h);gp),
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(a2) if e = 0, then
o=v=p=1, i=min(},(a/h+d(}-a))/2akd);

(b) if the special cases do not apply:

(b1) if A < 20 then we take 0 =4 =0,
if A =2a then ¢ = §-4-a(r), A = {—a(),
and in both cases

p=0, »=max (a, 1—(3+a—~A4)2r(}-+ (%——/ﬁ)?,a));
(b2) if A > 2a then
¢ = max(}+a(r), 1 —(§—a)/(4 —2a427(3+a))),
p = min(o, (4 —2a)/dre), » =max(c,1-1/2r),
A = min(}, (1—0) 4 +2a0) [4r(1— ) a).

That the weighting parameters are the same for the system (1) as for
one equation [11] is o consequence of the assumption («)-on the isotonicity
of the matrix D.

7. Maximum norm stability

Similarly as in [10], we are sure to have the maximum principle for the
difference scheme (4) if the following conditions are satisfied: The assump-
tions (*) arc truc, the boundary conditions (2) are poscd properly, the
weighting parameters are selected as described in Section 6, and a;,+c¢, > 0
holds pointwise for all &, Tor ¢, == ¢, > 0, all &, we can obtain an estimate
showing the maximum norm stability of (4).

For one scalar equation (1) in [10] there has been given a numerical
example where first order accuracy was observed withoute > O0ora-+c¢> 0
taking place.

8. On the natural difference boundary conditions

We shall show now on two examples that the natural difference boundary
conditions are very uscful if the diffusion coefficient is idenfically zero
or degenerates in a strip containing the boundary, and hence boundary
conditions must not heen posed on one or both sides of the z-interval.
This is true for the problem (1)-(3), but in the difference formulation
conditions arc necded to close the system of equations or to get values
of the solution also on the boundary. In such cases now, the natural dif-
ierence boundary conditions with »°(t) =+1(f) = 0 do what is required:
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(a) Let be a,, = 0, and ¢, b, > 0. Then in the continuous formulation
there are no conditions for g, at # = 0. By definition, the natural dif-
ference boundary conditions at # = 0 are obtained from (4) by putting
¢t = 0 and deleting all expressions indexed —1 or —1/2. It is checked
immediately that for ¢ > 0 the corresponding expressions (indexed 7 —1,
4+ —1/2) arc zero due to e = 1/2, see (5). Hence, we have just what is needed:
The boundary condition turns out to be an approximation of the differ-
e¢ntial equation itself, moreover, it is the same approximation 2s used
in the inner of the z-interval.

(b) Let be aq, =0, =0, but ¢, > 0. Hence, the problem (1)-(3)
does not contain boundary conditions for y, neither at @ == O nor at & = 1.
By definition, « = 0. Then, the difference operators in (4) are given
by the same formulac as written out for the special case @, =0,
biy1p <0y by_yp > 0. From there the natural difference boundary con-
ditions are readily obtained: they constitute, essentially, the same differ-
ence scheme as taken in inner points, up to the factor 1/2 (in correspon-

dence with the trapezoid rule).

9, Some numerical results

Tirstly, we give results for systems (1)—-(3) of two equations with con-
stant cocfficients., Here, rvight-hand sides, first kind boundary wvalues
and initial data were fitted to the exact solution « = (14 «t, 1 + 2t +22),
the time interval wag (0, 0.1], the spatial grid equidistant with A = 1/40.

() Coupling of a hyperbolic and an clliptic equation:

Lo 00 10 1 —1/2
(= A= B = = .
[OOJ [0 1) [ 1]’ o] T ]

Tor the hyperbolic equation, in accordance with Section 8, natural differ-
cnce boundary conditions were poscd at z = 1. The maximum norm
error ¢, in the calculation of u, by the difference scheme (4) with = = 1/40
was found to be

e, = 2.807—5, ¢, =D5484—0.

(b) Coupling of a parabolic and an ordinary (in #) differential equa-
tion:

0.01 0 00
A= [0 0], B =[ ], the matrices ¢ and D are the same

01
as in (a).
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For the ordinary differential equation natural difference boundary con-
ditions were posed at x = 0. Results:

e, =1.264 —5, 6, =2.775—4,
(¢) A system of two elliptic equations:
¢ =0, B =0, the matrices A4 and D) are the same as in (b).
Results obtained after the one necessary “time” step:
e, =8.285—G, e, =2.754—5.

Using the program written especially for solution of systems (1)—(3)
of two equations with constant, eoefficients, several problems from chemics
and agriculture (including coupling of parabolic and hyperboelie resp.
ordinary (in t) differential equations) have been solved. Due to the small
computing times (on a grid of 40 X100 points 5.8 seconds of CPU time
were needed on a machine with 10° operations per second) it was possible
to determine parameters in the differential equations from measurement
data. The systems of blocktridiagonal equations resulting from the differ-
ence scheme have been solved by the well-known algorithm of special-
ized GauB elimination, see [13], [14], p. 106, and [19].

For the general case (1)—(3) a program has been written which ad-
mits dependence of the coefficients on x, ¢, © and du/dx. The nonlinearities
arc {ried to solve by simple iteration. In an academic example with
ho=1/80,p =4, ¢ =141 a, =105b, =0,d, =10*" d, =0,k>1,
dyy = —dp 2" k<1, with right-hand sides f, first kind boundary
data and initial values fitted to the exact solution «, = costsinkz, after
20 steps using v = 1/20 the following results were obtained:

¢, =2.606—4, e, =3.637—4, e =2.698—-4, ¢ =1514-0,
CPU time: 63 sec.

The program was used to solve problems from chemical engincering,
and showed to work very cffectively.

10. A monotone difference scheme for systems
with nonlinear sources

We rewrite now —Du4-f in (1) as —f{u,:x, 1) and use the idea of [12]
to comstruct a scheme which is maximum norm stable for mappings f
of the p-dimensional Euclidean space into itself being monotone in the
sense of [20],

)
(f('lb—’l}), Q&—'D} = ka(“"‘”v %, t)(w,—v,) = 0,

k=l
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and satisfying, moreover,
f(0,2,1) = 0.

The coefficients ¢, a, b are assumed to be the same for all equations of
(1), i.e. they do not depend on k.
We define now

(Ay);:= (a+bh(}+ a))e‘-!-]/‘zym,i —{a—bh(}— a))i-uz?fi,-u

where a is given by (5).
Then the difference scheme is

(6) h(ye) = AYL = h(y’), weoy, teow,
where
ch = (eh); 1= §[(ch)yra+(ch)yply o= Ryi= 31+ Ry_yp).
Using the identities
27y = T, 20 = W)= P (W)
2y¥z = (1')z — himapp(92)'s
we get from (G) by multiplying with 2g%+!
k(i + T((W))] = (a-+0h (k4 @))isrp (D)2 =Ry ((W1)0i)] —
- (“ —bh(}— a))i—lfa [(f’/i)?; - 7"5_1/2 ((’Uk)i,iH -
=yt iy ay )k,

After summing up these equations with respect to & and introducing
P
z = D y;, we find

k=1
(7) chey = AT R,

where

n
(8)  B:=(f"™), 5"™) + 3 {[la-+h(E+ ) Wi (@edan) +
Je=1
+ [{o — bh(F — @) W] ;o 1o ((W)z,)" + €D ((yR)e)} = 0

due to the assumptions on fand the definition of a which implies a £ b7 (3 4-
+«) = 0. From (7) and (8) it follows by the maximum principle that z
takes on its maximum on the boundary. Hence, |y,| is estimated by the
mazximum of the Eunclidean norm of the boundary and initial values,
which shows the maximum norm stability of (6). Uniecity of the solution

of (6) is also a consequence of the monotonicity of f. Another question
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is, of course, how to obtain that solution. In the case f(u,»,{) = Du
with a nonnegative matrix ) = J(a,1) the shortened Gaul elimination
is used once more. In the nonlinear case the Newton method may be
applied, cf. (6], which in every step leads to lincar systems with a non-
negative coupling matrix.

To finish, we mention that in the above consideration first kind
boundary ccnditions have been assumed tacitly. However, the same
approach works for second and third kind boundary conditions approxi-
mated analogously as described in Section 5.
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