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On Fermat’s last theorem
by

TAkasHr Azumata (Tokyo)

L. Introduction. In this paper we will consider the following equation:
(1) Xy 20 =,

where p is an odd prime number and n, m are natural numbers. Assume that
there exist relatively prime integers x, y, z satisfying (1) in the case m = n,
Then the following theorem holds. ‘

TueorEM. Under the above assumption, if + is an integer satisfying one of
the following conditions: ‘ .

() rlx, pfx,

(1)) rlx—y, pyx*—y?,

(i) rix*—yz, prxy+yz+zx,

() rlx?+pz, ppx(y—2)(x"+yz),
then the following congruence holds:

(2} - Pl = 1(mod p"t ).

This result was shown by F urtwingler [1], McDonnell [4], Moriya [5]

and Inkeri [2], [3] (see Ribenboim [6], Lec. IX). We will show that (2) also
holds for mod p*,

2. Preliminaries. We denote by

@ the field of rational numbers,

Z the ring of rational integers,

{ a primitive p"~th root of unity,

K = @({) the cyclotomic field generated by ¢,

A =Z[{] the ring of integers of X,

g a primitive root mod p", if n =1, let g*"! # 1(mod p?),

s =({: {% a substitution generating Gal(K/Q),

Aw the principal ideal in K generated by xe A.

Let v=2v=p""'{p—1) and A== 1~{, then 44 is the prime ideal in
K such that Ap = 44", For keZ, let g, be the unique integer such that
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g: = g*(mod p") and 1 € g, < p"—1. If k < O, this stands for the least positive
solution of the congruence equation Xg~* = 1(mod p”). Put
v=1

fX)y= 3 b X

i=0

Then f(X)e Z[X] and

1
with  h_; = ?(Q‘Q»i"g—fﬂ)-

Lt ; o,
flg)= Z E;(g‘“g_,——g’gufﬂ)m?(g Gyri—H)
i=0

=g~ 1y 2 0(mod p),
, .

since g % 1(mod p"*!). The following lemma is a we]l-knc?wn result which
was also used in [3] (see, for example, Washington [7], § 6.2).

Lemma 1. For any ideal N in K, W is a principal ideal, where we
employ the symbolic power.

Lemma 2. Ler Q be a prime ideal of K. If Ng,o(Q)—1 is divisible by
p"t1, then the degree of 2 is a divisor of p—1.

Proof. Let f be the degree of & Then f is the least pos.itive intejger
satisfying the congruence ¢/ = I(mod p"), where ¢ is the rational prime
number divisible by Q. If f is divisible by p, putting f=pf ’,. we havel
¢ = 1(mod p" from ¢/ = 1(mod p"**'). This contradicts the definition of f.
So f is not divisible by p. On the other hand, f is a divisor of p"~*(p~1).
Hence we get our assertion.

3. Theorems. Now we may extend the above theorem as follows.

TueoreM 1. If the equation (1) holds for integers x, y, z, with (x, y, 2} =1,
then we have r*~! =1(mod p"*") for a rational integer r satisfying the
condition (i) or (ii). If in particular m = n, we also have r*~ ' = 1 (mod p*") for
r satisfying the condition (i) or (iv):

(1) rlx, pkx,

(i) rlx®— )% pra®—y2

(i) r|x*~ yz, pfxy+yz +zx,

(V) rlx*+yz, prx(y —2){(x* +y2).

We first prove the following

THEOREM 2. Assume that there exist o, fi, ye A satisfying (1) for m<n
with (A, o, B, 9) = 1, and assume thar i*|a~+ B if Ay. If r is a rational integer
with (r, o, B, v} = 1 satisfyving one of the conditions (v), (vi}, {vii), then we have

3 =t =1(mod p"*n).

Further assume thar m = n and that if one of the integers «, f, v is divisible by
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A, then the sum of the other two of them is divisible by 12. Then we also have
(4) rP7 = I(mod p™
for a rational integer r satisfying the condition (vii1) or (ix)
(v) rlo, Ao,
(vi} rle—pB, Afa®—p?,
(vii) ria+f, Afa*—p2,
(vi) rla®— By, dfaf+ By+ya,
(ix) rlo® + By, Aka(f~y) @+ fy) when p=S.
To prove this theorem, we need the following lemmas.

Lemma 3. Under the same assumption as in the first half of Theorem 2,
we have

(%) if A4y, then ((a+-C* B~ a4 L2 B < pok g,
(xi) if Ay, then ((@+C* B a4 L2 B = 1+ oo™

where (k, p) =1, &, w,ed, c= (g), d =0(mod p) with «(X),

a(1)+ B (D)
B(X)eZ[X] such thar o = (0), f = B(0).

Proof. We only prove the case k= 1. The other cases are shown
similarly. It follows from (1} that

=1

) I s tp ==y

First we assume that Aty. If there exists prime ideal ¥ in K such that
PlA+L ) and PlA@+IP) (0<i<j<ph, then Bldle and P|lALS.
So we see that Bjdz, RlAB from Bldy and Aky. Thus we may write
A+ B) = UC, with ideals A = (Ao, Af) and G, in K, where &, are pair-

=1
wise relatively prime. Since ®" [] G = (A" from (5) and m < n, we get

i=0 .
A+ )= AB" with ideals B, in K such that B =, It lollows
from Lemma 1 that W& = 4y B/ = 47, with 4 7,6 4. Hence we have
© (+ B Har 2 )Y = aluef" 2",

where ¢ is a unit of K. We notice that s* is a complex conjugate and f'(s) x
X(L+8") ={g—~1){l +s 5%t 45" "), Let Ngio() = Za, Nyo(B) = Zb,
where Za, Zb, are ideals in Z generated by @, byeZ respectively. Then,
multiplying (6) by its complex conjugate, we obtain

(£abf™ ™ b0 (e, TP e, )

Hence we see that &g = n?" with a unit 7 in K. Putting ¢ = {°6 with a real
unit 3, we get & = 6% = ™", Therefore we have & = (5 1)" with i, je Z such
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that p™i4-2j = 1. Hence we may write
(@ (g e+ 2 ) = gl
with & =&n/ el 'ty : s
N(lnw we estimate the valuie of ¢ module p. Let &, = F({) with

F(X)eZ[X7]. The polynomial

¥—1 : : i g i : PR g S

IT (e (X*)+ X9 B {a(X?)+ X% BX7)) = X F (X"

i=0
vanishes at X ={. So we may write

h_;

vl i ] M= i i i
TT (X + x5 X7 o X7+ X% px7)))
i=0

=X F(Xy"+®(X) M{X),

where F(X)=1+X"""4 XTI M(XyeZ[X]. Putting X = ¢
and taking the logarithms of both sides, we have

v=—1 v”

i i : i iy fy
Y hoi(pm—Dlog(x(e®)+e " Ble” N+ ¥ h-; log(x(e?")+ ¥ fe?")
i=0 i=0
= co+p™ log F(e")+log(1+G(e"),
where
. B M(e")
G(e”) = ey
On taking derivative and putting » = 0, it follows from G'(1) = G(mod p) that
B(1)

a(1)+ﬁ(1)f(g) = c(mod p).

Next we consider the case A|y. By the same argument as above, we have .
A+ p) = A AV, where' A = (Ao, AP} and By are ideals in K prime
to A4, and ¢; = L. If (i, p) = 1, then we see that ¢ = 1 since P|a-+f, a+'f
=a+f(mod A4) and w«+{'fz a+B(mod AA%). Puiting a+f =(1-a,
=(l—{Hoy, we get

at+l{f ot+f
1= 1-¢

It follows from
Al —f) = UBL", Aoy~ f) = ABL",

ar{?p_a+p
IR B

—f = Dtl""ﬁ:

‘that
() (o —BP™ Loy — BY ™ = Lo
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with teA. Since A*o;, A%la,, we see that % (1) =y (1) = o, (1) = o5 (1)
= 0(mod p), where u, (X), a; (X)e Z[X] such that o, = o, ({), o5 = 2, (L). So
we have

oy (1)=f'(1)

=P 1) p = |
d=(p 1)9{1(”_}6(”1 (g)+%(])_ﬁ(l).f (9) = O(mod p).

Multiplying (7) by ((1—-0"""1(1 -2/, we get

(2 + B Lo+ L2 Y = (1 + ) oo™

with @y = t(1~{}'¥. This completes the proof,
LemMA 4. Let g be a rational prime number with q # p. Assume thar the
Jollowing congruence holds:

(8) (" =& (mod Ag),
where acZ, (a,p) =1, 1, £cd, (g, 1€) =1 and v is real. Then we have
9 q"" " = 1(mod p™*"),

Prool Let £ be a prime ideal in K dividing Ag. Assuming that 7 = |,
we see that

T = 2, P = (mod Q).

"Hence we have (9) from P " INgo{Q)—1 and by Lemma 2. In the case

T # |, raising to the power 1—s" on the both sides of (8), we obtain
{2 = (£ 1) (mod Ag).
Hence (9) holds as shown above,

LEMMA 5. Under the same assumption as in Theorem 2, we have:.
(xii) if r satisfies (v}, then (r, By) = 1,

(xiii) if" r satisfies (vii)) or (ix), then (r, affy) = 1,

(xiv) if r satisfies (vi) or (vii), then (r, aff) = (r, o+ =1 (1<i<p.

Proof. We denote by Q a prime ideal in K dividing Ar,

(xi)) If rlo and (r, By) # 1, then we have r= o = f=y=0(mod Q) for
some Q from o+ 7"+ 37" = 0, This contradicts to (r, «, f, 7) = 1.

(xili) If rla®+ By or r|la?—By and (r, afiy) # 1, then we also get r=a
= f=y=0(mod Q) for some L which is a contradiction.

(xiv) In the same way as above, it is impossible that rla+f or
rle~f and (r,0f) % 1. If rig+f or rla—p and (r,a+l'f) =1 with
l<i<yp' then we get (1~{Nf=0 or (1+{)f = 0{mod Q) from a+fi
Se+{f=0 or a—f=a+{f=0mod Q) for some 9. Since Akr,
{r,f)=1and 1+ is a unit, this is a contradiction.
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Proof of Theorem 2. We put «(l) = u, f{1) = v and y(1) = w. Notice
that x4 f-+7 = 0(mod 44) and u+v+w =0(mod p}. We denote by ¢ a
prime number dividing r.

(v} Let |z and Afa. If Apy, it follows from Lemma 3 that

((O( +é,ﬁ)pm-- i (OC+C2 ﬁ))f(.s') = L.-'“ ﬁ‘pm‘”'\? = i;c Lf"fm(l’i'lOd Aﬂ]},

where & g4, a=(p"+1)h, c = ~i~ b(mod p), b = f(g). Note that (g, B
[ Rl
=1 by Lemma 5. So we have
e = ()

Since Afx, we see that

) " (mod Ag).

v iu
a—Cc= h_;’.:“—“; b= m b $ O(mOd [7)

Hence we have (3) from Lemma 4. If A|y, from Lemma 3,
= Q‘Zu ﬂp"”f(.s‘)

@+ Vet )y
= (L0 08" = [ (109 w8 (mod Ag),

where m,e4, (g, fw,) =1, d = 0(mod p). So we sec that

G = (T4 PI((B) L oa,) " (mod Ag).
Since 20— 2d—b # O(mod p) and {™! 4+ is real, we have {3) from Lemma 4.

(vi} Assume that rle— f and Afu® — f* Then 1}y from e+ f. So, from
Lemma 3,

(@2 "t w2t Y

HJ

(@ (17" L+

é’aapmf(s]((v—l_*_mp"' l(é’*l_I_CZ))f(“"J
= 28" (mod Ag).

It follows from Lemma 5 that (g, «&,) = 1. We notice that { ™' +¢ and £~ 2 42
e :
are real and that a—2¢ = E% b # 0{mod P) from Ata—p. Hence we get (3)

il

from Lemma 4.

(vii) If rle+p and Ata®—p?% in the same way as above, we have
(({I +C2 ﬁ M~ | (m + /3))21'(5) (Ofpm(]_ .....":2)!’""“ 1 (I _—54))2.”-\‘)
= (20 2P ((g- 1 _é’)me" 2 (& 2 ___-(:‘2)2)““").

= (% 37" (mod Ag),
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where (¢, 2¢;)} =1 by Lemma 5. Since ({71 —{)? and ({2—{%P are real and
2ua—4c¢ # 0{mod p), we also get (3) from Lemma 4. We may also prove the
rest of Theorem 2 similarly.

(vil) Assume that rla®—py and Ataf+pBy+yx. It follows from the
equation x(o-+{* f)—B(y+{* o) = 22— By that

(27" (et + LB o+ 2 Y = (B2 (p+ L o)™ Ly ()™ (mmod Ag).
From Lemma 3, we have the following congruences according to the three

cases: (a) Affy with k=1, (b) A|f with k=2, {¢) Aly with k = 2.
Case (a).
@M= (B ) (mod Ag),
where
L R _(E‘Jr u );, = E M 0 (mod p).
u+v WU W WU Y
Case (b).

L3 (0 )" = O (12O (B )"
= (P  H D (B ) (mod Ag),

where
2
2e—(b+2d") =~ b~b = b # O{mod p).
WU
Case (c).
LA L9 (@0 )" = (02 (4 0T (@0 )"
| =% (87 £)°" (mod Ag),
where

b+2d—~2¢ = b—-ﬂvbz —b = O(mod p).
wu .

In every case, each term of the congruence modulo Ag is prime to 4g from
Lemma 5. Hence we obtain (4) by Lemma 4.
(ix) Let rla?+ By and itfx(f—9)(*+ pBy). From the equation (x+{*f) x

xR y) = ot By -+ L P (y -+ B), we have
e+ B+ )" o L B+ )™
= (TR G H BT (B (mod Ag).

We get the following congruences from Lemma 3 according to the three
cases: {a) Atfly with k=1, (b) 4|f with k=2, (c) Aly with k =2
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Case (a). ‘
CTH' (tfl ‘:,_ !)pn = c—-b+ 26”(af(s)(;»‘f21)ﬂn (mod Aq),
where
2‘ —_
P N 72 L S .y (f- ﬂﬂi«ﬁ)h
u-+ov U-+w w+u WU Wt
_ (WZ_UZ_“YYQB)I: = (w1) (ﬂ”jﬁﬂfﬂ?)h
vw u uvw
2
— +
. E(_vm_,vf_)(_"f,_lﬂb¢0 (mod p).
uow
Case (h).
G ALY Gl " 5 (43 (T (O o)
= (TN (IO BN (mod Ag),
where
, . 2v 4p
3b+2c42d'—4¢" = 3b+~——b————b = 3b # O(mod p).
u+uv w+u
Case (c).
C1d+2c’(1+€2}j‘(5) (coq E° 2)}1!! = §1)+2a+ 2c'(C~- ! +C)""“’(ruz frmz)"m
= C—-Zb+4c"(af(sj *ﬂ)ﬂn (mod Ag),
where

2w
U-+w

4u
3b4-2d+2¢' —4¢" = 3b— b b= —
¢ —4c w+vb b &£ ({mod p).

We note that each term of the congruence modulo Ag in every case is prime
to Ag from Lemma 5, and p = 5. Therefore (4) holds by Lemma 4. Note that
we need the condition Ate in (ix). In fact, if Ale, then we have

CFE L = L (L0 (@

=0T (@9 )" (mod Ag)
v

With k =1, but ¢+¢' ~ 24" = e p oo p == it otes the
ere ‘_ u+vb u+wb G(mod p). This completes the

proof of Theorem 2.

Remark. We use the condition m < n only to prove Lemma 3, If we
further assume that (x, f) = 1, then Lemma 3 is also valid for m > n, and so

is Theorem 2. For, in that case, if 1ty, we have Ao+ By = B from (5)
since a+{'f are pairwise relatively prime. If Alp, we have Ao~ f)

= A" Bf" by the similar argument.
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Proof of Theorem 1. Our assertion follows immediately from
Theorem 2 and Remark. The conditions (i), (i) and (iv) are the same things
as (v), (viii} and (ix) respectively. If ¢[r|x*—y? with a prime ¢, then we have
glx+y or glx-y. So the condition (ii) follows from (vi), (vii). We notice that
the first half of Theorem 1 is valid for every m and » as mentioned in
Remark since (x, y) = 1, and that (1) has no solutions in Z if p = 3.

CoroLLary 1. Under the same conditions as in Theorem, the congruence
(2t also holds for modulo p**,

CororLary 2. If there exist x, y, ze Z satisfying (1} with (x, y, z) = 1,
pAxyz(x—y), then 207" =1, 37" = 1(mod p"*") hold.

Proofl. One of the integers x, y, x*~y? is divisible by 2, and one of
them by 3. Hence we get the assertion from Theorem 1.

CoroLLARY 3. If the equation (1) has a solution x, y, ze Z with (x, v, z)
=1, pkxyz when m = n, then we have 2°~' =1, 3*”! = 1{mod p*).

Proof. One of the integers x, y, z is even. Hence we have 2771
= 1(mod p*") from Theorem [. If 3|xyz, then 3! = 1(mod p?") holds from
Theorem 1. Assume that 3fxyz, then x?—yp?, y*—z2 and z*—x? are divisible
by 3 and one of them is not divisible by p, otherwise we have x=y
=z(mod p) and 3x = O(mod p), which contradicts to the assumption since
p # 3. Hence we have 377! = |(mod p*") from Theorem .
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