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On sign-changes in the remainder-term of the
prime-number formula, If

by

J. Kaczorowskl (Poznan)

L. In the first paper of this series [3] we have proved that the differences
(1.1) d3(x) =y (x}p~x= ) A@n)-

nxx
and
(1.2) Ay =Hx~lix= T ~ixtiny— | 2
‘ e B mz1 M logu
0

which are the remainder-lerms in the prime-number formula change sign at
least '

AN log T

(1.3) P

times, in the interval [2, T}, T> T,, where 74 == 14.13... denotes here the
imaginary part of the “lowest” zero of the Riemann zeta funetion. T, stands
for a positive, effectively computable numerical constant,

We have two other remainders in the prime-number theorem: the most
intensively studied in the literature

(1.4) A =nx)-lix=Y I-lix

pEx
and also

(1.5) Adq(x) = $(x)—x = Y log p~x.

P& x
As in [3] let us denote by V(T), 1 </ <
of d;(x) in [2, T, T2

Let
(e : ! = sup Reg

dey=0

LY
where {(s) is the Riemann zetafunction.

4, the number of sign-changes

5 e Aotn Awiihenetion YTV
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Ingham, [2], proved in 1936 that if there is a zero ¢ = (+iy o1 {(s) on
the line o = § then there exist two positive constants ¢; and T, such that
4, (x) changes sign in every interval of the form (T, ¢, T), T=T,. This
implies that

(L7) n(h =

for certain positive ¢, and sufficiently large T

The only fault of this beautiful and deep theorem is the very strong
condition which in particular implies that 6 <1 (the quasi-Riemann hy-
pothesis). In this paper we shall prove (1.7} unconditionally.

Qur theorem is the following one.

THEOREM 1. There exists a positive *but ingffective constant ¢y such that
for sufficiently large T we have

(18) o V(1) >

The same estimate holds also for V,(T).

The problem of the size of ¥ (T) was first considered by J. E.
Littlewood [9] who proved that V,(T)— = as T tends to infinity, disprov-
ing in this way an old conjecture of B. Riemann. More precise informations
about V,(T) can be obtained by the application of Turdn’s power sum
method (compare S. Knapowski [4], [5], S. Knapowski-P. Turan [6], [7]
and J. Pintz [10], [117). The strongest estimate proved by this method was
achieved by J. Pintz [11]:

c;log T

eylog T

log T
(log log T)°

where T, is an ineffective constant.
Dr J. Pintz has kindly informed the author that actually he is able to
prove (L.9) with an effective T,. '
Our next aim is to improve a theorem of Polya.
Polya, [12]. proved in 1930 that
= W(T) 1!1

1.10 li
(110) . T]—?:n lOg T

(1.9) V,(T) > 1071t for T>T,

where y, is defined as follows. If {(s) has any zeros ¢ = +iy on the line
~o =40, then y, denotes the least positive y corresponding to these zeros;
otherwise y, = + o0,
We shall prove the following stronger result:
THeOREM . 2. .

(Li1) .- Ki(T)

Jim —-~—~>-
T"DO 10g T

where vy, is defined as in (1.10).

i
3
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From the proof of this theorem it follows that the estimate (L11} is true
also for V,(T) provided 6 > 1/2. The case of ¥(T), j=1, 2 is somewhat
more complicated because of the logarithmic singularities of the involved
Dirichlet series. These cases can be treated in a similar way as in the first
paper of this series and we can prove that (1.11) is true for V3(T) and also
for Vi (T) if @ > 1/2. It is clear that Theorem 1 is a consequence of such
exiended version of Theorem 2 and Ingham's result (1.7).

2. Proof of Theorem 2 in the ease y, = + 0. According to the definition
of y, we know that there are no zeros on the line ¢ = . We can choose
a sequence

(2.1) On = Pt ity m=1,2 3 ..
of zeros of {(s) such that

22 Tw— 0 A8 M — 0,
{2.3) fno—0 a5 m— 0,

(2.4) Bo>0%=30+4) for mz1,

and the region

(2.3) s=o+it, 0> f [ <7,

i§ zero-ree.
As in [3] we define the operators §,, n>= 1 by

Sa-1 51

(2.6) 8a(f; %)= J j J‘f{" d:’ dfer An-1
Q Sn-2 én 1
0 0

where x > 0 and f is any complex-valued function for which the integrals on
the right-hand side of (2.6) do exist.

It is well known that there is a broken line L in the vertical strip
s =0g+it, 1/20 € 6 € 1/10, —o0 < < + 0 symmetrical to real axis, consisi-
ing of horizontal and vertical segments alterpately and increasing mono-
tically from =oc to +20 on which the following inequality

wr

5(s) <log?(1+2)

2,
(2.7) ;

holds. We can also assume that
(2.8) [f5— 10, 15+ 10i] = L.
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We have:
2+iw
1 [
{2.9) 5"_1(A3;x)::2~—_ f { C(S)}b_ ds—x
¢
= — Z -+O s)»— ds
gL Q

The summation in (2.9) runs over all zeros ¢ = f§+iy of {(s) lying 1o the
right of the line L.

Fuarther, {2.7--(2.9) easily implies that for x > 1 and m > 1 we have
(2.10) 8p-1(d3;x) = — 3 —+O(10"x° D
oL @
xQ
- ——+O (10" 0!+xﬂlgl 2n+x0‘)
pres @
1< leml®

For a fixed m denote by

(2.11) 9* < BN < fD < . < g <
the real parts of the zeros ¢ = f++iy lying in the region
(2.12) B <o <0, []<lon>
Then
(213) Gy (330 =—" ) O(X)+0,(10"x% +x"[g,| "+ xT)
LSvEhpy,
where
xQ
(2.14) D)= Y =
p=p) e
h’|<|9m|2

Denote further by
)
(2.15) o = B+ =o€, TSy >0,

the “lowest” zero on the line g = Y. Then

()
2p, xPm '
(2.16) D,(x) = —,—(T)IT fcos (v log x—ngi) -7, (x)}
where
(2.17 %, = ord gl?

iom
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and
(¥ .n
(2.18) [ (x < &m |
o= a1y @

N 1< I,f|<leml2
For n = n;, we have

(2.19) ro (X)) < Q.1
and thus
f,(»)
(2200 8,y (ds; %) = —2 X o] )+ 0(0.1)]
W) Gpdsi = =2 T S oo Tog x—ngl)+ G(0.)] +

f
+0, (107521 +x%|g,] =24,

L€k,

We have used in (2.20) the symbol 0. The notation f(x) =

xef2 < R means that |f(x)| < g(x} for xsQ.

3. Now we restrict the range for x as follows:
(3.0 X = b,
(3.2} 09 log T< i <log T.

Let us put
log T]
[ P og |ow]

= f ¢ —nloglefy].

{3.3) n:

and define the functions:
(34) U (&)
Let ¢ >0 and
(3.5} A(T e):={¢ 091log T< & <log T,
July? (E)=ui " (&) =
I ¢ A(T, &) then
o R <

and we can estimate the measure of A(T, &) as follows:

(3.9

<<

(3.7) |A(T, &) = 0.1 log T—2¢b
where '
' 1
38 b=
(3.8) %‘Z B 3(v Ih

1S,y Shy,

¢ for every vs£v, 1 g

69

O(g(x)) for

v, V< k,!.

Y
[l
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Thus
(3.9) |[A(T. 0.05b " log T) = 0.05 log T.

The set A(T, 00567 log T) is contained in the sum of the finite number
of disjoint intervals:

(3.10) I,:=12e(09log T, log T) ul(&) = max u(&)+005h "log T'.

1EpEh,

Some of these intervals can be empty but at least one is not.
For {el, we have

o)
(A1) G,y (4, %) = ~ D, " D Leos (1) € —noll)+

~ v} (v)
L0040, T e @m0 | q0n,01 ey

HFEY
. e (S P W A
te o =" +e )}
and
By = gy -0.05p~ 14
(312 T gt Tl 0057
HFEY

£ ¥
(3.13) 107 e S < 10 exp (0.1~ B, & -+ log )

< exp ( 0.1~ B, & +2(6— fi,) log T+2 log 10(0—,)—28.T
A log @,

< T~o.gmm—0.1)+2(o~,&m)(1+lng1oﬂng\amn
=
< T 0= 0L+ 4E- f)
-~ 1
3] oe—ulE, - 2m )
(3.14) I 72 exp (08— B, E+ 1 log o —2n logle,))
< |@n] eXp (0 — B} log T—2(0~ ﬁm)log T)
< gl T
and finally
N ) u (v sk & -
(3.15) . "8I < exp (8% &~ B, £+ 1 logo,)

<
< (243 (0* 5“ [jm z:'l' 2(0—'1811!) ](I)g T)
< OO 015 2078,

It is evident that if m = mg all these functions tend to zero as T-+co.
Hence for ¢el, and sufﬁcicnt]y large T we can write

G165 (dy.x) = ~2x,¢ e ’cosw‘“‘éhn@‘"’)+6(0.5$}'.
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One can see that §,.,(4;, x) has at least

Tw bl
s

(3.17) -2

sign-changes in the interval I,. Thus §,_,(4,, x) has at least

1
(318~ 3 YO =2k,
T sy gy,
by B

(0] . .
5 I oosw' k

-|A(T, 0.050" ' log T)| -2k, 1 _om
- g 1) ~ +0 Iog T log T

sign-changes in the interval 09 log T< & < log T, where
(3.19) Yo = min {0 1, = B

As it was explained in [3], ¥;(7T) is greater than or equal to the number
of sign-changes of &, ,(4;, x) in the interval (2 T]. Therefore (3.18)
implies thal

. |7 (0)
(3.20) lim JLT_ 9_05);__
. e log T 1

4. To finish the proof in this case it suffices to prove that ¥ tends to
infinity together with m.

If I,#@ for certain v, 1< v<k, then there exists & 09log T
£ & <log Tsuch that
(4.1 ' () = Bt —nlog ol = B & —n loglgul.
Therefore

" logfeml o log IQ“’J

4.2 B = B

= ﬂm—a%(o'_ﬁm) P ﬁm—“4(0'—ﬁm)

Thus B -+ ag m -+ o and

(4.3} PO = min (PN J, % Gl ou as om0,
This finishes the proof of Theorem 2 in this case.
5. Proof of Theorem 2 in the éasé v < oo. Let _

(5.1 Qo = 0+41yy = |gol e“ﬂo, Yo >0, xyi=ord gg
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denote the “lowest” zeta-zero on the line ¢ = 6. Then for any real I' >y,

xf ‘
(5.2} Oy (ds, X) = — Z —;+0(x"F2'"+ 107 %% 4 x")
[¥|<91
where
(5.3) n=n{lN:= sup Repg.
g=f+iy
Bty <1

If T is sufficiently near y,, then

a

25 X
(54)  8,-1(ds, )= -
' IQGI

+0 (ﬂ (%%’)”Hlomol)" X0 '“+laol"x"‘")}.

Denote by ¢, the constant implied by O-notation in (5.4).
If

(5.5) | nzng()

{cos (yo log x—nepo)+

then
leol \" !
1 &0 e
(5.6) r (F) < Toc,
and for x = T = Ty (1)
(57) (10]ggl" 1~ < 1/10cy,
(5.8) [ool" %" ™% < 1/10¢c,.

Hence for x2 T

2
(59) 5y 1(Aa,x)—~7"—,,, {cos(yo log x—ngg)+ ()]

and it is evident that §,_,(d;, x) changes sign at least

log T—yslog T,
(5.10) Yo 08 ﬁ”" SN PN (”ﬂme)log'f

times in the interval (T, T, Thus
(5.1.1) Va(T) = (~——r>log T

for every & > 0 which is equivalent to

icm
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, W (T)
R Ad >
{5.12) ]l';{m’ oz =

?0

6. Proof of Theerem 1. As we have already seen it suffices to prove the
estimate (1.11) for ¥;(T) in the case ¢ > 1/2. Since the arguments are similar
to those from the first paper of this series we shall be very brief. Let [{x) be
the function defined by the formuta (8.2) in [3]. Then I{(x) =l x for x> 2
and {(x) >0 for 0 < x <2

As in [3] we can prove a formula analogous to (2.10)

61 Sy (w10 x)= 3 Ao X+

e=+iy
EYORFRA P

+O(10nx0.1 +x0|QmI—2n+xﬂ*+2nx0.5)

where .#,{p, x) denote certain contour integrals with

(6.2) Tale, X) =

x xF o x*
<
olog x| STgr Tlog x (mr'log%)
for x = %o and 1 < n<log x.

Thus the formula (2.20) becomes
(v}
EY oo o :»:,,x mm___ (¥, e

—+—O(0.1)}+0(10” O 4 x%0, =3+ x4 2" x0-5)
and the same arguments as before, lead to the required result.

7. Remarks. The method developed in the papers I and II is of a more
general character and can be successfully applied to a large class of similar
problems. The generality of this method rests on the very useful properties of
the operator &. Recall that for x > 0 and any complex-valued function f we
define

‘r"i!r‘ﬁ

S(f)x)=6(f, x):= J/

if the mtf:gra] does exist. This is some kmd of a mean-value operator with
respect to the Haar measure on the group R*. All proofs in our papers rest
on the following two properties of Lhe operator o:

(1) If V{f, T) denotes the number of signchanges of a real-valued
function f in the interval (0, T then '

V(T T) 2 V(E(), T):

~ (2) Every quasicharacter ¢*, Re s >0 of the group R™ is an eigenfunc-
tion of & with the eigenvalue. 1/s.
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Owing to (1} we do not lose control of the number of sign-changes after
applying 8. On the other hand if we write the Mellin inversion formula for f
in the form:

et

_f-“(x)=5j_TIT J fisyx'ds, ¢>0,

then the computation of §(/) becomes very easy since owing to (2) we have

et+ir

v T 0 g
5(f)(x)—-2m. J i - ds.
c=1ir

Let us notice that the factor 1/s improves the convergence of the above
integral. This makes the whole analysis simpler especinlly il we repeat this
procedure a number of times.
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Theta series of quaternary quadratic forms over
Z and Z[(1+./py2]

by
J. 5. Hsia* and D. C. Hung (Columbus, Ohio)

In an earlier work [3] we mentioned that the arithmetic method
introduced to prove linear independence of theta series should be applicable
to other genera as well 4s to number fields provided the basic structural
features of the quadratic forms in these genera could be overcome. In this
paper, we give evidence to this remark, All quadratic forms shall be even
positive definite and all genera will be uniquely determined by their discrimi-
nants, For convenience we denote by G:=G(n, D) the genus of n-ary
quadratic forms over Z of discriminant D, and if G is replaced by @ the
corresponding genus over the ring of integers in Q(\/ p), where p throughout
shall be an arbitrarily fixed prime congruent to 1 (mod 4). Specifically, we
investigate the linear independence of theta series of degrees one and two
arising from the forms in G(4, p*) and (4, 1). We consider each genus
separately even though both are closely linked to the genus G(4, p) studied
in [31. ' '

A key ingredient of our arithmetic approach is to analyze for each form
£ its theta series 0% (of degree d) modulo g-powers where ¢ is a prime factor
of the order of the unit group O(f) of f. For this, we need a rather detailed,
albeit technical, knowledge of the arithmetic struciures of f and O(f) which
we shall determine. However, several new phenomena arise; ejg. (1) the
symmetrics of f - in the ¢(4, p*) case — are not controlled by the minimal
vectors, (2) the unil groups O(f) — in the (3(4, 1) case — are not generated
by + symmeiries of £ (3) the “glueing” construction process of a form
f&64,1) from an f eG4, p) may introduce new minimal vectors. The latter,
in the language of quaternion algebras, means that if 2 is the rational

quaternion - algebra with discriminant p* and A= QI@Q(\/,E) then the
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