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Owing to (1} we do not lose control of the number of sign-changes after
applying 8. On the other hand if we write the Mellin inversion formula for f
in the form:

et

_f-“(x)=5j_TIT J fisyx'ds, ¢>0,

then the computation of §(/) becomes very easy since owing to (2) we have

et+ir

v T 0 g
5(f)(x)—-2m. J i - ds.
c=1ir

Let us notice that the factor 1/s improves the convergence of the above
integral. This makes the whole analysis simpler especinlly il we repeat this
procedure a number of times.
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Theta series of quaternary quadratic forms over
Z and Z[(1+./py2]

by
J. 5. Hsia* and D. C. Hung (Columbus, Ohio)

In an earlier work [3] we mentioned that the arithmetic method
introduced to prove linear independence of theta series should be applicable
to other genera as well 4s to number fields provided the basic structural
features of the quadratic forms in these genera could be overcome. In this
paper, we give evidence to this remark, All quadratic forms shall be even
positive definite and all genera will be uniquely determined by their discrimi-
nants, For convenience we denote by G:=G(n, D) the genus of n-ary
quadratic forms over Z of discriminant D, and if G is replaced by @ the
corresponding genus over the ring of integers in Q(\/ p), where p throughout
shall be an arbitrarily fixed prime congruent to 1 (mod 4). Specifically, we
investigate the linear independence of theta series of degrees one and two
arising from the forms in G(4, p*) and (4, 1). We consider each genus
separately even though both are closely linked to the genus G(4, p) studied
in [31. ' '

A key ingredient of our arithmetic approach is to analyze for each form
£ its theta series 0% (of degree d) modulo g-powers where ¢ is a prime factor
of the order of the unit group O(f) of f. For this, we need a rather detailed,
albeit technical, knowledge of the arithmetic struciures of f and O(f) which
we shall determine. However, several new phenomena arise; ejg. (1) the
symmetrics of f - in the ¢(4, p*) case — are not controlled by the minimal
vectors, (2) the unil groups O(f) — in the (3(4, 1) case — are not generated
by + symmeiries of £ (3) the “glueing” construction process of a form
f&64,1) from an f eG4, p) may introduce new minimal vectors. The latter,
in the language of quaternion algebras, means that if 2 is the rational

quaternion - algebra with discriminant p* and A= QI@Q(\/,E) then the
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symmetric maximal orders of 9 corresponding to the maximal orders of %
may have different roots-system types (when viewing the orders as quadratic
forms with respect to their reduced norms). On the other hand, it is
somewhat surprising that the roots-system type of any maximal order of 9
must already belong to a roots-system type of some symmetric maximal
order (Prop. 11.24). One notes that the ratio “symmetric” type number of 1/
/type number of 9 tends to zero as p— .

Instead of quadratic forms we adopt the geometric language of (quad-

ratic) lattices, and the presentation goes as follows. After a systematic study of

the arithmetic' structures of lattices in the genera G (4, p*) and (4, 1) we
categorize the lattices having improper automorphisms according to their
“types” or roots-system types. Next, we examine their unit groups, which in
the G3(4, 1) case is treated partially via the theory of quaternion algebras
over Q(Vf’;;). Finally, we study theta series along the lines of [3]. In
particular, we prove that the theta series of degree two for lattices in G (4, p?)
and ®(4, 1) having improper automorphisms are linearly independent (Thms
[.44 and I1.3.3).

I Even positive definite quaternary lattices of discriminant p?

L1. Basic structures. Any unexplained notatien or terminology may be
found in [11]. We fix a prime p = 1(mod 4}, Let L be an even positive
definite quaternary Z-lattice of discriminant p*. Then L is maximal and 2-
adically L, is hyperbolic. One computes easily that the Hasse symbais
satisfy: §;(QL) = S,(QL) = —1 and S,(QL) =1 at all r % 2, p. Hence, there
Is just one genus G{4,.p% of such quaternary lattices. By a minimal vector
~we mean one of quadratic length 2. Suppose LG (4, p%) contains a minimal
vector e, then it is clear that K:= {e)* is a lattice in G{3, 2p?) and also
maximal.

L1.1."ProrosimioN. Let K& G(3, 2p%). Then there is a unique Le G4, pA
containing Ze | K, where ¢ is a minimal vecior,

Proof. It suffices to show that there is a unique even unimodular 2-adic
* lattice containing Z,e L K;. By local theory, K, is isomeiric to (;- (i)) A
L {~2p*), which we suppose is adapted to a basis %, ¥, 2, Since
.ZZ e J_ £,z is isotropic there is a unimodular lattice N = Zou+ 2, ¢ contain-
ing it and such that Q@) =Q()=0, B(u,v)=1. f M is any 2-adic
unimodular lattice also containing Z,e LZ,z then M w Ly e+ Zy (uu -+ bv),
& beQ,. Since M is even integral, a, b lic in Z,, ie. M = N. :

L1.2 Lemma. Let K€ G(3, 2p%). Then 212 ¢Q(K) for any t > 0, (t, p=1
In particular, K has no minimal vector: .

icm
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Proof. Suppose there is a we K with Q(w) = 2¢2; then at the prime spot
p we have K, =Z,w LN, where N = (w)". Since dN, is a square and p
=1(mod 4), N, is isotropic. Hence, K, is not maximal which gives the
contradiction.

L13. CoroLtary. Let KeG(3, 2p%) and L the unique lattice in G(4, p?)
containing Ze 1 K, then any minimal vector u in L is mapped onto te by some
symmetry of L.

Proof. Lemma 11.2 implies that u¢ K. Hence, Ble,u) # 0. We may
suppose 4 ¥ e Q(etu) > 0implies that B{e, u) = + 1, whence follows that
either §,.. or S,;, maps ¥ onto +e.

LL4. Remarks. (i) It follows from Corollary I.13 that if K, K, are
two lattices in G(3, 2p°) and L, L, the corresponding lattices in G4, p?)
then L, = L, implies K, & K. Therefore, the map KL= Ze | K induces
a one-to-one correspondence between the classes of lattices in G(3, 2p?) and
those classes in G(4, p?) which represent 2.

(i) Since L cannot contain two orthogonal minimal vectors by
Lemma L1.2, the only possible roots-systems for lattices in G4, p*) are @,
Ay, A4,

(iii) In ap analogous manner, given KeG(3, 2p? there is a unique
sublattice K of index p and the norm n(K,) = pZ,. If K is scaled by
a factor p~! one obtains a lattice K'e G(3, 2p). The mapping K +— K’ induces
a one-to-one correspondence bgtween classes in G(3, 2p*) and classes in
G{3, 2p). See [5] for more details,

LLS, ProposiTioN, Let K€ G (3, 2p?) and L the unigue lattice in G(4, p?)
containing Ze 1L K. Let K' be the lattice in G(3, 2p) uniquely associated with K
according to Remark 1.1.4 (iii). Then L has a roots-system of type A, if and
only if K' does.

Proof. We first observe that L has roots-system type 4, if and only
if K has a vector x satisfying Q(x) = 6, B(x, K) < 2Z. For, let L be of type
A, then L hes a basis [e, f, v, v} such that Q(e) = Q(f) =2 Ble, f)=1,
Ble, u) = B(e, v) = 0 by Minkowski reduction. Take x = ¢—2f. Conversely, if

¢4 x .
such a vector xe K exists then L= Ze nLK+Z(m~im) which sh_ows that L

has type A,. : .
Suppose now K’ has type A,. Then, K' = A, L {6p> and K > K7

:3(2{) Zp)_l,<6p2>. Since Q,K, is anisotropic with K, = (-—24> |
A :
L {p> L{~dp> the vector of length 6p* is imprimitive, say, px. (Here 4

© denotes a non-square p-adic unit as in [11]) Hence, xeK has Q{x) = 4§,

B(x, K) © 22Z so that L has type 4,. Conversely, if L has type Azlthen such
a vector x in K exists. As x splits K,, K = Zx LJ for some binary J of
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discriminant 3p®. Now.J, is p-modular and anisotropic; hence, Z(px) L J is
contained in a sublattice of index p in K. Therefore, Z(px) LJ < K'* and

J*™ ' < K’. But, there is only one even positive binary lattice of discriminant
- 21
3, implying J* P (1 2) and so K’ has type 4,.

1.1.6. LemMA. Let Le G4, p?). Suppose that L contains vectors e and
u such thar Qle) =2 and Q(u)=2p, then'e Lu.

Proof. Let T be the oirthogonal complement of u in L. If ¢4 7T
then e¢dud L T Write e=4(au+w) with a#£0, weT But, Qfe)
=1{2pa®+Q(w)) > 2, a contradiction. '

1.2. Classification by types. The usual roots-systems are concerned with
minimal vectors. In the case of G (4, p?) symmetries of a lattice may also be
defined from vectors of length 2p. We infroduce here a classification of
lattices via “types” which takes into account both the minimal vectors and
the vectors of length 2p. We reserve the symbols K, L, K’ for those lattices
stated in the hypothesis of Proposition L1.5.

1.2.1. DerNiTion. We say L has type AY if the roots-system of L is A,
while the roots-system of K’ is (0. L has rype A} if the roots-systems of L
and K' are both 4,. L has rype A% if it has roots-system A,.

L22 Remark. Lemma L1.6 implies the number ¢, (2p) of represen-
tations of 2p by L is the same as those g (2p) by K. But, a;(2p) = a5 (2) by
Remark 1.1.4 (iii). Hence a,(2p) =0, 2, or 6 as L has types A7, A}, or 4%
Combining Remarks 1.1.4, the above notations, and the structural results for
the genera G(3,2p) and G(4, p) in [6] one deduces the following: the
mapping LK~ K'—L (the last stage is Kitaoka's construction of
LeG(4, p) from K'eG(3, 2p) described in [6]) induces a correspondence
between the classes of lattices in G (4, p*) which represent 2 and those classes
in G{4, p) that represent 2. This correspondence is ong-to-one on the classes
of L of type A]. It is two-to-one on the classes of L of type A} or A% with
the exceptional case when K’ contains an ambiguous nice binary lattice (in
the sense of [6]), which occurs only when p = 5(mod 8). This correspondence
has been proved in [12] via the arithmetic of quaternion algebra while the
above sketch is wholly lattice-theoretic. More specifically, using the classifi-

-cation by types.and the roots-systems of lattices Le G (4, p) described in [3],
we hdve

’Ijipe of L Roots-system of L
A?. i %’11
[A;
Al 2 ADA,
A ¢S A4, when p=5(mod g)
Al A3 &5 A, @A, when p=2(mod 3)

icm
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Let LeG{4, p?). Recall that the reciprocal L of L is the dual [* scaled
by the factor ¢L/Q, where Q is the greatest common divisor of. the entries in
the adjoint matrix of the matrix of L. Here @ = p and Le {4, p?). There is a
classical duality between representations by a form and those by its primitive
adjoint form (i.e. the reciprocal) that already appeared in the works of
Gauvss, Smith, Minkowski and others. In terms of lattices it asserts the
following:

1.2.3. Proprostrion, For any lattice L of discriminant D there is « one-to-
one correspondence between the primitive sublattices of L of codimension one
and discriminant A and the pairs of primitive vectors in the reciprocal lattice L
of length 4/Q.

1.24. Lemma, Let LeG(4, p*). Then L represents 2 if and only if L
represents 2p. Furthermore, we have a,(2) = ap(2p).

Proof. If ¢ is a minimal vector of L then K = (e} is a primitive
sublattice of discriminant 2p*> and the classical duality implies that L
represents 2p*/p = 2p. Conversely, if ue [ with Q(u) = 2p, it suffices to show
that <ud' has discriminant 2p (since L= L). To see this, localize at the
primes 2 and p. One easily checks that d({ud3)e2Z; and d({u)rjepZ;} by
noting that L, = 1> L (—4) L{p> L {~dp>.

To prove the last statement, we observe that if K is any ternary
sublattice of L of discriminant 2p?, then there is a minimal vector e in L such
that ¢ L K. This is clear, since locally at p, we have Kp={~24> L{p> L
L{~4p}; hence, the p-modular component of K, splits L Therefore, if ¢ is &
primitive vector in the orthogonal complement of K, then Qle)eZ;. Thus, e
i8 a minimal vector. Now, the number of (primitive) ternary sublattices of L
of discriminant 2p* equals exactly the number of pairs {+e} of minimal
vectors in L. On the other hand, this number also equals the number of pairs
{4u} of vectors in L with Q(u) = 2p by the classical duality.

1.2.5. DerNimion. Let Le G{4, p?). We say that L has type A} if a,(2)
=0 but a;{2p) = 2. L has type @ if L represents neither 2 nor 2p

1.2.6. Remark. It follows from Lemma 1.24 that L has type 4}, 4}, or
A3 if and only if Lhas type A8, AL, or A2, respectively. In the last two cases,
we have [ = L, for if L has type A%, then 4, (2p) = 6 so that a;(2) = 6. This
means that L'has type 42, but there is only one lattice class of type Az in
G4, p*). Hence, L= L. Slmllarly, for the case L of type A}, Summarizing,
we have partitioned ihe classes in G (4, p?) according ta thelr types: @, AY,
AL, A}, A%,

‘1.3, Unit groups. Let G'(4, p?) denote those lattices in G (4, p*) which
represent either 2 or 2p. We need a result from [5] which asserts that if
KeG(3, 2p%) and K’ the associated lattice in G (3, 2p) then O(K) = O(K").
Since O(K') is generated by symmetries and £ 1 by [6], so does O(K). In
particular, |0(K)| =2, 4, 8, 12 as ay(2p) = 0, 2, 4, 6 respectively. Suppdse first
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that L has type A and e is minimal vector of L and K = (ed* A
automorphism ¢ of L maps ¢ onto -+e and acts irivially on K. Thus, O(L
generated by S, and 1. The same applies to L having type A} since I |
type A? and O(L) = O(). Next, let L have type A} with minimal vecto
and a vector u with Q(u) = 2p. Then |O(K)| = 4 and O(L) is gencrated by
S, and +1. If L has type A3 then Lo {(Zey+Zey) L(Zu, + Zu,), wh

Ze +2Z “"(2 : and Zu; +Zu *(2[) ") 1 eusy to seec ()
=4 €y = 1 2 1 2= o zp ° - ;

O(L) is generated by S,,, Spys Se,—eps Sups Sugs Sujuys and 1. Finally
L has type O then O(L) is trivial. This can be seen using the main ¢
respondence between lattices in G {4, p?) and G (4, p}. Summarizing, we ha

vy Teg?

13.1. ProrositioN. Let LeG(4, p*). Then O(L) is generared by s)
metries of Land +1. We have O(L) = Cy, Cy x Cy, Cy x C3 % Cy, 0r (Sy x 8
xCy as the type of L is Q, A} or A}, Al, or A} respectively. G'(4,
consists of precisely those lattices in G(4, p?) which have improper au
morphisms.

I.4. Theta series. The main objective of this section is to prove in ful
linear independence result for theta series of degree two, and to state sor
results about degree one theta series. The method is the same as ti
introduced in [3].

Let Ly, ..., L, be a full set of non-isometric lattices in G'(4, p?). F
each i, choose a binary sublattice J; in L; according to its type:

(i) L; type A3. Let J; be the unique sublattice of L, which is generat
. 21
by its roots-system A, = ( ) 2).

(i L; type Ag. Let we L, such that Q(u) =2p and K; = (u,>* Sir
KieG(3, 2p) we can choose J; = K| of discriminant ¢, for some prime ¢; ¥
or p. .

(i) L, type A? or A}. Let ¢, be a minimal vector and K, = (¢;>*. As
[3], we can choose J; = K; of diseriminant pg,, where ¢, is a prime # 2 ot
by Lemma 1.6, [4]. Furthermore, we can do so that J; conlains a vector
length 2p if L, has type Ai. :

L4.1. LEMMA. Suppose L; has type A} and ¢ J, — L; is an isometi
embedding of J; into L;. Then we have

(1) @{J)) is not orthogonal to any minimal vector in L

@ I o) Lu for some vector u of length 2p, then L = L;; hence, i =

Proof (1) If @(/)Le for some minimal vector ecly then (I
=@} LZ,elZ,w for some w with Q(w)ep?ZZ. This is impossit
since (L;), is maximal

(2) It suffices to show that Zw; L J, is a characteristic sublattice of L
the sense of [7]. But this is clear since Ji 18 characteristic in K} = (u>*
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1.4.2. LumMma. Let Ly be of type AY and ¢: J; — L; an isometric embedding
of Ji into Ly If @{J) Le for some minimal vector ee L; then L; = L,; hence,
1=J

14.3. Lemma. Suppose L; has type A} and @: Ji— L; is an isometric
embedding of J; into L;. Then we have

(1) @(J) is not orthogonal to any vector u of length 2p in L;;

(2) If o(J)Le for some minimal vector ee L; then L; = L;; hence, i =].

The proofs of these two lemmas are analogous. .

1.4.4. TueoreM. The theta series 0(Z) of degree two for lattices L
coming from the classes of even positive definite quaternary lattices of
discriminant p* having an improper automorphism group are linearly indepen-
dent.

Proof. Let L; and J; be as before, i =1, ..., t. Let q;; be the number of

isometric embeddings of J; into L;. Let 2 be the exact power of 2 in jO (L}

We want to measure the size of an O(L)-orbit. Consider the following cases:
Case (i). I; has type Ag, then no symmetries of O(L;) can fix o(J;) by

Lemma 1.4.1, unless i =j and ¢ is in the orbit of the inclusion map, where

the stabilizer H, of ¢ is {1, S, }. Hence,

0(L) {2"1‘“ il i =j and @eorbit of inclusion,

=, 12V otherwise.

By Proposition 1.3.1 we have

oL . .,
;= Z | |IFI f)l = 0(mod 2%) if i#],
@in 4
distinet arbit
_lowy ow _,

Ay = et = 2(mod 2%
T . |

but, a,; % 0{mod 2%). Here « is the inclusion map.

Case (ii). L; has type A2, If L, has type 43 or A} then by Lemma 1.4.2,
no symmetries of the kind S, for some minimal vector e can fix @(J)), and at
most one symmetry S,, @ () = 2p, can fix ¢(J)). Similarly for L; of type Ag.
If L; has type A7, then H, is trivial, except when i=j and ¢ lies in the
inclusion orbit, in which case H, = {1, §,,}. Thus,

2% or 29T if L, has type A3, A%, or A,
lO(L) _}2¥ i L, has type A7, i5), or i =], but
|H | - @é¢inclusion orbit,
29"% if - i =j and @einclusion orbit,
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Hence,
a; =0(mod 2%) for i+#j and L; of type 42, AL, A7,
a; =0 or 2(mod 2%} for L, of type Al;
a; =0(mod 2), but ;% 0(mod 22).
Case (iii). L; has type 4}. Lemma 1.4.3 gives this time

0 (L) !

2%7° if  i=j, ¢e inclusion orbit,
\H,| 2%

otherwise,
Thus,
a; = 0(mod 2°)  for  L; of type A2 or A}, i j;
a; =0(mod 22) for L; of type A? or A}:
a; = 0(mod 2%), but ay; % O0(mod 2%),

Case {iv). L; has type A3, then a;=0 if i #j, but a, =12 since

21
()

Suppose now there is a non-trivial linear relation
Y 6%’ (Zy=0,
i

where we may assume the ¢;’s are relatively prime integers. Evaluating at
each J;, we obtain ) c;a; = 0.
7 .
(1} If L; has type A2, then ¢; = 0.
(2) I L; has type Aj, then } ¢;a; = 0(mod 2% yields ¢, = O(mod 2).

. J
(Y I L; has type A{, then Y c;a;=0(mod 2% also yields ¢
_ j

= ((mod 2).
(4) If L; has type 4], then ¥ ¢;a; = 0(mod 2% yields ¢ = 0(mod 2.

J
This gives a contradiction, and our proof is completed.
I.4,5._ CoroLLArY: Let Ly and L, be two lattices in G'(4, p*). Then
L; =L, if and only jf 9}}’1’(2) = 6122’(2) (mod 8).

00
that the theta series of degree two modulo 8 classifies lattices in G'(4,p*) up
to type. Suppose L, and L, have the same type, then we choose J; in L,
according to the proof of the theorem. We have ar, (J1) = 2 or 6(mod 8), but

ar,(J;) =0 or 4(mod 8) if L, and I, have type A} or A?2. And if both

. 2 '
Proof. Looking at the representations of 0 g) and (2p O) one sees
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lattices are of type A! then ar, (J1) =4{mod 8) while ar, (J1) = O(mod 8).
This finishes the proof.

We now briefly discuss theta series od degree one. Recall that the classes
of lattices in G'(4, p) with roots-systems containing 4,&4, have linearly
independent ordinary theta series. The counterpart in G'(4, p?) is slightly
different. Each Le G'(4, p) with roots-system conlaining 4, @4, corresponds
to two lattices in G'(4, p?), according to Remark 1.2.2, of type A} or A%, Let
L be any such lattice with minimal vector ¢ and a vector u with Q (u) = 2p,
and ¢ Lu. Then L= Ze L Zu 1. M for some nice binary lattice M. Choose a
vector ¢e M such that @(v) = 2q, ¢ a prime (via Lemma 1.6, [4]). Let Zf be
the orthogonal complement of v in M. Then Q(f) = 2pg and one can prove
the following: There exist exactly four lattices in G(4, p?) containing
Ze L Zu L Zy | Zf which are partitioned into two disjoint sets of isometric
lattices with cach set containing two lattices. Lattices from one set arc not
isometric to those [rom the other, except in the case when an even maximal
lattice containing Zv L Zf is ambiguous. Therefore, the quaternary lattice
(2> L2p> L2 L. {2pg) classifies the lattices of type Aj or A% up to
“twing™. If we let Gy be a subset of G'(4, p?) consisting of exactly one
member from each twin set, then the following holds; :

14.6. Tueorem. The theta series of degree one for lattices coming from
distinct classes of Gg are linearly independent.

IA.7. Remark. Similar to Corollary 4.5 one can show that lattices in
Gy are classified by their theta series of degree one modulo 4. The number of
classes in G, is essentially ’h(Q(\f ~p))/4.

II. Even positive definite quaternary unimodular lattices over Q(ﬁ)

2
integers, " the group of units of . Let V be a positive definite quaternary
F-space of discriminant 1, We assume V admits a lattice L over Q such that
L, is unimodular at every finite prime p of F and Q(x)e2%Q for any xeL.
One easily sees that V is hyperbolic at each p < co. Let 9 denote the
quaterpion algebra of discriminant p* over ¢ and A = A®F, then V= U
with the quadratic map on N being 2N(~), N the reduced norm. We
assume throughout this chapter that V= ¥ and Q(x) = 2N (x). Unexplained -
notations and basic facts about quaternion algebras and their arithmetic may
be found in [13], {14]. These even unimodular lattices L on V are free (see
[8]) and constitute a singie genus denoted by (4, 1). We study the
arithmetic structures of the lattices in (3(4, 1), the relations of some of them

1+7]. .
Fix a prime p = 1 (mad 4). Let F = Q(\/E}, Q= Z[ \/;}J its ring of .
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with the genus G(4, p); we characterize the roots-systems, calculate the unit
groups, and finally consider the theta series of degrees one and two.

IL.1. Basic structures. Suppose R 18 a maximal order of 9. Then R,
= M,(%) at every finite prime p. Hence, R, is unimodular at every p and
Re G(4, 1). For any lattice L& $(4, 1), and any maximal order R there exist
i =(a,), b= (bp)'in the idéle group Jg such that N{a b} =1 and L= aRb.
In particular, L is a normal ideal.

11.1.1. Prorosimion. Let Le § (4, 1) represent 2. Then L is isometric to a
maximal order.

Proof Let e be a minimal vector in L, then Nie} = 1. If R'and R" are
the left and resp. right order of L, then R’, R“e ®(4, 1). We have L(L™'¢)
=RecL so L''ecR’. We claim that L™'e=R". It suffices to prove
that L7 'ee G(4, 1). Write L = dRb for some maximal order R, & ={a,), b
=(b)eJy, N(a,b)=1 for all p. At each p, LJ*=b"R,a ' Since
N(b;'a;'e) =1, i 'e and R, are locally isometric. Hence, Llec®(, 1).
Now, L™ te = R implies that LL"'e = LR", ie, R'e = L. Equivalently, L is
isometric to R’

I1.1.2. Remark. For a maximal order the algebraic isomorphism class
{= conjugacy class) is the same as the isometry class. Thus, the number of
lattice-classes in ®(4, 1) that represent 2 is the type number ¢ (%) of % On
the other hand, Kitaoka proved in [8] that the class number of the genus
G(4, 1) is $H(H+1), where H = h(W/h(F), k(W) and h(F) being respect-
ively the ideal class number of U« and F. Tamagawa proved (unpublished)
that (%) = H = proper class number of G(4, p). Since H also equals the
number of classes in {4, 1) which have nontrivial automorphisms ([8],
Lemma 2), it follows that the classes in G4, 1) which represent 2 are
precisely those classes which have improper automorphism groups, Since the
 class number of ®(4,1) is 1 when p=3 (due to Maass, [9]), we shall
henceforth assume in our discussion that p > 3.

Let ®'(4, 1) = ®(4, 1) consist of those L which admit improper auto-
morphisms. It follows from the preceeding remark that such an L represents
2, and so has symmetries. We wish to determine the different roots-system
types in (' (4, 1). One knows from [10] that the only (non-empty) indecom-
posable 2-lattices over £ are: A,, 1 € n <4, and D, since p > 5. (When p
== 5 there is also F,.) Let R, denote the roots-system of an Le &'(4, 1). The
possibilities for Ry, are then: Ay, 24,, 34,, 44,, A;, A, @BA4,, 24, DA,, 24,,
Az, A, @4;, Ay, and D,. The cases 24, B A,, 4, DA;, and A, are imposs-
ible by discriminant consideration. The next three propositions restrict
further. . '

i1.1.3. ProrosiTioN. Suppose there exists Le ®'(4, 1) with Ry > 34,.
Then we have p = 5(mod 8) and R; = D,.

Proof. Let e, e;, e5 be mutually orthogonal minimal vectors in L and

iom
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let N be its orthogonal complement. If p = 1(mod 8) then a simple Hasse
symbol computation at a dyadic prime leads to a contradiction. So, p
= 5(mod 8). We claim that N = (2). At each non-dyadic prime this is clear,
So, it suffices to verify at the unique dyadic prime 2Q. Using local integral
theory (eg., 93:29, [11]) and the fact that the local degree [F,: ©,] = 2,
one readily sees that N, = (2%. Therefore, R, contains 44,. To prove R,
=Dy it is eriough to show that' Ry 244, since p> 5. Putting N = Qe,
we know L, contains a veclor #(ae, +be,+ees+de,) not in
Qyey L Wyep LDyey LDy e,. We may suppose that a, b, ¢, d are either units
or 0. Furthermore, if {0, I, @, l4w!} is a representative set of the residue
class ficld at 2%, then we may assume that q, b, ¢, d€/{0, 1, , 1+ew}. Since
Q(3(aey +bey -+ cey+-dey))6 22, we have a=bh =c =4, and thus finding a
new minimal vector %(e, +e,+e5-+e,). .

IL1.4. ProrosiTioN. There exists at most one class of lattices L in & (4, 1)
such that the roots-system Ry > As. It exists if and only if p= 5{mod 8);
Jurthermore, in that case Ry =D,.

Proof. Let L> T = Qe+ Qe, + Qey, where ¢; are minimal vectors and
Bley, e3) = Bley. e3) = 1, Bfey, ¢3) = 0. If p = | (mod 8), localizing at a dya-
dic prime p gives: T, =(Q,e; +Q,e2) LQw, Q(w) =12 and L = (Q e, +
+8,e;) LJ where J is anisotropic and F,J represents only odd-ordered
field elements. Thus, weF,J is a contradiction. Thus, p = 5(mod 8) and J

01 .
= ( ), say, adapted to a local basis L, u- L, v. We fow claim that T is

0

a (global} characteristic sublattice of L even though at the dyaic prime p

=(2), T, is not (locally) characteristic in L,. (See [7] for the definitions of.
local and global characteristic sublattices) Let T = (x)..We may suppose
that w = u+6v and {x)> = {u—6v) over p. T is clearly locally characteristic

at all primes away from p. Therefore, any even unimodular global lattice on
9 containing T is either L or else S, (L), proving the clajm. This proves. the
first statement, When p=5(mod 8) we know that there is a lattice
AeG(4, p) having roots-system exactly A, (see [2]) or equivalently, there is a
symmetric maximal order R, on 9 whose intersection with W:= {ac J: a*
=a} is A; here — is the non-trivial galois automorphism of F/Q and * the
main involution of 2, both extended to . Finally, R = D, [ollows from the
next section on unit groups, specifically, I1.2.4. - '

ILL5. ProrositioN. There exists at most one class of lattices L in
®'(4, 1) such that roots-system Ry = A, @Af. It exists if and only if
p = 2(mod 3); furthermore, in that case. Ry = 2A4,. ) :

Proof. Let Lo K =(Qe +Qe;).l Qey, ¢; minimal vectors and

" Bley, e;) = 1. Suppose p =1 (mod 3), then (3) = pp’. Localization at p shows

: ; . -1 —1
that if X := ({ez) .L {e;»)" in L, then X is anisotropic since (—p—) = (T)
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== —1. Hence, X should represent only even-ordered elements. But, e;—
—2e,€X and ord,(Q(e,—2e,)) = 1. This contradiction gives p = 2(mod 3).
As dK = 6, K is now a characteristic sublattice of I, which proves the first
statement of the proposition. Again, from the structure of the genus G (4, p)
it is known that when p = 2(mod 3) there is a lattice I'< G(4, p) with roots-
system ADA;, and hence a symmetric maximal order R, as well. That R,
=24, follows from 11.24. -

To complete the investigation of roots-systems we need to know the
roots of unity in a maximal order which we next discuss.

IL.2. Unit groaps. The structure of unit groups for lattices in (5'(4, 1) is
more conveniently treated by means of the arithmetic ot quaternion algebra
.

ILZ.1. Lemma. Let R be a maximal order of W and W(R) the group of
roots of unity of R. Then W(R) = {xeR: N(x)=1}.

Proof. If xeR is a root of unity, then x" = 1 for some n; hence, N(x)"
= 1. Since N(—) is totally positive and the only roots of unity of F are +1,
it follows that N(x) = 1. The converse is an immediate consequence of the
fact that the group of all units of R having norm 1 is a finite group ([1]), p. 129},

IL2.2. ProroSITION. Let R be a maximal order of N, W(R) the group of

roots of unmity of R, and Uy the group of umits of F. Then R* = W{R) x
x Ug/{£1}. In particular, |W(R)] = 2|R *fUgl.

- Proof. Define the homomorphism - WR xUp +R* by @(x,u)
=xu. If ceR” then N(¢)=1u? for some ue Up since the norm' of the

fundament unit s —1. From N(cu™%) =1 follows that ¢ = xu for some

xe W(R); hence, ¢ is surjective. If now xu =1 then x = u"le W(R) nU,.
=(+1}. Hence, x =u= +1.

1123, Remark. If R is a symmetric maximal order of M, then from [2]
one knows that [R*fUp| = 1,2, 3, 6, or 12, From IL.2.1 and I1.2.2 the number
of minimal vectors in R is az{2) = 2, 4, 6, 12, or 24. Lattices AeG'(4, p) lift
up to symmetric maximal orders R 4 Therefore, we have the: roots-systems
Ay, Aj®A;, Ay, 4,DA4,, A; from G'(4, p) lift up to roots-systems Ay,
A1 @Ay, Ay, A, B4,;, Dy of symmetric maximal orders in (4, 1). In
particular, we see that this lifting (or “glueing” construction) can introduce
new minimal vectors, At p = 5, A, lifts to F 4. On the other hand, from the

elimination process in this section we extract the following rather surprising
resulf. . ‘

_ I1.24. Proposmion. The only possible types of roots-systems for lattices

in @'(4, 1) are: A;, A, ®A,, Az, A;®A,, and D,. These roots-systems are

 dalready realized from the roots-systems of the symmetric maximal orders of A
(i.e, equivalently, from the liftings. of lattices from G'(4, p).

icm

" Jorm S, where e is a minimal vector in L.
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IL.2.5. PropostrioN. Let Le B(4, 1), R' and R” the left and right orders of
L. Let W(R') and W(R") be the groups of roots of unity of R’ and R"
respectively. Then O (L)~ W{R')x W(R")/{+1}.

Proof. Every rotation of L is of the form x—axf™! where o, fe 3
satisly N (o) = N(f). Let R, R” be the left and right order of L respectively.
Since aR’'a™! = R" and SR" ™' = R”, both R« and R" § are principal two-
sided ideals. But, 9 splits at every finite prime. It follows that R’o = R'J and
R"f=R"J for some ideals I and J in F. Taking norms, we have IZ
= (N(a)), J* =(N(p)). Since the class number of F is odd, I and J are
principal. Thus, R'a = R'a, R"f = R"b for some a, beF. Write & =ua, f§

- =uvh,ueR"™, veR"™. Since N(u)e Uy is totally positive and the norm of the

fundamental unit of F is —1, we have N(u) = &2 for some e Up; hence, u
= gw for some we W(R'). Replacing a by ea, we may assume that u= W(R').
Similarly, we may assume that ve W(R"). Hence, N(x) = ¢* N(f) = b%, and
so a= tbh. The original rotation reduces to x> +uxv™*. This means the
mapping @; W(R) xW(R") - 07" (L} defined by (u, v)—uxp™’ is surjective.
One easily checks that ker(p) = {+1}. ' _ :

[1.2,6. CoroLLaRry, Let Le &'(4, 1). Then the order of the unit group of
L, [O(L), is 4, 16, 36, 144, or 576, according to the roots-system of L being
Ay, A DA, Ay, Ay@A,, or D, respectively.

Proof. By Proposition IL1.1, L is isometric to a. maximal order R of 9.
We may assume L = R. Thus, R’ = R” = R, and the corollary follows from
the proposition together with I1.2.2 and:- I1.2.3.

Our next result shows that, contrary to the G (4, p?) case, the symmetries

-of a lattice L in ®'(4, 1) are fully controlled by the minimal vectors. To see

this, suppose that ue ¥ and the symmetry S,e0(L). We may suppose that

ue L. Consider it at each finite prime p. We may express u = n;” ', where n,

is a fixed uniformizer at P, 5, 20, and v’ is primitive in L,. Since L, is

unimodular and S,e O(L,), we see that Qu)e Q. if p is non-dyadic, and

Qu)e2Q at dyadic p. Therefore Qu)Q =2[] pzs". Since the class
. ‘ pi2

number'o.l" F is odd, I] p™® is principal, say, =Y{a). Since norm (fundamental

12 . L
unit) = —1, Q(a"“u)pm 2% for some ecUyp. Replacing u by ¢”1a " 'u we
may take Q(u) =2 as Swlrlu_m S,. We record this.

11.27. ProrosrrioN. Every symmetry of a lattice Le ®'(4, 1) is of the
‘I12.8. Remark. Corollary I1.2.6 implies that O (L) may not be generated
by 1 symmetries of L in view of Proposition IL2.7.

IL3. Theta series of degree two. The objective here is to prove Theorem
1133 below. Let Ly, ..., L, be a full set of non-isometric.lattices in &'(4, 1).
For each i, fix a minimal vector ¢; in L, and denote by K; the orthogonal
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complement of e, in L,. Then K; is free with discriminant dK; = 2. We
choose a binary lattice J; in K; according to the following lemma. (We drop
the subscript i)

I1.3.1. LEMMA. There exists a principal prime ideal q = Qn of F such that
K contains binary free lartice J with discriminant dJ = =, where w is o totally
positive prime element. ‘

Proof. At a dyadic prime p, K, = X L L, x, where X is binary uni-
modular, Using Lemma 1.6 [4] generalized to totally real number fields, there
is a binary Q-lattice J and a principal prime ideal q = Q= such that 2¢q, dJ,
a unit at all r# g and dJ, = 7. J is free with discriminant = by [8], p. 97.

The orthogonal complement of J in K is clearly also free, say, Qf
Q(f) = 2n. The next result may be proved in a similar way as in 1.4, by noting

that Qe L J is a characteristic sublattice of L since there are exactly two.

lattices in ®{4, 1) containing it and the two are 1nterchanged by the
symmetry S,. We skip the details.

1132, Lemma. If @: J, - L; is an isometric embedding such that L;
contains a minimal vector e perpendzcular to @(J;) then ¢ can be extended m
an isometry of L; onto L. In particular, § =j.

I13.3. Turorem. The generalized theta series 8 (Z) of degree two for
even positive definite quarernary unimedular lattices over Q(\/I_;) Javing im-
proper automorphisms are linearly independent,

Proof. Let L;, ¢, J;, dJ, = =, and q; = Qm; be as above. Let 2" be the
exact power of 2 dividing |0 (L}, Then n, =2 for I, of roots-system type 4,
or Ay;m =4 for type 4, ®A; or A;@A,; 1 =6 for type D,. Clearly, O(L )
acts on the set of isometric embeddmgs of J, into Ly If @i J; = L; is any
1sometrlc embedding, then the number of elements in the O(L;)- orblt of ¢ is

O(Ly)l/|H,|, where H, is the stabilizer of ¢. We want to determinc the exact
power of 2 in this quotlent Let ce H, be an involution. Then, there is a
splitting ¥ =V~ LV" for which o = —1 L 1. ]

If dim V'™ = 3, then o is a symmetry of L;, so that by Pfoposition’ 11.2.7
there is a minimal vector eeL; such that ¢ = §,. Since ¢ is orthogonal to
®{J;) we have i =j and ¢ lies in the orbit of the inclusion map by Lemma
[L3.2.1f dim V* =2, then V* = F(p(J)). Put X: = ¢(J)* in L,. We have

L)y = (C"(-Ii))qi LX, =8 u L0 vlQ xlQ

where (qq(],))ql,
2@, Qem Q.

"2

Qul Qo X =R, x L Quy Qu), Q(x)e Qy, and

It folIows that
(%) . (J-)f., (fP(J)) LX,+8, “(v+ay)

for some ae Q. Since ¢ (L) =

L; we also have an equation as () except :

icm
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, which is impossible since
(L)AH,} is determined by the

with ay replaced by —ay. Hence, 2u/m L,
77 40 (v). Therefore, the exact power of 2 in [0
chart below:

¢ When i =/ and. @ lies in Wheﬂl_i #J 0}116 @ dc_)es
Type of Ly \ihe orbit of the inclusion| 0Ot li¢ in the orbit
of inclusion
Ay or Ay 2t . 22
AI@A1 or )
A, @A, 2 2%
D, - ‘ 23 26

Let aj; be the number of isomstric embeddings of J; into L;. It follows
that if the type of L, is Ay or A4,, then

a;=0(mod 2%) for i+#]j,

ay = O(mod 2), a;# 0(mod 2%);

if the type of Ly is A, @A, or A,@®4,, then we have
a;=0(mod 2% for i#],

a;; = 0(mod 2°),
if the type of L;is D,, we have
a; =0(mod 2% for =]},

a;; # 0(mod 29).

Suppose there is a non-trivial linear relation over Z (since the generalized
theta series of degree two are integral automorphic forms) 3 ¢; 0 (Z) =
where ¢;'s are relatively prime integers. Evaluatmg at each J;, we obtaun,
Y ¢, = 0. We consider this equation modulo various congruences:
mod 2% =¢; = 0(mod 2) for n; =2 (ie. for L; with type A, or A,);
mod 2% =»¢; = 0(mod 2%) for n; = 2;
mod 2* == ¢; = 0(mod 2) for n —-4 (L; of type A; @A, or A2®A ).
=¢; = 0(mod 2°) for ;= 2;
mod 2% = ¢; = 0(mod 27) for n; =4,
=¢; = 0(mod 2% for n; = 2;
mod 2% = ¢, = 0(mod 2) for n; = 6 (L; of type D,).

a; # 0(mod 2*);

a;; = 0(mod 2°),

IE i

. This shows all ¢/s are even, and the contradiction proves the theorem.

A careful examination of the proof of the theorem shows the following
classification result. '
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I1.34. CoroLLAKY. Let L; and L, be two lattices in O (4, 1). If 0(521)(2')

= 62(Z)(mod 16) then L, = L,.

I1.4. Theta series of degree ome. Again we shall merely state some of the

results for degree one theta series and say a few words about their proofs.

114.1. TeeoreM. Let p =5(mod 8). Then the generalized theta series

B.(2) of degree one for lattices L coming from distinet classes in &'(4, 1) of

roots-system type A; @Ay are lnearly independent,

I1.4.2. CoroLLARY. For p = 5(mod 8), lattices in (4, 1) of roots-system

type A, P4, are classified by their generalized thetu series of degree one

modula 8.

11.43. TueoreM. Let p = 2(mod 3). Then the yeneralized theta series

8.(@) of degree one for lattices in &'(4, 1) of roots-system rype A, are

linearly independent.

11.44. CoroLLARY. For p = 2(mod 3), luttices in @ (4, 1) of roors-system

type A, are classified by their generalized thetu series of degree one modulo 3.

Remarks on the proofs. Consider first a lattice Le ®'(4, 1) of roots-

system type A, @4, and let e; and ¢; be minimal vectors of L. Then the

orthogonal complement M of {e,> .l {e,> in L i frec with discriminant 4.
There exist a vector ue M and a principal prime ideal g = Qn such that
Q) =2m Let (vyi=<ud" in M. Then Q(v)=2n. Define an isometry
1e0(F) by t(e)) =e,, t(e;) =¢;, and 7 fixes M. For p = 5(mod 8) there
are exactly four lattices in H(4, 1) which contain Qe; L Qe, 1 Qu L Qo
and they are transitively permuted by S, and «.

Now, let L have roots-system type A,, and Qe+ Qe, = G ;) c L

and.T its ‘orthogonal complement. Then T is free with discriminant 3. There

Is a principal prime ideal g =xQ and Qu; + Qu, = (22 2;) T 'When

r gz(mod 3), there are precisely four lattices again in (4, 1) contaiuing
(L, + Qey) L Quy L Qo, and they are transitively permuted by S, and the

isometr%f ¢ defined by g(u)) = ~u;, g(v) = —v, and ¢ fixes e,. e,. Here v ‘
el ul" uz.

[14.5. Remarks. (i) If p = I (mod 8), then 2 splits in F and there will be

eight lattices in ®(4, 1) containing Qe, J. Qe, L Qu L Qo forming two sets of
four lattices which are isometric amongst members within each set, but not
necessarily isomettic to members of the other set. Hence, the proof of
Theorem I1.4.1 would yield independence for only half the classes of type

Al@ﬂl? (i) I p=1(mod 3) then 3 splits in F. Again, eight lattices in
®(4,'1) will contain (Qe, + Qey) L Qu, L Qv with a similar behaviour, It is,

of course, possible that the congruence condition in Theorems 11.4.1, 1143 is

- superfluous.
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