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1. Introduction. We write {a, d) for the arithmetic progression, hence-
forth AP, consisting of all integers congruent to a modulo d.

DeriNimion 1. A collection o/ = {<a;,, d,>: i=1, ..., t} of AP’ is called
a regular covering if every integer belongs to at least one AP in 7, and no
subcollection has this property., We write |7 for the number of AP's in .

Derinrmion 2. A disjoint covering is a regular covering in which each
integer belongs to exactly ome AP.

We wiil also need the following function. If the canonical prime factor-
ization of n is

! t
o]
n= HPi=
i=1

then

t
fn= Z % (pi—1).
i=1
We note that f(n) is a completely additive function. _
In [4] §. Znim conjectured that if o is a disjoint covering and P is
the least common multiple of the moduli of the AP’s in &, then

(1.1) oAt 21 (P)+1.

In {2] and [3] Zndm proved some results in this direction and in [1]
Korec proved the comecture. :

In [5] Zndm conjectured that o7 need only be regular for (1.1) to hold.
In Theorem 2 of the present paper we prove a result slightly stronger than
this, the conjecture itself being proved in the first corollary to that theorem.

In Section 2 we prove some straightforward lemmata and in Section 3
we prove Theorem 1 which gives a general property of regular coverings. The

- corollary to this theorem is used in the proof of Theorem 2.
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2. Some lemmata.
Lemma 1. () <a, d> intersects <A, D> if and only If
a = A({mod (d, D))

where (d, D) is the grearest common divisor of d and D.
(i) If {a, d> intersects both (A, D> and {A,, D,> then
A, = A;{mod(d, D,, D;)).
Proof. (i} The intersection of {a, d> and {4, D> consisis of those
integers x satisfying
x=a{modd), x=A{modD).

By the Chinese Remainder Theorem these congruences are simul-
taneously solvable if and only if a = A(mod(d, D)).
(1) By (1) we bave
a=A,(mod(d, D;)) and
which imply the result. =

LemMa 2. Suppose of = {{a;, di>: i =1, ..., t} is a regular covering and
p divides d; for some j where p is a prime. Then the set

a = 4,(mod{d, D,))

{ay: Pfdi}'

contains a complete set of residues modulo p. Here p|d; means p divides d,.

Proof. Suppose there is a residue class r mod p such that .o/ contains
no AP for which p divides d; and ¢ is congruent to r mod p. Then the
mtegers congruent to r mod p must be covered by AP’s in the collection

%= {{a, d>e .o pkd}.

By the regularity of .o there is some integer x, which is not an element
of any AP in 4. Let P be the least common multiple of the moduli of AP’s
occurring in # and choose x so that

x =xg(mod P}  and x=r(mod p).-

Then x does not belong to any AP in 7 This contradiction proves the
lemma. =

Lemma 3 (Reduction of a collection of APs). () Suppose [{a;, d>:
i=1,...,t} is a minimal covering of the AP{a, d) and

op=(d, d) for
If we construct another collection of AP's

A= aE, Ay =1, )

Pi=1,...,1.
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where

dF = dJs,  and  ardfs, =(a,—a)s; (mod dy),

then ™ is o regular covering.
(i) In particular, if d divides d;
¥ =djd, at = if-d"—”(mod a¥).

Proof. (i) Note that §; divides ¢;—a by (i) of Lemma 1. Let m be any
integer. We claim that m belongs to {af, d¥) if and only if a+md belongs to
{a;, d;>. For,

a+mde {a, &> < md/d; = (@, — a)/5; (mod d¥)
wme{afF, d¥>.

Thus .o covers the integers, and if any proper subset of &™* covers the
integers then a proper subset of .« would cover {a, d), contradicting the
minimality of .. Thus «* is regular.

(ii) If d divides d; then §; equals d and the result follows. =

When using the construction described in this lemma we will say .o/* is
the reduction of .« via {(a, d).

3. The first theorem.

TueOREM 1, Suppose of is regular, {a, d) ¢ of and p* is the highest power
of a prime p which divides d. Then

() for 1 <k <a, o has a subcollection .o, where

oty = 1a®, dPy: 1 <ig<p—1]
such that for each i satisfying 1 <i<p—1,

pHldl,

a® = a(mod p*~ 1),
(kY .
A TE = i(mod p).
i

(i) The a(p—1) AP’s {a®, d®> are pairwise disjoint, and each is disjoint
from <a, d>.

Proof. (i) We prove the result for an arbitrary value of k.

Let % be a minimal subcollection of 7 such that % covers {a, p*™1)
and let ¢* be the reduction of % via {(a, p*~!)>. Now (a, d> is a subset of
<a, P~ 1 so the regularity of s implics that (e, d)> belongs to %. By (ii) of
Lemma 3 <0, d/p*~*> belongs to %*. Since p divides d/p*~* Lemma 2 implies
that %* contains a further p—1 AP's {af, d¥), ..., {a}_, d}-,> such that
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10, af, ..., a¥_} is a complete residue system modulo p and that each d¥ is
divisible by p.

For each i, let (&, d®) be the AP of which {a¥, d¥) is the reduction.
Then by Lemma 3, :

df = ~—d'(£-——
CotL dR)
Since p divides df this implies that p* divides d{*. Now <{a®, 4>
intersects <a, p*~ !> so by (i) of Lemma 1, i
a® = a(mod pF )
and by (i) of Lemma 3,

()
a]' -~a
af == e (mod p).

Since af runs through a reduced residue system modulo p we can, by
appropriate ordering, ensure that,

a?—g
—i—k—:—l-—* = l(mOd p).
() We prove this part by contradiction. Suppose (a®, d®> intersects
{a®), "y where k' = k so that p* divides (4%, d%"). Then by (i) of Lemma 1,

K e (R k
a® = a*) (mod p*),
and so

) )
a; —a az: " —f
;k—l = 'pk_l {(mod p).

The left-hand side here is congruent to i and the right to 0 if k' exceeds
k and to i if k" equals k. The first alternative is impossible since i belongs to
the reduced residue system modulo p, and the second implies that the two
AP’s are identical

Similarly {a{®, d¥> intersecting {a, d> would imply

af® = a(mod p4
and thus

(k)

a,» —a

EoT = O(mod p)

_ r

This is a contradiction since the left is congruent to i modulo p. w
CoroLLARY 1. With of as in the theorem, let n and f be integers satisfyving

O0<ngy, O0<f<a
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and
13
#= U <by ")
y=1

where the numbers b, are distinct modulo p*. Then
|{<a, dye o: pPld, a, d> N B =P} ={—p+D{p—D+1-n
Proof. By the theorem, o contains the (p—1){a—F+1)+1 AP
La®, d®y  for k=f,..., 2 i=1,..,p-1
and
{a,d>.

Each of these has modulus divisible by p?. Now suppose both {a®, d¥>

and <a®?, d¥?y intersect <{b,, p*» and that k" = k. Then by (ii) of Lemma 1,
a® = o (mod pY),

which leads to a contradiction as in part (ii) of the theorem. Similarly no
(e, d®> will intersect {a, p*>, which contains {a, ). Thus at most n of our

AP's will intersect AP's in # leaving at least (a—f+1)(p~1)+1—n non-
intersecting AP’s. =

4. The second theorem.

THEOREM 2. If .of is regular, P is the least common multiple of the moduli
of the AP’s in <, D divides P and D does not equal P, then

|{<a, dye o> d YD} = 1+f(§).

Proof. We prove the theorem by induction on v(P), the number of
distinet prime divisors of P.
If v(P) equals 1 then

P=p, D=p,
where p is a prime. We then have
{<a, dye st: dfp'} = {<a, dye .ot PPHI|d}.
By Corollary 1 this is not less than
{e—(B+1)+D(p—D-+1 =1 (p*/p")+1.

This shows that the theorem bolds when w(P) equals 1.

To continue the induction suppose that the theorem holds for v(P) not
exceeding n. Let o/ be regular and let the least common multiple of the
moduli of the AP’s in .« be p* P, where p is a prime not dividing P and v (P)

0L f<a,
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equals », so that v(p® P) = n+1. We will write the AP's in .« in the form
{a, p*d> where p does not divide d. We must find a lower bound for

Jfa, prd>e o ptd ¥ pf DY

where p does not divide D.
We now introduce some notation. For each residue class s modulo p* let
7, be a minimal subcollection of o that covers (s, p*>. It is clear that such
a subcollectlon exists. We then sat
=lem {d: {a, p'dye ),

0_1)
Ry=lem [R,_,, P},
Ds_( s~ 1 s)

Q, = i<a, p'dye o/, d YD), for s =1, ..., p
We remark that:

P
4.1y F—izRf: for s=1,...,p"
4.2) R, =P,
{4.3) 0, is empty if D, =P,
(4.4) Q= {{a. p'dde o/ dIR, d¥R,_).

It is clear from the last remark and from the definition of R, that the
collections @, are pairwise disjoint.
Cramm. If D, does not equal P,

@ Q) =S G})+1

Proof of Claim. Since ./ is a minimal covering of (s, p*> we may
reduce it to get a regular covering .« Any AP (a, p’d) in .o, will be
reduced, according to Lemma 3, to an AP of the form {a* d). Since D,| P,
and v(Pg) is at most n, it follows from the induction hypothesis that if D,
~does not equal Py,

Qi =1{<a* dret: dfDY =S (g)ﬂ

We now obtain a lower bound for the cardinality of the set
{<a, pdye .o p*dyp’ D). We note that,

"
) oty = o

s=1

prdyp’D = p!*Yp* or d¥D and
- Therefore the cardinality equals

" _ :
I 91 {{a, prdde ot d4DY) U {Ka, p'dde o PPH! .
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Each collection in the first union contains a subcollection
{(a, pdde o dIDg} = Q,,

so the required cardinality is at least

(4.6) |(6 Qv (<a, de>e.nl: P
s=1

= Y 10 +]{<a, pdde o\ U il pPH P
P, #}) P‘FD

By (4.1) to (4.5) and the additivity of /,

(@) z 04 > Z f( )+ 2 1= 2 f( )+ i 1

P, #D s, Ds Psr#DS Py #Dyg
P ”
=fl= 1.
f(D>+ S;I
Py#Dy

We now consider the second term in (4.6). We put

B = U N
p#ns

and note that if the intersection of {a, p*d) and {s. p*} %s'empty then
{a, pd) does not belong to s, so the second term in (4.6) is at least

{(Ca, pdye o7t <a, p'dynB =0, PP,
By Corollary 1 this is at least
. N #
—(B+D)+Wp=-D+1— Y 1=f (})ﬂm-)+1a Z 1.
P;;}Js Pi#}_)s
On adding the nght -hand sides of (4.7) and (4 8) we obtain the required
lower bound. That is,

{{<a, prdye s p'd¥p’ D}

f( )+ E}D 1+f («b;)ﬂ Ié}) 1=f (%)“

5 § s 8
Thus the theorem holds when the least common multiple of the moduli
has n-1 distinct prime factors and the theorem is proven by induction. =
COROLLARY 2. If of is regular, P the least common multiple of the moduli
of the AP’s in o then

(4.8) (a

led 2 f(P)+1
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' Proef If P does not equal 1 the result is immediate on putting D equal
1 in the theorem. If P equals 1 then .o/ must be {0, 1>} and the result still
holds. =
Now let .o/ be a collection of AP’s, not necessarily regular, which covers
the integers. Zndm ([5]) defines an AP (ay, dp> in o as essential if
'\ {ag, dp) does not cover the integers. The following result extends
Theorem 1 of [5].

CoroLLary 3. If o7 covers the integers, {a,, do» is essential in o, then
(<, dye o (d, do) > 1}| 2 f (do)+1.

Proof. L.et A* be a regular subcollection of s, and P the least
common multiple of the moduli of the AP’s in it. It is clear that Cdg, dpd
belongs to .«* and hence that d, divides P. Then

H<a, dye i (d, do) > 1}] 2 Zf(do)+1. m

{(a, dye o*: d,{’dﬁ}
0
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Verzichtbare und unverzichibare Elemente bei der Darstellung
als Summe und als Differenz von Quadraten

von

Eruarn DeNerT, Bricy HArtTER und JoacHmM ZOLLNER (Mainz)

Wir bezeichnen die Menge der Quadrate der ganzen Zahlen mit (.
Nach einem bekannten Satz von Lagrange ist jede natiirliche Zahl als
Summe von vier Elementen aus Q, darstellbar. In [3] wurde gezeigt, dal} es
unendliche Mengen § = Q, gibt, so daf} jede natiirliche Zahl auch noch als
Summe von vier Quadraten aus Q,\S§ darstellbar ist. Erdds und Nathanson
[2] haben dariiber hinaus die Existenz von Mengen S'mit dieser Eigenschaft
und [(Qp\8) N[0, xJ| < Cx*#** fiir beliebiges & >0 nachgewiesen, wobei
C > 0 nur von ¢ abhingt(‘). In der vorliegenden Arbeit werden genau die
Quadrate bestimmt, die in jedem Fall in @5 \S noch enthalten sein miissen.
Solche Quadraie nennen wir unverzichtbar.

Sei O die Menge der Quadrate der natiirlichen Zahlen. Genau die von 1
und 4 verschiedenen natlirlichen Zahlen, die % 2{mod 4) sind, lassen sich als
Differenz zweier Quadrate aus Q darstellen. In [3] wurde gezeigt, daB dies
auch noch mit den Quadraten aus @'\ T miglich ist, wobei T =@ eine
geeignete unendliche Menge von Quadraten ist. Auch in diesem Fall werden
die unverzichtbaren Quadrate charakterisiert.

1, Zunichst fithren wir einige Bezeichnungen ein(%):

Sei E(n?) die Menge aller ze Ny, fiir die gilt: Aus z = ai+aj+ai+ai
mit ;e Ny (i =1, 2, 3, 4) folgt a} = n® fir mindestens ein /.

Sei weiter U:= {n? E(n®) # @} und U:= {n?| |[E(?)| = }.

Sei analog E~ (n?) die Menge aller ze N, fiir die gilt: Aus z = af — a3 mit
aeN (i=1,2) folgt @ =n®* fUr i =1 oder flir i=2.

Entsprechend wie oben sei dann U™ :={n% E"(n})# @} und U~
= {n¥ {[E”(n%)] = oo}. '

(') Nathanson 5] zeigte, daB sogar |(@g\8) n[0, x]| < Cx*** gilt.
() N ist die Menge der natiirlichen Zahlen; Ny = N {0} die Menge der nichtnegativen
ganzen Zahlen. .



