Conspectus materiae tomi XLV, fasciculi 1

K. Thanipasalam, Improvement on Davenport’s iterative method and new results
in additive number theory. I . .

A. WM. Buuworpanosn, O dunapnoi npobiaeme XdpJIl{-ﬂldl’THbBYﬂd . .

K. 8. Williams and K. Hardy, A congruence for the index of a unit of a rcal
abelian number field

R. C. Baker and J. Pintz, The dlsmbuuon of square-l‘rce numbers

R. F. Tichy and G. Turnwald, Uniform distribution of recurrences in Dedckmd

domains .

La revue est consacrée 4 la Théorie des Nombres

The jourpal publishes papers on the Theory of Numbers
Die Zeitschrift versffentlicht Arbeiten avs der Zahlentheorie
HKypin NOCBAILIGH TEOPHH SHCETT

Paging

1-31
33-56

57-72
13-79

81-89

L’adresse de Address of the Die Adresse der AJIpeC PE/ARMI
la Rédaction - Editorial Board Schriftleitung und 1 KHHrOOOMEHA

et de I'échange and of the exchange des Austairches

ACTA ARITHMETICA
ul. Sniadeckich 8, 00-950 Warszawa

Il

Les autewrs sont priés d’envoyer leurs manuscrits en deux exemplaires
The authors are requested to submit papers in two copies

Die Autoren sind gebeten um Zusendung von 2 Exemplaren jeder Arbeit
PYROTHCH CTATEH PeIAKIMA NPOCHT OPCIURIa L B BYX JK3EMILISPIK

@ Copyright by Paistwowe Wydawnictwo Naukowe, Warszawa 1985
ISBN 83-01-06569-9 ISSN 0065-1036

PRINTED IN PQLAND

W R O C E A WS KA DR UZKATZRNTIANALUTEKO W A

icm

ACTA ARITHMETICA
XLVI{1985)

Improvement on Davenport’s iterative method
and new results in additive number theory, I

by

K. THANIGAsALAM (Monaca, Penn.)

i. Imtroduction (added on February 19, 1985). It was proved by
Davenport [4] in 1940 that (in Waring’s problem) (previously best known
bounds were given in [117] and [87])

(1.1 G <14, GB)=<23, G(6) <36
It was also about the same time that the bounds
{1.2) G <53, GR®<73

were established, Since then, several attempts have been made to improve on
these bounds. In this series of papers, these long standing estimates will be
improved to the following:

(13} G*H <13, GB)<2l, GE <32, G(T)<45, G(8) <02,
GO < 82, G{10) <102,
)<

(In a recemt paper [14], the author has shown that G(9) <88 and
G10) € 104)
In this Part I of the series, the following resuits (less precise than (1.3)

will be established.

TueoreMm 1. G(7) < 50, G(8) < 68

TrzoreM 2. G(9) £ 87, G0} g 103,

In Part IT of this series, we again prove some general results, and deduce
that G(5) € 22. Proof of (1.3) (which requires some modifications) will be
completed in another paper elsewhere.

(When the new method was discovered, the author first obtained the
bounds G(3) € 22, G(6) < 34, ... Later, using a variaton of the method, the
results (1.3) have been obtained. It is understood that R. C. Vaughan also
has obtained these later improvements as in (1.3).)

Several results in Hua’s book [12] can be improved on by the method
in this paper. Most significantly, in Waring-Goldbach problem, Hua showed
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that

(1.4) H(5) <25, H(®) <37, H{H<55, HEB®<TS

{the bounds for H{6), H(7) and H(8) being explicitly mentioned only in [10],
§33, p. 91)

Corresponding to {1.3), it can now be shown that

H(6) <33, H(7)<47, H@B) <63, H(9)<83 H(10)<107.

However, in this paper, only the earlier unprovements over (1.4) are given.
These are now improved to

THroREM 3. H(5) < 23, H(6) < 35, H(7) < 51, H(8) < 69.

(Thus, all large odd mtegers are representdble as the sum of 23 fifth
powers of primes.}

Another additive problem considered by some mathematicians is the
solubility of homogencous additive equations. (For the definitions, see [7].)
The method in this paper should give the corresponding bounds for G*{k) in
that problem. Of special interest is the case k =7, as the desired bound

(1.5) N G (SR <E N |

is now established (for k = 7). R. C. Vaughan [18] showed that (1.5} holds
for 11 € k< 17. With the results in [7], the cases for which (1.5) remains to
be settled are & =8, 9 and 10.

The main new idea used in this paper is the Fundamental Lemma in
~Section 2. Davenport’s improvements over the earlier bounds for G(k) was
based on obtaining better bounds for U®(N), the number of integers <N
that are expressible as sums of s non-negative kth powers. Together with this,
Davenport used (for small values of k) Weyl's inequality for dealing with the
minor arcs in the Hardy-Littlewood method. In Vinogradov’s method (and
its improvement given by the author in [13] and [14]), in place of Weyl's
inequality, bounds for a special kind of trigonometric sum is used. In this
paper, we use Weyl's inequality for 5 < k < 8, and the method in 147 for
k=9 and 10. For k= 11, it might be possible to obtain slightly better
bounds for G(k) than those given in [14]. However, for this, the use of the
Fundamental Lemma would involve numerous computations. Most of the
methods used for obtaining better bounds for U®(N) have been iterative in
nature. A special feature in this paper is that of devicing a framework in
which Hardy-Littlewood method itself becomes iterative. (After all, the final
goal of the Hardy-Littlewood method itself is to obtain the ideal bound
U (N) > N—C for some constant ¢ with minimal 5.)

Throughout, P is a large positive number (finally taken to be N'¥), §,a
small positive constant, and ¢ an arbitrarily small positive number, As
defined in [5} for k= 2, the set {4, ..., 4] of positive numbers are said to
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form admissible exponents if the number of solutions of the equation
H s
Yok=3 k(P <x <2P" PY <y < 2P
=1 i=1

is
< P’11+"’+’1s+£.

2. Tur Funpamentar Lemma. Let k24, s> 2, 0<§ <1,
b=k~ 143k A= pptyy oo sy Pi= P*‘ (1<i<s), and U=P, P,...P,.-
Suppose further that the sets (A4, ..., A;} Jorm admissible exponents for
1 <j<s, and define o; (1 €j<3) as follows:

(2.0 oj= max (min{4;/2° [(I+2)4,~(A,+ ..

I
1€i<k—2

A2,

(2.2)
) %Aj/z’*-l k<12,
a

DT Jmax (4 11— (D (k= DX (k=2 k— DI 2Kk=D]) i k12,
1

and

o; if oi>of
2, = J ( i P
23 i {min((l/Z) A=A+ ...+ 4L, o)) otherwise.
Further ler
(2'4.) Tlmk‘;"s—xm(kﬁl—]) (1 Sls{l"““i),

and S denote the number solurions of the equation

(2.5) (X ) = ; )

with
P<x<2P, P <y<?2P,
Pl<x <2P PY <y < 2P

Then, for 1 < mln(k 2,5—1), with
e 0= 0, 0= T @2,
(2.7 S « Ptte U+S°+1Pfi‘ﬁl(sf)'+ T
where | -

(28) So — P(1/2+65+z)(PS.)[/.2 UP~GS+50, .
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r ) ‘ _ N
(29) S, = (P2 ) pa T e ng2 ) (T] (p,_ gt pri i
: i=0
and

-1 . l —~ »
@210) T=(P* 7 U) (P (] (P TPy . Pyt P00
=0

Ay being the sufficiently small positive constant).

Before proving this femma {(in § 5), we introduce some notations and
prove some auxiliary resulis. Variations of this lemma giving rise to slightly
better bounds for U®(N) are possible, Such variations are also used for
k=75 and 6, but for most of our purposes, the lemma itself is sufficient.

3. Netation. For £ > 2, define
q

X, Yia)= 3 e@xh, S®a, q) =3 elax,

X<x<Y x=1

JOOL Y B =(1/k) 3 v De(py),

xk <y vk

g®(X, ¥;a,q, 0 =g ' SW(a, ) JOX, ¥; a—a/g).

Throughout the paper, @ < g and (4, g) = L. In some estimates, multiples of
8o or & (in the exponents of large numbers) are (for convenience) simply
taken as d, or & (as these can be easily adjusted).

4. Auxiliary lemmas. The next lemma is a generalization of Theorem 1
in [3].

Lemma 41, Let k=3, 522, 0<8<1, O0<A < <...< 2, with

Ay =k~ 140)/k. Write P; = pi (1 <i<s), and let the mumher of solutions of

the equation

5 5
(4.1) foc:Z}’? (P, < x; < 2P, Py <y, <2P)

be M. Then, for 1 1< k—2, the number of solutions § of the equation

L s

42 (Y ) =T

i=1 i=1

{with P <x <2P, P <y < 2P)

satisfies
43) S < PM+P*YreM (Pl pmimioi(p P, PR M

Proof. The proof is similar to that of Theorem 1 in [3] (which we
quote as Lemma 4.2 below), but requires some modifications. For a detailed
proof see Lemma 4 in [18]. (The lemma can also be proved by expressing S
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as an integral, and using part of the argument in the proof of the
Fundamental Lemma in § 5 of this paper)

Lemma 4.2 (Davenport). Let 0<3 <1, | <u, <... <uy < P with

(4.4) 4=(k—1+8)/k.
Then, for 1 <1< k2, the number of solutions of
(4.5) Xtu; = P4, (with P <x < 2P, P <y <2P)

is

{4.6) € PU+PI*escy (p=2 pra-t-1 U}uzf‘

For later reference, we note the following (basic) difference in the proofs
of the above two lemmas. In Davenport’s proof of Lemma 4.2, in order to
estimate the number of solutions M, of

(4.7) ity )1ty = 14,

the equation

(4'8) A{"l""'IhT 1 (xk)+uj = Ar,zl,...,rh_l (yk)+uj' = ul‘

is considered, and the number of solutions of (4.8) is estimated to be
<€ My+ M, . From these, the inequality

4.9 M, < PP 'U(PP P12 0,

is derived. However, if the value of [ is decided on, this argument (which is
based on the fact that the us are distinct) needs to be carried out only (once)
at the last iterative step. In the previous steps, it is sufficient to use

4.10) M, < PPPU+P P12 M,, .
which is the estimate occurring (at the iterative steps) in the proof of Lemma
5

4.1 (not requiring the distinctness of the integers Y x¥, and M replacing U).
i=1

The next lemoma is Theorem 2 in [3].
Lemma 43, If UM(NY> N*7%, then Lemma 4.2 gives the bound

(4.11) U®(Ny> NP2,
where
21 (k—
(4.12) B= max (1/k) 1+( ”(Ik 1)+([+1._)..gci>_
t€Igk—2 2~14a P

'Also, in this estimate, 0 in Lemma 42 is given by
(4.13) o= k=1 —(k—1)al/a.
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Note. In estimating U®(N), the term P™? in Lemma 4.2 allows § in
(4.14) 12 <6< 1/21,

which is important for small values of s. When s gets large, & has to be taken
< 1/2 (generally only with | = k—2), so that, Lemma 4.1 is equally effective.
The ideas in the two lemmas have to be combined suitably before adapting
the proof of the Fundamental Lemma in estimating U®(N). Such a
combination will be indicated in Section 9.

Ay} form admissible exponents with

Jo=1, P =P"
so that P,=P; U=PpP,;... P,

Cororrary 4.1. Let (4, ...,

@15 0<l €A S...< Ay <1,

Then, for 1 1< k—2, the number of solutions of the equation

Pi<xi<2Pi,Pi<yI<2P;,

k(T K
(2 ) P<x<2P, P<y<2P

i=1

(4.16) x—i—(z xf) = with {
Is

(4.17) € P ey pRrey {ptlg primz gtz

Proof. In Lemma 4.1, take 6 = 1 and use M% PEU,
With the definitions in Section 3, the next two leramas correspond to
Lemmas 5 and 8 in [2].

Lemma 44, If a =afg+ B, || < 1/2, then
g™ (P, 2P; a, q, @) < g~ Y*min(P, P' ¥
Lemma 45. e =afg+ . g < PU%, 1< g P 7% then
JOP, 2P a)—g® (P, 2P; a, g, o) < g** 7.
L~1+3g

LemMa 4.6 (Weyl's inequality). If o == a/gq -+ B, with P« g€ P |

and B < g~ P ¥ then ,
J*P, 2P, 0) < P
(Vinogradov). If

1 t/zk= L4 gy

Lemma 4.7
1Bl < g~ ' P'7%, then

f”"(P, 2P; a) & Pl—a”(k)fu

e=a/qg+p, P<g< Pl and
(for k = 12),
where

(4.18) a" (k) = rnax({l-—(1/2)(k—1)3((km2)/(k-—1))'}/2(k ~ 1))

(For this, see Theorem 53 m [19], which is an improved version of
Theorem 9 in [12])
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Lemma 4.8. Let k = 4. Then, with the same premises as in Corollary 4.1,
und the condition that 4; = (k—140,) 44 /k With0< 3, <1 for 1 €i < 5—1),
the mumber of soi’mions of (4.16) is also

(4-19) « PZ‘ZD‘U{)‘P@DU‘

where (with a" (k) = 1/2*7 for k < 12, and defined hy (4.18) for k = 12)

(4.20) (k) = min{(1/2) hk—(A + ... + 4, o (k).

Proof. We prove the result for 4<k <12 and only a slight
modification will be required for the cases k = 12.

Write
(4.21) F=fly= 9P, 2P a), f=filo)=fOP, 2P a),
(4.22) g=g%(P,2P;a,q,0), ¢ =g"(P,2P;:a, q,a),
(4.23) Q=P "%

{Note that, here f, = f, g, =g since P, = P)
Then, the number of solutions S of (4.16) is given by

1+@~1
(4.24) S= [ 1fife Sl da.

2-!
Divide Q7 '<a<14+07! into basic intervals m and supplementary
intervals m as follows:
(425)  For 1<q< P! my, = lo: a—a/gl < g7+ Q™) m =) my,,

4.4
and m=(Q" ", 1+0 " .

1—dg

£

1. Integral over m. First consider a = a/q+f with P¥* ' <4< p
Bl <g~tQ"' Then, by Lemmas 44 and 4.5,

(4.26} 1 <« 4'3/4+£+q~ hp g pt- 172k 1
since P¥* < P1- U2 (for k > 3). This, together with Lemma 4.6 shows that |
on m, f & P Tsg
Hence, since {4,, ..., A4} form admissible exponents.
-1

k-Lygy @ -
(427) I fae Klde < PP f d
n o~ 1
< PR o p b ppr

I1. fmegral over m. First we consider 5 = k—1. It is 4n easy verification
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(see (20) in [13]) that

- (4.28) (1= 1Kp2 > {ig ff: :ij .
Since A, = 1, it follows that for s—k+2 <i<s (using (4.28)),
(4.29) A U=k 2 > k20 (k2 4).
Hence,
Po=Plis P and -q"lQ‘“1 g PR s—k+2<igy),

Thus, from (4.25) and Lemma 4.5, it follows that on m,
{4.30) fi—gi € g™ (s—k+2<i<59).
It is an easy deduction from this and Lemma 44, that (on m)
(4.31) figq P, (s—k+2<i<s).
Also, on
g PITHBT g ik k(g PE TRy 5 e (5 gy,
Hence, from (4.31) and Lemma 4.4 (on ),
{4.32) f<q W min(P, PR Y.
From (4.31) and (4.32) (using 5 = k—1),

@33 [l fo-o f)Pde

m

q—lQ—l
<% Z Zq_z(PPI P, ... P) f min{P, Pl_k|ﬁ|*1)2dﬁ
aspkizk— 1y h)
<(PP,P,...P)* Pk Z g7 « (PP Py ... PY2pP-kte,
g pk/2d—1

Il s <k—1, estimate (4.33) has to be replaced by
@34)  [Mfifo... P do <(PP, P, ... P)? P+ T

m v Pkllk_ )
£(PP, P, ... Ps)zp—kP(k"s*l)IEk""z
3 (Pz U)P"(k‘&‘) pli=s~ 12k 2
using U =P, P, ... P, and U < P, Obviously,

q 2+ 1) k1

(435)  PTGtapEme LT o po2i iy gk = 1261,
Also, :
(P Py ... PYP=i+e @ p#~Uatetinte o poangyig
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with
o (k) = (1/2) {k—(Ay + ... + 4.

Hence, result follows from (4.24), (4.27), (4.33), (4.34) and (4.20). For k = 12, it
is necessary to make only the following changes. Take Q = P*~* in place of
(4.23), and define the m, s with ja—a/gl < ¢ * 0! for g < P where
6" (k) 18 defined by (4.18). (4.31) and (4.32) can be derived from f,—g;
< ¢ **max(1, P}|f]) (and similar estimate for f—g), which is obtained by a
partial summation with the resuit in [6]. In place of (4.35), we use

P'—(k—si P2(k—s—1)ﬂ’”(kl @ P—Eﬂ“(k) (Since O_rr(k) < 1/2)

The rest of the argument is precisely the same as for k < 12, X

LemmA 4.9. Let the 's be defined as in Lemma 4.8, and o, by (2.3). Then,
if {4y, ..., A;} form admissible exponents, and the functions f, f; are defined by
(4.21), ‘

1
(4.36) SUGR AT o [P de < PFPTXT70(P P, L P
0

(using PI® = p7i),

Proof The proof follows from Coroilary 4.1 and Lemma 4.8, where
P is replaced by P; and U by (P, P, ... P)).

Lemma 4.10. Let the integers t, ..., t, be such that 1<, <L (1€i<Ks).

i
Then, the number of (different) sets {t, t5, ..., t,] satisfying L <t t5 ..., < Lis
< Ll-i-&

Proof This is easily proved by induction on s. Assume the result
for 5. Since the number of representations of m in the form m=1,1, ... I,
is <L, the number of (different) sets {t, ty, ..., Iy, typq) With 1<ty 1y ...
v bty < L8

L L
< ¥ | 1}l 3 (Lity ) LD,

fop 1 =1 1Sttg. St 1) _ tep1=1
The result now follows since it is true for s = 1.

5. Proof of the Fundamental Lemma. With the §;, g, 4, P, (1 £i <) as

defined in the lemma, and (as in (4.21)) fi=filw = Y  e(xx’), write
P;<x<2P

1

: L
5.1 Iy= £|fﬂ2|f1f2 o fida, Ry = giﬁfz - filRde (1 §j < s}

The functions 4y, . (x have the same meaning as in [3]. Since
{Ag, ..., 4, form admissible exponents, the number of solutions of (2.5} with
x=ypis € P'*"U (using U =Py P, ... P).
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Let the number of solutions with y = x+1t, + >0 be M,. Then,
(5.2) S« P U+ 2M,.

M, is the number of solutions of
5

(53) A x4+ M =(¥ x) (>=0.
=1

i

i=

Let .« be the set of {'s that actually count in the solutions of (5.3). Since
(cf. (6) in [3]) 0 <t < P* we have

(54) Card of < P*.
Write
(5.5) F=F@=Y YT e(4(xYa)

tey P<x<2P

so that
1
My = [F)|fifs .. fifPda.
o3

Hence, by Schwarz's inequality,
1

(5.6) M < [IF@ififs ... fil*da

0

! 1
SIF@P Sy e fimal do) 2 {[IAP 1Sy oo 2 d 2.
0 . o

Now, by Cauchy’s inequality, _
F@?<(Cado) (Y] ¥ eld (Ma)?),
tedd P<x<2P
and

| T eld (et =P+ e{(4, (%)~ 4, (x*) )

Pex<2P Pax<lP Pay<2pl
Xy

C o= PAF¥(a) 0 (say).

Hence,
S

(5.7) Eg!F(ﬂt)lzlﬁ coe Sl dot

_ . I
<(Card o) P [|f; ... fi-a|* e+ (Card @) [{Y F¥@)} |/, ... fom 1| %da.
- 0 : o o

teof
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1

Also, {{X F*@}f, ... fi_[*dx is equal to the number of solutions of
0 rtes

g ] s—1
(5.8) AN=2,5 =(T (T &) with xy.
i=1 i=1
The number of solutions of (5.8) with x > ¥ is equal to that with x < y; so

that the number of solutions of (5.8) is < 2M 2> where M, is the number of
solutions of (putting y = x+1,)

§=1 5—1
{5.9) A (XY ) ={Y W) (0<r <P).
i=1 =1

Thus, from (5.1), (5.6} and (5.7),
(5.10) M, <(Card &) (PR, I}**+ {(Card =) I, M, 12,

Let ./, be the set of {r,¢,! that count in the solutions of (5.9). Now

s=1

s~ 1
(2 W~ x) <« Py < P2,
i&=1

f=1

and since x > P, 4, (x*) > 11, P*"2. Hence,

(5.11) L, P79 Do pit by 24y,
$0 that, from Lemma 4.10,

(5.12) Card o7, < PL7",

With

Fi=F@= Y 5 el M)

ity jeaf) P<x<2f

we see that M, (the number of solutions of (5.9)) is given: by

1
M; = IF1(“)|f1 ‘--fs—ﬂzdﬂﬁ
0
1 1
< {JIF @1 fy o Sem P da] P {JI P LS - fom o da )i,
0. 0
Estimating |F, {2)|* in the same way as |F(«){%, and arguing as above, we
have
(5.13) M, < (Card o)) (PR, 3 L )2+ {(Card .o/ )} [, M}2,

where M, is the number of solutions of

5.2 s 2
(5]4) Ar,11.12(xk)+(z xﬂ =(Z y:‘) (0 <l 5 P}-
i=1 i=1
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Repeating the above process, we define the sets o7, = [{t, 1, ..., 1,}], and the
functions F,(e) (1 <r<1-1) as follows;
M, ,, denotes the number of solutions of

§—Fr

(5.15) At,tl....,t,(xk)'I'( Z -x:c) = (Z yl!‘)a

=1
and the set of {t,t,...,+) that count in these solutions is .7,. Also,

Fiw= Y 3 ey, (0N a).

B pemlplect, P<x<2P

~ As in the proof of (5.12),

(5.16) Card.of, < P (1gr<I-1).

At the rth stage we use Schwarz’s inequality in the form

My: = IF (@ fy - fomrl P dr

1

< {JIF @i -

0

1
Frerm PP AU 21 o fon da,

and for the transition from M,,, to M, ,, estimate |F,(z)|* as before, As in
the proof of (5.13), we then have {for 1 < r<!-1)
(517) Mr+1 < (Card ‘er)(PRs—r—l Is-r)”2+ -{(Card‘.rf,) Is“r Mr+2} 1"2-

From (5.2), (5.10) and (5.17) for 1 <r <!—1, we have (inductively),

-1

(5.18) S € PYTU H{(Card W PR-; L) +{Y S+ T,
re i

with

(5.19)

= {(Card &) L}'? {[] [(Card o) [, ;> "'} (Card o7, PR, ., |12,
i=1

and

-1
{(Card &) 1} 42 {T] [(Cacd /I g_,]‘”m}(M NS

i=1

(5.20) T =
where M, is ths number of solutions of
s—1 s—!
=(2 - (T (@t ...6>0.
i=1 l==1

For given x;, ..., X,_1, y1, ..., Yy, there are < P* choices for & ty, ..., b a8

(5.21) Y-

New results in udditive number theory, I 13

divisors of the right-hand side terms in (5.21), and then, x is determined
uniquely. Accordingly,

(5.22) My, <(P Py ... P_)* P

Furthermore, since {1, ..., 1;} form admissible exponents (for ji=1), we
have (cf. (5.1))

(5.23) Ry <(PyPy...P)P* (j=1),
and by (4.36),

(5.24) I, < PP TP P, .. P
O =PRI P LR (2.

Hence, writing (with @, defined by (2.6)

r+1
Z‘ 1/2J +3/2J-II 1+1/21+1 £r= Z 1/2]'___ 1_1/2r+1,
i=1

i=

we have

r
525 LP{IU v

<P_Br+50(Ps)3/ {].—[ 11‘} Pl PZ"'Ps—r"l)ér
i=1

< P-ﬂr+50 P_f.’lz {H (Ps_i)uziﬂ} N

S(PyPyey oo Pl PPy o Py )12

5o that (from (5.23))

r

520 1P {I] VTR, )P @ PO (P

i)1/2i+ 1} _U,

using P, P, ... P, = U. Also, from {5.23) and (5.29),

(527) (R IJV? @(Py Py Poy) 2 (P72 70 2(P P,
. @P G_,+¢50P1/2 U; y

from (5.4) and (5.16),

. Ps—lpg)lfz

(5.28)  (Cardat) {[] (Card )@} < (P¥3(P™)  (cf. (26)).
: i=1
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With §,, S, defined by (2.8) and (2.9), we see that from (5.19), (5.26) and
(5.28),

(5.29) S, <8, (I<i<sr-1)
from (5.27) and (5.4),
(5.30) (Card o) (PR, I)'* < 5.

Now, with r =1--1, (5.25) gives

(531 I1Y? rlnl(f )1/21“1 A Oy 1“0{1-1 P,. l”-.urn %

i=1 i=0

X(PPyoy oo Pyoyug)(Py Py o Pt 02,
This, in conjunction with (2.10), (5.20), {5.22), and (5.28) (with r = [—1) yields
(5.32) T «T (using U=P,P,...P)

(2.7) now follows from (5.18), {5.29), (5.30), and (5.32), proving the assertion of
the lemma.

. 6. Results pertaining to computations. The use of the Fundamental
Lemma would generally involve numerous computations. In this section, we
derive some results using which most of the computations can be avoided.
The following notes are also useful

Note 1. For oblaining better bounds for G(k) (by using Weyl's
inequality), the improvements on the bounds for U®™(N) should be

k-1
comparable to NEE"T)

Note 2. In the usage of the iterative method, the improvement N*
obtained on the bound for U®(N) will be reduced to approximately

N#E-LR in estimating U®),(N) (since the &'s are small). Hence, slight
improvements on the bounds for small values of s will not generally
contribute towards a better estimate for G (k).

Note 3. For k = 5, the Fundamental Lemma gives better bounds than
Davenport’s method except for the first few values of s. However, these
improvements are substantial only when s gets large. Thus, in order to avoid
several computations, we use only Davenport’s method up to certain values
of s (depending on k).

Note 4. In using (2.7), we choose §, so that each term in the estimate is
< P'**U. The computations of the best value ¢ of 4, allowable by the

method would be complicated. The factor P ""! {in (2.9) and (2.10))
provides the improvements over Davenport’s method. By estimating 0.,
(and the &'s given by Davenport’s method), the values of d are chosen
approximately.

New results in additive number theory, 1 15

Note 5. The method of Theorem 4 in [3] can also be incorporated by
making slight changes in the method (and would give slight improvements in
some cases). However, for estimating H(k), we have to avoid this. The
purpose of the next lemma is to simplify computations.

Lemma 6.1 Let 18, sarisfy

{6.1) 09, <1,

and

(6.2) T =gy (1R}~ 2+ 1/K) 6, 2 20,_,.
Then (with S, defined by (2.8) and (2.9))

(6.3) S-1 €8, (1<r<gi-1y,

Proof. From (24} (letting t, = 5,),
T Ty = L= k(Aypuy — 4 ) = T=kd o (1= )

= 1_’1.\'—r+1(1_5s-r)' '
Also,

Voedgoy s U=dypiy (1= 1k + 8, /K).
Hence, '
(6.4) 2=t g) (I Aoy = L= A (1R — (24 1R 5, )
Thus, if

(65) x = Z{TI"_TJ‘— l)*(l‘—‘"q's—r)—zas-—n
it follows from (6.2) and (6.4) that
(6.6) %30,

Now from (2.9) and (2.8), we have (for 1 <r<I-1)
LE S A ,
S, /S, = (P(1+:,, /2" pos - 2" ‘/IP(”Z g pan )( P, M2 +1}

" {P/P‘ ” /2r+1 !Pa'.:,_,./P(rr—rr l)‘”zr
Henee, since P/P,_, = P' 7% we have from (6.5) and (6.6),
8,1/, = PH¥T g

proving (6.3).

Remark. The following simplifications may be noted in using the above
result. Fven without the factor P™" (cf. (28)), it is easily verified that
So € P'MU if 8, < 1/(2k+1). Also, ‘if r>2, and the &s are small,
the expression on the left-hand side in (6.2) will be bounded from below
by approximately [1—{l1—1/ky'(1+1/k)}, which (with the general choice
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o; == A j/2kgl) exceeds 2¢,_, (by a sufficient margin). H (6.2) holds, there will
be no need to estimate S, for 0 € r < [—2. However, when variations of the
method are used, the changed S;'s have to be estimated separately.

The next lemma follows directly from (2.9) and (2.10).

Levma 6.2. 8, /T= (P71 tp P, . P,_y1t2,

Once we estimate T, S,.., is estimated easily by using Lemuma 6.2. We
also note the following, which is useful in estimating T} (With the estimates
UF(N)> N7% in the iterative methods.)

(6.7) , PP, .. P =P""  (with P, = PY);
so that, from {2.10),
(6.8) :2
T < (P U) PP Y [T (P2 1 (p7 om0y (Pt it in iyl
i=0

7. A lemma on admissible exponents. The following lemma will be used
in the proof of Lemma 8.2 in the next section.

Lemma 7.1 If the set A =14y, ..., A} form admissible exponents, then
every subset of A also form admissible exponents. ‘

Proof. This is easily proved by induction, by showing that every subset
of A with (s—1) terms form admissible exponents. Let

{Aillsiﬁs

A= ,
I#r

} for any given r (1 <r<9),

and let the number of solutions of the equation

1) | St Y

i=1 i=1
i#Er i#r
be M. Then, the number of solutions of
(7.2) =Y
=1 i=1
with x, = 3, is < P* M. But, by hypothesis, the number of solutions of (7.2)
. d{t . tigte
is <P , SO that,

M g PR e 0¥ gy r it
*

showing that A’ form admissible exponents.

_ _8: Further preliminary lemmas. In this section, we introduce some
variations of the Fundamental Lemma. These results (while applicable for all
values of k) will be used for k =5 and 6.

icm
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We recall that
8.1) fi= ¥ elaxd)
Pp<x<2P;
with
(8.2) P = Ph.

Lemma 8.1 Under the same definitions and hypotheses as in the
Fundamental Lemma, the mumber of solutions S of (2.5) also satisfies (2.7} with
Sy replaced by Si_ |, and T by T”, where

o -1
(8.3) Sty =Sy [P E p L g,
and ' ‘
(8.4) T = T (i Th

(the other terms in (2.7) remaining the same),

Proof. We have to make the following changes in the proof of the
Fundamental Lemma. In that proof, at the last stage (with r = I— 1), the
integral

£F1~1(°€)|f1 J;»Hﬂzdaﬁ

was estimated with

1 1
(8.5) {E)“FI“ 1 (“)lﬂfl .f;—tizda}llz 'Ulf;—u R/ fs—Hllzd‘x}”l
0 : .

to get (cf. (5.17) with ¥ =1~1)
(8.6) M, <(Card Lq[!-l)(PRs—iIs—1+1)”2+{(Card ) ospey M:+1}1"2-

Here, in place of (8.5), we estimate with
1

1
(8.7) {&[W L L S ] o {glfl S ALY

to get (by the same arguments)
(88) M, <(Card o,..;)(PR2. |, )"/*+ {(Card o/, ) Roopqy My 372,

-where M, is the number of solutions of (in place of (5.21))

s+

(89) Ar,rl,...,r,(-xk): Z (}’f"'“xh-
-i=1

Estimate (5.22) is now rcpléccd by
(8.10)

M, <P, }7N\Ps—af’s—i+1)2Pg-
. BY
b ae b e U
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Earlier we used estimates for I,_,+, and R, (cf. (5.23), (5.24)}. Now, we use

Ro_juy €(Py . P ) P '
Comparing these changes together with those from (8.6) to (8.8), and

from (5.22) to {8.10), the relations (8.3} and (8.4) follow eastly,
Lemma 8.2 Wirh the same premises as in the Fundamentul Lemma, let 4
be a subset of {1,2,...,s—1+1), and let
1
BAN 1= {1fe oo P ([T dr < (Py o Pocu ) (TT B2 P50
B i | : i
Then, the number of solutions § of (2.5} also satisfies (2.7) with S;.,
replaced by Si., and T by T, where (with S;_,, T" as in Lemma 8.1)

(8.12) se=1I1 P,-}”zlP‘ml“ i,
) ‘

v(md _

(8.13) T = P—n,”,’ZI'Hz TH'

Proof Since (by hypothesis}) {1,,..., 4.} form admissible expo-

iigs—I+1 N
nents, by Lemma 7.1, the subset {A,-‘ li ;3? } also form admissible -
.exponcnts. Hence,

1 s=1I+1 s—~i+1
(8.14) R={{ ]I Wt da < { [T P} P
i= i=}f
° n;a% ‘ i

Rest of the argument proceeds as in Lemma 8.1. In place of (8.5), we
estimate with '

1 s=1+1 1
15)  {{WFi- @ TT VP (J1fs o frmron PTTUA) do) 2,
0 i=1 i
i

M,,; now denotes the number of solutions of

. s=i+1
(8.16) B ¥y = 2 (=),
o . en
and (5.22) is replaced by
' s=bF1
8.17) My <4 I Bp
=1
i

In (8.6), I,-;+, and R, are respectively replaced by I and R’ (given by
(8.11) and (8.14)). Comparison of (8.3) with (8.12) and (8.4) with {8.13) gives
the desired results, :

icm
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. In applying the Fundamental Lemma, the A’s {and not the &’ or u’s)
will be different at each step (the 4, at one step being proportional to the 3,

at another step). At the iterative step of estimating U®, (N) from UB(N), we
write

{8.18) . _ By = A,

9. Lemumas for adapting Davenport’s results. Resulis given in this section
are for the purpose of using Davenport’s estimates for U% (N} (modifying the
requirement of admissibility of exponents) in the Fundamental Lemma,

From now on (unless otherwise specified), g, and I, will denote the
values of & and ! taken in Lemma 4.2 (and also in the Fundamental Lemma).
in estimating U | (N} from U®(N). Also, «, wil refer to that in the estimate

UM(N) > N, For any given s, let % denote (uniformly for all k’s) the set
of distinct infegers u; of the form

0.1 =3
' i=1

where Card % is cstimatedkby Davenport’s method (using Lemmas 4.2 and
4.3) with P = N'® P, = PY x,e(P, 2P) to satisly

9.2) pritetise < Card % < PM +--,+As’

80 that

®-3) ty= (g ...+ Ak

Write

©4) Ul = 3 efow) and U(0)=U =Card%.

ueW
Lemma 9.1, Let s 2 2, t 2 1, and let in the estimate (obtained with Lemma

4.2) vy = (A + .. + A1 )k
(9.5) 5 <12t for

(for 1 i<, 6 may be taken in 1/2" <8, < 1/2"“”). Also, let the set % be
defined as above {consisting of distinct w’s of the form (9,1)).
Then, the number of solutions of the equation

izs+l

(9.6) Mot X = Vet Ry
with x., yie(P", 2P™) for iz s+1, and w, we¥ is
<<P&,+!+...+a.,+1 teyy

Proof, When ¢ =1 (using the distinctness of the i's), the proof is the
same as in Lemma 4.2, where 6, may be taken in 1/2* <4, < 1/2% ", When



20 K. Thanigasalam

> 2, we use the proof of Lemma 4.1 {since §; now satisfies (9.5)). (Generally,
&; satisfies (9.5) only with [ =k—2)
CoroLLary 9.1, With the fs defined as before,

1 .
N ‘Hf;-i-l fs+r|2!U(°ﬂ)lzdﬂ &(Poyy . P JUPY
0
where
Kty py
(98) (P,s+l "‘Ps+r)U<<Psi:\; .

Proof. The proof follows from the lemma on using (5.2), (9.3) and (9.4).

In place of integrals of the form I; (cf. (5.1)) occurring in the proof of the
Fundamental Lemma, we also have to consider integrals of the form

. 1
(9.9) (Ui fows e foed? 1U (@) dar.
0

The next lemma will show how the adjustments in the proofs {and the choice
for the o's) are made in these cases. .

Lemma 920 Let 1 <r<k=2, and (with ag., = (A4 + ... + 4,4 )/k)

(9.10) s < 1—(k=r)/k(22)

" Then,
L 2 2 2-20+4g

(911 [Ifierl®fivt oo LIV (@ dor <€ Py (Pgey - Prd U,
D

where

©.12) g=o(k)=1/2¢1,

Proof. Foliowing the proof of Lemma 4.8, the integral over the minor
arcs m (using (9.7) and Weyl's inequality for |fi,,|*) is bounded by the
estimate in (9.11). The integral over the major arcs wt is estimated with (using
trivial estimate for U(x))

©13) { X

2 pl 2
h,'z"'l) Ps+r] Ps+rU :
q<p(

S TP Py -

The double sum above is < P2& 1271 g6 that (using (9.8) and (9.12),
the integral over m is
Y il k= 2Ps+r(Ps+1 N Upl:isrnpwr
Result now follows from (9.10).
LEmMMa 93, Let r 2z k—1, and’

(9.14) . w-<1—1/k(2" 2)

icm
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Then, the estimate (9.11) holds with ¢ as in (9.12).

Proofl. The proof is the same as in Lemma 9.2, except that the double
sum 1in (9.13) is estimated to be < P%,,

10. Further auxiliary resuits for estimating U® (N) (fork > 7). For k >
we further simplify the computations (required in the proof of § < PL*° U)
with the resulis in this section (together with those in Section 6). With some
additional conditions (which are not required in the proof of the

Fundamental Lemma itself), we obtain an explicit inequality for the iterative
choice of the &'s.
We first choose d,, ..., d;, by using Davenport’s method (for suitable s,

depending on k), and then use the Fundamental Lemma. The verifications of

S; « P70l (for the Ss occurring in the estimate of S) are simplified with
the use of Lemma 10.2.

Lemma 10.1. For 1 €i1<k—

Sl I/T}Z PE(%) (k—1I— 1)

where
E(s) = Apq th—(k—-1+0, Yo}
Proof From (24),
I 47y =kig oy —(k~I—1) and P, ... P,_, = P51
Also, by Lemma 6.2,

) 2t 14Ty
H (31—1/1—')2v_—_ pita Il/(P1 Py
ence,
(8- 1/,[)2! = Pk{ls'i+1"’ls-t“s—1)—(k—1~ 0
Result now follows, since Ae.; =g 14y -1 = Ag-yuy (k—1+6,_/k. From

now onwards, we take ! =k—2 (as, only this. is required for our purposes).

Lemma 10.2. Let the Fundamental Lemma be used with s 2 s,+1, and
suppose that the inequality

(10.1) N 1 LAl B NS T S g

holds for s = s+ 1. Then, subject to (6.2) (for 1 <r<k-3),

. {10.2) S<T

at all the iterative steps with s = So+1
Proof From (10.1), and Lemma 10.1 (with | =k-2), it follows that

(10.3) Sees/ D €1 (52 50+1).
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Now, by Lemma 6.1, §; €5,._5 (0 i< k—4); so that, from (10.3), and {2.7),
S « T, as asserted,

Remark. In applications of the method, the inequality (10.1) needs to
be verified only at the first iterative step (with s = s,+ 1} since with small
values for the &'s, E(s) decreases (with the increasing «'s) as 5 increases.

Lemma 103, Let oy = 1,/2*7" for s—k+3 <j < s {cf. (2.2) and (2.3)), and

k-3

k—3
(104) A=Y a2 B=Y (k

i=C i=0

wi;l)/2‘+l,

(where as prev:ously indicated, 1, denotes J,_; at the s-th iterative step).
Then, with 1=k-2,

(10.5) T ¢ pHsEt1- 1,21: How- 2)+&0){P“‘(—k+2"s«»k+2}1/2l_2U

Proof. Since 8, =kl,—(k—1), and 1, =kl,_;—(k—i—1) for 1 €i<k~3,

: k-3
(10.6) 5J2+(Y 1/2*") = kA, —B;
i=1 1
ko3 i+1 . A i
(10.7) [T =P (using P,_, = PYs~);
i=0 .
k-3 k-3 .
(10.8) Y G2y = (U2 H{ Y (Ae-if2 )} = 4,722,
i=0 i=0
Also,
(10.9) (Py ... Prwz)mbz = {Pki_gslk+2a_y—k+2}1,'2k—2.

Hence, (10.5) follows from (210} (with [=k-2) as it is easily seen that
B=k-2

The next lemma is desigued to make iterative use of the computations.
Lemma 104. With A, defined by (10.4),

(10.10} - Apiy = A0/ + A~ 22, 5/247),

Proof. The proof follows easily from (10.4) since with A},’ﬁ” = (k—1 +.
+ 054 1)/k,
(10.11) M = Qe (1 i)

Under the hypotheses of Lemmias 10.2 and 10.3, we can choose the &’s
with the following:

Lemvia 10.5. Let 3y, ..., 3, be such that (A9, ..., 2, 1} form admissible

exponents Then (with A, defmed by (104)), {AS”'” . ).ﬁ’fl”, 1} also form

icm
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admissible exponents provided &, satisfies

(1012)  {(k—148,4 Wk} T/ 40+ A~ A9, /22 (ke +1—1/2 M+
H{RA st e 3/2 2] < k—1.

Proof. 285" = (k—1+6,,,)/k and AN s ot gy = AP s i
Hence, from (10.10), (10.12) and (10.5) (with s+ 1 replacing s), we have
T < PU, as required. (Note that d,,, is the only unknown in (10.12))

For 7< k < 10, we use (10.12) for s = s+ 1 where s, is chosen suitably
to minimize computations. For s< s, &s are chosen with Davenport's
method or with the method in [5]. In all cases, (10.12) can be used for values
of s < 5¢ also to get better bounds for U® (N). However, these improvements
do not seem to be sufficient to get beiter estimates for G{k). Of the §’s and
o’s obtained by Davenport’s method or as in [5], only those that are
required for our purposes will be indicated.

Before estimating U (N) for 7 < k < 10, we note the following:

The sets % are considered as in Lemma 9.1 with s = 10, 12, 17 and 22
for k=7, 8, 9 and 10 respectively (using J; < 1/2*~2 for i > 5). (For k=9
and 10, % may be considered with smaller values of s.) '

The expressions P17 occurring in the .¢stimates in  the
Fundamental Lemma will be replaced by PU (cf. (9.2) and (9.4)).

In the estimates of all the I's (of the form (9.9)), the number ¢ can be
taken to be (1/2%7'). For, with the values of «; (estimated iteratively), it can

~be verified that (with j = r+5) «; satisfies (9.10) for 1 <r < k-2, and (9.14)

for rz k—1,

11. Estimation of U (N). The next, lemma follows (with Davenport’s
method) as in Lemma 9.10 in [12].

LeMMA 11.1. In estimating U (N), Lemma 4.2 allows the choice of §, with

(11.1) 610 = 00323, 511 = 0.0269, 612 = 0.0224,

: . 4,3 =0.0184, §,, = 0.0156.
Also, UM NY > N*™° (for 10 <5< 15) with
(11.2)

0.82781 < %0 << 0.82785, ol = (1/7)+(6+6i)a[/7 (IO -§., i \<~ 14).
(The &'s are close to, but slightly less than the best possible values allowable
by the method.)

Now, the iterative use of (10. 12) gives the following:

Lemma 11.2. In addition to the premises of Lemma 111, let -
(11-3) 515 = 0-025, 516 == 00195, 517 = 00185,

35 = 00175, 8,9 =00168, §,,= 00162,
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Further suppose that
(11.4)
dop = ARY = (64850)/7, L= = (6+b)/1ﬁ°1)/7 (M <i<19);

20 T

also thar the set 9 is defined with s = 10 as in Lemma 9.1. Then, with u,,

WEU, X, we(Py, 2P) for 11 <1< 20, x, ye(P, 2P), the number of solutions of

20 20

TH(Y )t =y (Y i

i=11 im 1]

. t+dyyt.tdggte
<P U,

and U}(NY > N2*™", where
(11.5) oy > 0.98305.

[Here, the approximate values of the o's used in the computations with
{10.12) are as follows: (These values are slightly less than the precise values
occurring in the method, and for estimating the ds with (10.12), slightly
larger values (differing in the 5-th of 6-th decimals) have to be used. The same
remarks will apply to other values of k also)

ayy = 0856227, a;, = 0.880035, o,3 = 0900005, a,, = 0916654, «,
= 0930603, ;s = 094384, oy, = 0954491, o, = 0.963514, o, = 0971134,

- oigp = 09775877

12. Estimation of U (N). As in Lemma 9.11 of [12], we have the

following:

LemMa 12.1. In estimating U (N), Lemma 4.2 allows the choice of 8, with
(121)  8,, = 00188, &, =(1/64), J,, = 0014,

615 = 00121, 8,4, =0.0104, §,; = 0.0089,

Also, UBP(N) > N7 (for 12 < 5 < 18) with
(122) 08276 <oy, < 08277,  wy = (1) +(7+6)as/8 (12<i< 7).

‘With thqse, the use of _(10.12) gives the following:

[The approximate values of the o’s are: :

dyy = 0851093, oy, = 087136, a;5 = 0888963, x5 = 0904186, o,
= 0917337, oy = 0928688, a9 = 0.938877, 2y = 0947748, 0y, = 0.955463,
ocu = (.962163, ocm = 0967992, a,, = 0973062, «,s = 0977462,

LFMMA 12.2. In ad_dmon to (12.1), ler

Oy = 0.011, dy19= 00105, &, =001, 8y = 0.0095,
(12,3) 622 = 0-00915’ 523 = 0'00885, 524 = 0.0085, ! 525 = 00{)825, '
26 =0.0081, 8, = 000785, &, =0.0077, 8, = 0.00755:

%26
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{124)
hao = M) = (T4+8,0)/8, A =A% = (T48) 228 (13 < i < 28);

and the set ¥ be defined as in Lemma 9.1 with s = 12. Then, with u,, we %;
X, me(Py 2P) for 13 <1 <29; x, ye(P, 2P), the number of solutions of

29 29
B Y =Y )y
i=13 i=13
is
< plHiatctiate
and USH(NY > N2°7% where
(12.5) | 235 > 0.9922.

3. Estimation of U™ (N). For k=9, we combine Davenport’s method
and the method in [5] as indicated in § 7 of [13]. We take

5., = 000736, 8,5 =0.0065, 0 = 0.00574, , 8, = 0.00506,
(13.1) %521 = 000446, 5,, =0.00393, &, = 0.00347;
0.88201 < o, < 088202, w4, = (1/9+B+8)e/d (17 <i< 23).

By using (10.12), we can now take

(32 0=0006  day=0005 336 = 0.0047, 65, = 0.00455,
' Oz = 0.0044, 35,5 =0.0043, 0,5 = 0.0042.
[The approximate values of the o's are: :
oyg = 0.893841, o4 = 0908061, w,, = 0918855, oy, = 0928387 oy

= 0.936803, wy; = 0944233, a,, = 0950793, a5 = 0.956894, o, = 0.962214,
%y = 0966914, ayg = 0.971078, tyq = 0974766, uyo = 0.978035]

Lemma 13.1. Let the s be chosen as above, and
(13.3) ‘ _
dig = AP = (8+050)/9, A =APY=(84+5)A59/9 (18<i<29).

Also, let # be defined with s =17 in Lemma 9.1, and u;, w;e . Then, with x;,
v;e(Py, 2P) for 18 €1 30; x, ye(P 2P). the number of solutions of

30 30
0 x?)+uf=y9+(2 ¥+
i=18 i=18

is
1+Ayg+...+tazpte
<P 18 30 U‘

and USI(N) > N""° where

(13.4) : oy, > 0.98093.
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We also have (as required later) US(N) > N"*"°, where

(13.5) o5 > 0.95689.
14. Estimation of U (N). For k = 10 also, we proceed as in § 7 of [13].
and take
(14.1)
522 =0.00308, 8, = 000275, 5, =0.00247, &,, = 0.00221,
526 = 0.00198, 527 = 000177, 518 = 0.00159, (Szg = 000142;

0912285 <ayy <091229, @y = (1/10)+O+5)/10 (22 <i < 29).
Now the uvse of (10.12) allows the choice '
(142) 830 =00032, 63y = By = B35 = dyg = 0.0022,  6a5 = 0.0021.

[Here, the approximate values of the a’s are: :

yy = 0921337, a,, = 0929456, oy5 = 0936739, w0, = 0.943272, 37
= 0949131, a,5 = 0.954385, 039 = 0.959098, a;, = 0.963324, o3y = 0.9673,
a3y = 0970781, 235 = 0973916, ay, = 0976738, a55 = 0.979278].

LemMMA 14.1. Let the ;s be as above, and

(14.3)
Ays = 25 = (94+535)/10, 1 =A% = O+)AN0 (23 <i< 34,
Further let 9 be defined with s = 22 in Lemma 9.1, and Y, uye Y. Then, with

X;, yie(Py, 2P) for 7-3? <135 and x, ye(P, 2P), the number of solutions of

-35 35
XY *)u =y +( T w1+,

i=23 i=123
is
< Pl +J.23+4..+.135 +&
and U&‘G‘”(N) > Nq(’_ﬁ, where
{(14.4) '
Also, USSP (NY > N™317° wirh

(14.5)

U,
%36 > 0.98155.

a3, > 0.9673.

15, E‘n_)of qf Theorem 1 for the cases & =7 and 8. Let the A’s and the
corresponding f's (and the set %) be defined according to Lemmas 11.2 and
122 for k=7 and 8 respectively, so that (with P = N1/

(151) f=fl= Y e, f=/f= 2

P<x<2P Pp<x<2py

Ul) = ) e(ow).

uiel

efax¥),

icm
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As in the proof of Lemma 4.8, let the unit interval (Q~%, 1+07") (with
Q= P77 be divided into m and m (so that, the basic intervals 1M, 'S
are defined with 1<g< PY* ™" |la—a/gl <g 'Q!). Then (as already
shown in Section. 4), for each k, :

(15.2) Ty < P

Case {a): k=17 Let
1+g~1

rq (N} = ‘
Q—l

From Lemma 11.2,

k1450 .
) O i xem.

(15.3) SR {11 - fro(a) f (@) U (@) e (- Na dax.

1+Q‘-1 —70(21*}*(’0
§oolfn - Fro S U (@) dat < (Pyy ... Pyo PP U?P

Q_ 1
(using (9.2), (9.3), (9.4) and (9.7)). Hence, with the estimate for f®(«) by using
(15.2) with k = T7), the contribution to r,(N) from m is

(15.4) g PRI Py PPUP
<PTTTPOPR(Pyy ... Py PPU?

since from (11.5), 7o, +(8/64) > 7.

Since (from [9]) I'(7)=4 (and the singular series considered with
(2k+1) kth powers is convergent) we consider the 'estimates of
1072 2 fio—g'%g309% 915 over m (in order to obtain a satisfactory
estimate for the integral of the error term over m). Since (4.30} and (4.31)
easily hold for 18 < i< 20, the integral over w is estimated in the usual way
(see [13]). Accordingly, from (153) and (154), it follows that
ro{N) » P(Py; ... Py P)*U?, proving that G(7) < 50.

Case (b): k=8. Let

1+

rg (N) =

—Tagy+dg

Q--l .
§ fr@ {0 . fo@f @) Ua)e(—Na)da.

Q—'l

(15.5)

From Lemma 12.2,

1+t - B
[ 1fis oo fao SRV dx €(Prs ... Pag PR UP 5300,

Q'-i
Hence, using (15.2) with k = 8 (for /% ()), the contribution to rg (N) from m is
(156) I ,@ Pa(1”1/12§+50)(P13 . P29 P)l UZ P“SG‘BO*‘SU
: &P TPOPR (P .. Py PPUP,
since from (12.5), 8a30+(8/128) > 8.
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Now, since I'(8) = 32, over m, we consider

fmfzzg .ffb‘gwggg Q‘fg-

Since Ay5 > (7/8)'! > 1/5, and m, s are defined with ¢ < PY'% (4.30) and
{4.31} are easily seen to hold for 19 < i < 29. Thus, it follows from (15.5) and
(15.6) that

f'g(N) > (P13 v PZQP)2 Uz,
proving that G(8) < 68.

16. Proof of Theorem 2. For k =9 and 10, we use the method in [14].‘

Condition (14) in [14] is satisfied with
(a) k=19, sy =25 55 =31, yy =05, ¥ =03, (cf. {134) and (13.5));
(b} k=10, 5; =31, 53 =36, y; = ot3;, y, = a3 (c. (14.4) and (14.5)).
(Note that {from Lemmas 13.1 and 14.1) there are sufficiently many 7s for
dealing with the basic intervals) Accordingly,

GO <261)+25=87 and  G(10) < 2(36)+31 = 103,

proving Theorem 2.

17. Proof of Theorem 3 for the cases k =7 and 8. Suppose that we get
the estimate G(k)<s;+2s, by using the fact that (A, vivy Agyy form
admissible exponents (for suitable 1’s), and by wvsing Weyl's inequality or
Vinogradov’s estimate (for Weyl's sum) for {f(oc)}s1 {in dealing with the
minor arcs). Then, it is a standard deduction that

51 il s, is even,

H)<s\+25,+1, where 5 =
1) < 51425, Plsi 41 if sy s odd.

Here, we need only the following modifications: _
With K defined as usual, as in the estimate of U®(N) method of
Lemma 4.2 gives the following (with p’s denoting primes):

The number of distinct integers v; = s(modK) that arc < N, and
representable in the form

8
Uy = Z p";a
j=1

where each prime pie(P;, 2P, and p; = 1(mod K) is (with the same I's as

before) » P17 TATE Here, we consider this set %* in place of the set 4.
(The cardinalities of % and %* will differ by at most a factor < P*) Now,
the proof of the Fundamental Lemma can be adjusted as in Lemima 9.1, with
#* replacing . The rest of the argument is standard. '
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18. Estimates for H(9) and H{10). The method in this paper leads to
substantial improvements on the known bounds for H(k) for further values
of k. This is illustrated here for &k =9 and 10. Hua (Theorem 14 in Chapter 9
of 112} obtains the bounds

(18.1) H®®)y <103, H(10) <127,

Combining Davenport’s method and the method in [5], the bounds
obtainable for G(9) and G(10) are G(9) < 96, G{10) < 12! (see [1]); so that,
these methods would give the bounds

(18.2) H9 <97, H(10) < 123.

4

We can improve on these to get the following:

Turorem 4. H(9) <91, H(1Q) < 115,

Proofl. (a) k=29. In addition to the choice of the §;s indicated in
Section 13, (10.12) allows us to take

531 == 0.00416, 532 = 0-00405, 533 = 0.00398, 53.4 = 0.00391,~
635 = 000386, 536 = 0‘0038, 537 = 000376, (533 = 0-00372,

to get .
UZ(Ny> N7 with oy = 0.99489.

[Here, the approximate values of the o's are: as, = 0980931, u3, = 0.983503,
tyq == 0985778, 03, = 0.987794, ays = 0.989579, 035 = 0.99116, a37 = 0.99256,
tyg = 0.993801.] . ’
* These lead to the estimate G(9)< 12+2(39) = 90 (by using Weyl's
inequality for f1%(«)); so that H(9) < 9L ‘

Cl(b) k = 10. With &, (1 <i< 35) as in Section 14, we use (10.12) to take
536 o 0.0021, 537 == 533 = 539 - 0.002, 540 == 0.00198, 641 = 0.00195,
641 = 0.00]93, 543 == 0.00191, 644 = 0.%189, 545 = 0.00188, 546 = 000186,
847 = 000185, J,4 = 0.00184, J,5 = 0.00183, dso = 0.00182,
leading (o the estimate UZQ(N)> N™'" with a5, = 0. 99767, and (with
Weyl's inequality for £1%(a), G{10) < 12+2(51) = 114; so that H(10) < 115.

The approximate values of the a's are:

Ec_m = 0981555, oy, = 0983604, o35 = 0.985435, aye = 0.987089, a4g
= 0988577, oy, = 0.989914, 0y = 0991115, 045 = 0992194, o, = 0.993163,
a5 = 0994034, o, = 0994817, a4 = 0995519, o4 = 099615, a4
= 0.996718, oy = 0.997227.] _

19. Indication of other results. In [12] (§ 2 of Ch. 12), h(k). is deﬁned t'o
be the least positive integer s such that almost all positive integers
= s(mod K) are sums of s kth powers of primes (K depending on k).
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For 5 < k < 10, the following bounds are indicated:
h{(5) < 13, h(6) <20, k(7)< 28, h(8) < 40, h(9) < 52, h(10) < 64.

(With ‘the methods in {3] and [5], one can get R(8)< 38, h(9) <49
h(10) € 62)

With the methods in this paper {as in the proof of Theorem 3), these can
be, improved to; . '

h(5Y< 12, h(6) < I8, h(7) < 26, h(8) < 35, h(9) < 46, h(10) < 58,

The metheds can be extended to additive problems where the summands
are integral-valued polynomials.

Solubility of Diophantine inequalities, and Waring’s problem with mixed
powers are other additive problems to which the method may be applied.

20. The case k = 12: Corrigendum and addendum to [14]. In [147, the
bounds (for «,, and ay;) given in the tables for k = 12 fall slightly short of
satislying (14) (required in the proof that G(12) € 134). This gap can be filled
in different ways, and quite easily by one application of the method in this
paper. As indicated in [13], the methods in [3] and [5] give

UYP (N) > N™*7% with a4 = 0.983527. Now computing &, for 36 <i <45
(given by these methods), it is possible to take 8,5 = 0.000824 in {10.12) (with
k=12, s=45).  Accordingly, oy =(1/12)-+(11+35,)cys/12 > 0984967,
which is sufficient for our purposes.

[The approximate values of the «’s (using the methods in [3] and [5] as
in [13]) are:

35 = 0.960301, ay, = 0963644, a3, = 0966705, azo = 0.969508, oy,
= 0972075, oy = 0974427, oy, = 097658, ayy = 0.978552, w4 = 0.980358,
ttys = 0.982012.]

]

21. Addendum to [13}. While it does not affect the proofs, the use of

the phrase ‘Admissible exponents’ in Lemma 18, should be modified
as in Lemma 9.1 in this paper when Davenport's method is used with 172!

<s<g12™h
‘22 Addendum to [15] (and [16)). Herc again, while the proof are

sufficient, the following adjustments have to be made (since Davenport’s
method was used with 1/2' <& 172 1)

(a) In the proof of Theorem 1, after using Theorem 3 (and before using
Davenport’s method), introduce the sets % as in Lemma 9.1 in this paper.
The integrals of the error terms over the basic intervals can be estimated
separately (similar to Lemma 26) without using Lemma 3. With these, the

20

proof is' precisely the same as before. (This is now improved to N = Z g+t
T, - ) g=1

in [17]) : ‘ . :

(b) Ip the proof of Theorem 2 (with the definitions as in {15]), (1) apply

icm
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Theorem 3 to the entire set K, (without Davenport's method for k = 6). This
also gives f; > 1/2 (cf. {16));(2) after using Theorem 3 for the set K, (and
before using Davenport’s method with k = 5 and 4), introduce the set %* as
in Section 17 in this paper. (Here, for k =4, | = 2 and § < i/4)) The singular
series has to considered with ke[K;u {2, 3,4, 5, 2417 (instead of with
2< k< 24), and this does not make any significant difference.

Acknowledgment. The author is indebted to the referee for many
valuable suggestions, and also for pointing out some useful references.
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