72 ‘ K.S. Williams and K. Hardy

{151 A. L. Whiteman, The cycloromic mambers of order ten, Proceedings of the Symposia in
Applied Mathematics 10, pp. 95-111, Amer. Math. Soc., Providence, Rhode Island 1960,

[i6] — The eyclotomic numbers of order twelve, Acta Arith. 6 (1960, pp. 33-76.

[17] K.S. Williams, Explicit forms of Kummer's complementary theorems to his law of quintic
veciprocity, J. Reine Angew. Math. 288 (1976}, pp. 207-210.

DEPARTMENT OF MATHEMATICS AND STATISTICS
CARLETOM UNIVERSITY
OTTAWA, ONTARIO, CANADA

K1§ 5Bé

Received on 10.5.1984
and in revised form on 25.10.1984 (1425)

icm

ACTA ARITHMETICA
XLVI{1985)

The distribution of square-free numbers
by
R. C. Baker (Egham) and F. Pintz (Budapest)

1. Introduction. Let

6
A(x)= 3 uz(n)wpx.

We write
W (0) =0-~[0]—% (6 real).

Let &> 0. Montgomery and Vaughan {3] showed, on the Riemann
hypothesis, that

(1) A(X) == Z ﬂ(n)lf/(ic—>+0(x1f2+z M—-l/l_l_M]_/z—;.a)’

2
nEM n
for any M > 0. They deduced that
A (X) = O(x9/23+s)_

Graham [17] improved the exponent 9/28 to 8/25. In- the present note we
sharpen this, proving
Tueorem. If the Riemann hypothesis is correct, then

A (}C) — O(x'.ij?.?.-i-t:)_

The new idea is contained in Lemma 3, which is quite similar to work of
Heath-Brown ([2], Section 4). We shall make several appeals to the
exponential sum estimate :

(2) Y e(nh) <A a4 AR

a<ngb
{0 < a < b < 2a, A real non-zero). See {41, Theorem 59. Here ¢(f) = g2t we
also write L = logx. Constants implied by ‘<’ and ‘0’ notations depend at
most on &.

LeMmMa 1. For some N, H with

(3) ) x-:/zz <N €x4,'11, 1/2 < H< x1/22’ )
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we have

A < | Y ¥ h_Iu(n)e(hx/nz}HxWMﬂ_

NepS2NIT<h<2H
Proof. Let J=x"?2, Just as in [2], Section 2, we have
) O =— Y El—,i—e(Oh)-i-O(min(l, jlm))
0 <|n| g7 2N el
Moreover,

1 o
min(l,mﬁ>= S a,e(0h),

h= —w

“where
(5) a, < min(LJS, Jh™2).

We apply (1) with M = x*'*, By a simple splitting up argument for the
interval [1, M] we have

(6) A(x)<L| ¥

N<ns2N

u(m) o (x/n?)| + x71227E,

where 1/2 < N < M/2. We may evidently suppose that

(N N > x7%2,
Now (4) gives
8) . 2 umyix/n®
‘ N<n<2N
__ 1 ! hx inf1 —L
~ 2mi 0_(%51;”“%”#(?1)8 ("z)-‘_o (qu:szrvmm (17 JHX/HZH))

1

1 hx x fx
= - ne| — |+0 ay, 2 | e .
27'5_1 0<%s1h1\'<;@2wu( ) (”2) (}|=Z—~:oo ’N<;€.2NL (”2))

An application of (5) and (2) yields
: hx IR L J\((ho'*  N?
(9) a e(m—) < LNJ 14 i (-_ B T D I S
h=z4:ao kw<nzs:m n* hgl i S’ N 'I_("UC)U2
' € Ix"2 4 [y x.1/2 N 4 LJ=U2=1/2 N2
< Lx"22

" in view of (7). The lemma follows on combining (6),. (8), '(9) and abplying a
further sphiting argument to the interval [1, J7.
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Lemma 2. Let 1 < U < NY3, For any complex function f on (N, 2N, the
sum
Y wmfm
N<ns2N

may he decomposed into O((logN)?) sums of the form

Yooan 2 fimn)

(I) X<msX, Y<nsyY,
N<mns 2N

with |a,] € N¥5, X, <2X,'Y, <2Y and

(10) ‘ Y>2NU™ Y
(11) Y by ¢, f (mn)
X<m€£Xy Y <nsY,
N<mn<lN

with |b,, |c.l <€ N5, X, <2X, Y, <2Y and
{1y UB<Y <N, ]
Proof. According to Montgomery and Vaughan [3],'
Y AmS(m)=58+8,,

N<n€2N
where
Se=— L Y aflm), an= Y uldnle),
mSUZ Nm~— L <pganm—1 ,;',(:32?}
S;=—2 2 ulme,fimm), c,= 3 ule).
m>U ax>U ein
N <mn€ 2N exl

By a splitting up argument applied to 1< m<2N, 1€<n<2N we
decompose S, and S, into O((logN)?) nonempty subsums §,; (=1, 2, ..)),
Sa k=1, 2,..) with domains of summation of the form

X<m<X,, Y<n<gY, N<mn<2N

with X, € 2X, Y, € 2Y. Evidently min(X, Y) <(2N)"/2. Moreover, X = U
and ¥ > U in the case of sums S,,. Since the coefficients u(m), ¢, are clearly
O (N*®), each sum S, is of type (II). (We may have to reverse the roles of m
and n.) _

For a sum Sy, it may be the case that ¥ > 2NU ™!, in this case §,; is of
type (I). Suppose now that Y <2NU™!, then

U<2NY™! < 8X €802,
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also’
Y>NU?4 2 Ujs
Evidently | -
U/$ < min{X, Y) < N'2,
and §;; is seen to be of type ().

2. Estimation of type (II) sums.
Lemma 3. Let

S= Z L Z bn
X<mz Xy Y<nsY,
N<mn=2N

hx
Z CFI e P b
H<h<2H (mn)

where all a,, b, ¢, have modulus < 1. Suppose that (3) holds and that

(12) N2x T g-1 ¢ ¥ ¢ NU2, -
Then
(13) ' § € Hx"?2+a2

Proof. Let @ be a positive integér, to be specified below. Let 7; be the
set of (n, h), Y<ng V¥, H<h<2H with

2HY 2(g—1)< Ohn~? < 2HY "24.

5= aéf{ T bc(L)}
X<msXy mq=1 (nh)eT,, o (mn)® J{

N<mn<IN

Then

By Cauchy’s inequality,

(14 IsP<xg ¥
X<m&X; ¢=1n0el,(rkel,
N<mpmr<2N

<X Y | X

nr hki{15)

m?

b, b,z e ((hn“ zﬂi:i’f)

e(x(hn™2—kr~ Y m=2).

XemeX
N<mn,mrsj.’2N
Here indicates a sum over quadruples with
nrki(15)
" (15) - Y<n,r<Y, H<h k<?2H,

=2 -k~ < 2HY 20" 1.

The contribution to Y
: : S nr hk(15)

~(18) < X(HY) e

from quadruples with hr? = kn? is
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by a divisor argument. The remaining quadroples can be split into O (L) sets
defined by (15) and

(17) A2 <|hn™ k™% £ 45
here
(18) Y * e A< 2HY 2071,

Combining (14), (16) we have
ISP € X2QHY)' "2+ LXQ ¥

mr ki (15).017)

e(x(hn™? —kr~H)m™ )
X<m<X,
N<mmmr< 2N

for one such 4.
Now the number of quadruples with (15) and (17) is

O(HY+AHY*)

by the argument of Heath-Brown [2] after his equation (16). We also have
the bound

min (X, (x4)"2 X~ +(x4)" 2 X?)
for the exponential sum in (14), by (2). Hence
(19) ISP <« X*Q(HY) 2+
| +LXQ (2 HY+AHY"min (X, (x4)2 X~ 1 4 (xd)” M2 X7)
éXZQ(HY)l +e[2_+_LQHY"tx1/2 AB/Z_i_LQHYAI-x—UZXZi Al/Z
< XPQ(HY)' PP L LQHY* X' 2(HY 2 Q7 1) + _
FIQHY*x~ 2 X3 (HY"2Q~1)'12
in view of (18). We now set
Q = [HN"2 x"'Y;

note that Q > 1 from (12). Since N €« XY < N (for § # 0) we have
(20) XZQ(HY)I +if2 @ XZ Y2 N—2 HZ x7f11+a < H2x7f]1+.s,
(21) LHS/Z X3 Y3 x--l,'Z Q1/z & LHZ NZ Yl/zx--lel & Hlx7[11+a‘
(Here we use the upper bound in (12) together with (3).) Similarly,
(22) : LQ"”ZHS"Z Yx1/2 < LH? NYU2 21t g f2 5T/

Combining (19)-(22), we obtain the bound (13).
Proof of the Theorem. By Lemma 1 it suffices to show that

' hx
(23) T= ¥ uln 3 h"le(—a*)@””“”"‘.
N<n€2N H<K€IH h
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whenever N, H satisfy (3). We apply Lemma 2 with

flm= % e(ﬁg)

H<hs2H n

U =max(1, 8N*x~VILH™Y),
Note that N < x93 and so U < NY3. The sum in (23) can be
decomposed into O([7) sums T; (i=1, 2, ...} each of type (I) or type (II} in
the sense of Lemma 2. Suppose |Tij = | T2l = ..., then
(24) T < 2 T,.
Suppose for a moment that T, is of type (iI); then
(25) T, < N H'S,

where § is a sum of the form that appears in Lemma 3; the condition {12) is
a consequence of (11). {23} follows on combining (24), {25) and (13), and the
theorem is proved in this case.

Now suppose that T; is of type (I). f U =1, then T; 15 an empty sum,
s0 we may suppose that UV > 1. Now

hx )
x<r§sxl my<§-i<¥1 (("m)z

N<mns 2N
hx
Lo 3
r<ngy, \mn)

N<mas$2N

2ZH. We apply (2) one last time, obtaining
Tp @ XN ((hxX 22 Y~ 4 (X 2~ V2 y3)
& Ns/4 hlfle,'z Y—l +Na/4(hx)—1/2 NZ_
Applying the lower bound (10) we obtain '
(26) Tl <« Ns/4-1 h1/2 xuz U+x§,’22+e

<<' NEAFL=3122 | (5[22+0 ¢ (8/22+r

T <

< XN¥* max .

X<m<Xy

for some h, H<h<

(23) follows on cornbmmg (24) and (26), and the proof of the theorem is
complete.
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