icm

A category analogue of the density topology
by

W. Poreda, E. Wagner-Bojakowska and W. Wilezynski (£6dz)

Abstract. In this paper we introduce the concept of an I-density point of a set for an arbitrary
o-ideal . In the case of the o-ideal of null sets it reduces to the notion of a density point and in
the case of the c~ideal of sets of the first category it gives a new notion, which seems to be quite
delicate and which can be considered as a starting point to the study of category analogues of
approximate continuity, differentiability and so on.

Our paper is a continuation of the previous research concerning similarities and differences
between measure and category and contributes, in some sense, to the excellent Oxtoby’s book [5].

We start with some remarks concerning convergence in measure. Let (X, S, m)
be a finite or o-finite measure space. It is well known that a sequence { Sutwen of
S-measurable real functions defined on X converges in measure to a function 1 if
and only if every subsequence {f, Ymew Of {f;},en contains a subsequence { /.
which converges a.e. to f. This fact allows us to introduce a generalization of the
notion of convergence in measure in the following way (see [91, [10], [11], [12]):
Let (X, §) be a measurable space and let /=S be a proper o-ideal ot sets. We say
that some property holds I-almost everywhere (in abbr. /-a.e.) if and only if the
set of points which do not have this property belongs to I. We say that a sequence
{fi}nen of S-measurable real functions defined on X" converges with respect to I to
some S-measurable real function f defined on X if and only if every subsequence
{frwtmen 0t {fi}nen contains a subsequence { Srmpipen Which converges to f I-a.e.

We shall use the notation
I

I w2t
Now let X = R (the real line), let S be the o-algebra of Lebesgue measurable

sets and m the Lebesgue measure. The point 0 is a density point of a set Ae S if

and only if
lim [@n)~tm(d A [~h, B)] = L.

h=0+
Observe that this condition is fulfilled if and only if
lim [@m)~tm(d A [~ )] = 1.

n—
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The last limit can be described in terms of convergence in measure in the following
way: 0 is a density point of A if and only if the sequence {x(,,,,n,‘[_lvl]},,w of
characteristic functions (where n-4 = {nx: xeA}) converges in measure to |
on the interval [—1, 1]. This fact is the basis for the following definition, where
X =R, Sis a c-algebra of subsets of R invariant with respect to linear transe
formations and I'=Sis a g-ideal also invariant with respect to linear transforma-
tions.

Dermvrion 1. We say that 0 is an I-density point of a set 4 e S if and only

if X(n.A)rx[—l,l] ;’}; L.

‘We say that x, is an I-density point of 4 € S if and only if 0 is an I-density
point of A~xo = {x—2x,: x € A}, We say that x, is an I-dispersion point of A e §
if and only if x, is an I-density point of R—d4. Observe that 0 is an I -dispersion,
point of 4 if and only if

I
Xomar-1,51 552 0.

Similarly one can define right- and left-hand I-density points. We can take
some interval [~a,a], a > 0, instead of [—1,1]. For a < 1 this follows im-
mediately from Definition 1, for a > 1 this is a consequence of Theorem 1.

In the sequel we shall consider only sets having the Baire property as the
o-algebra S and for I we shall always take the family of meager sets, Under these
assumptions we have:

THEOREM 1. 4 point x, is an I-density point of a set Be S if and only if for every
increasing sequence {t,},.y of positive real numbers tending to infinity there exists

a subsequence {t, lm.y such that LeneB=xonni-1,11 7> 1 Tae.

Proof. The “only if” part is immediate.

The “if” part is a consequence of the following lemma (cf. [6]):

LemMa. If A is an open set and the sequences {i,},.y and {Vi}nen have the following
properties: i, >0, j,> 0 for each me N, limi, = o, lim Ja= 0o, lim jfi, = 1

n-+c n~ o -t o0

and if Y ayor-1,1 s 0 Iae., then also Awdrnt=1,1) T2 0 La.e. ‘

Remark 1. From the above theorem it follows that the sequence {n},qy in
Definition 1 does not play a distinguished role. However, we shall always use this
sequence instead of {r,},.y for the sake of simplicity,

Let us introduce the following notation: P(4) = {xeR: x is an I-density
point of 4} for A€S; A~B always means that A A Be [,

THEOREM 2. For every 4,Be S

(1) $(A)~d

() if A~B, then ®(d) = B(B)

(3) 6(9) = &, $(R) = R

(4) (4 A B) = &(d) n 6(B).
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Proof. Conditions (2) and (3) follow immediately from the definition. Now
we prove (1). The set A has the Baire property, so' there exists an open set G and
two meager sets P;, P, such that 4 = (G—P)) U P, If xeG, then obviously
x€P(4), 50 G=P(d). Hence A—d(A)cA~GP, e I. Observe also that &(d)—~
—Ac=P, UFr(G)el Indeed, let x ¢ Py UFr(G) and suppose that x ¢ A. We
shall show that x ¢ $(4). If x¢ 4 and x¢Py, then x¢ G, so xeInt(R—G) and
xeP(R~G). But R~G)AR-A)=GA A €1, and in virtue of (2) x € & (R— A).
This means that x ¢ &(4). From the above reasoning we have ¢(4)—~A4 e, and
finally #(4) A A el This ends the proof of (1). To prove 4) first observe that if,
CeD, C,DeS, then obviously 2(C)=P(D). Hence &(4 N By d(d) n &(B),
because 4 N Bcd and 4 1 BcB. Now suppose that Xo€ P(4) N &(B). Then
let {n,}meny be an increasing sequence of natural numbers. From the assumption
that x, e &(4) it follows that there exists a subsequence {n, },ey such that
Kimy(a =300~ 1,1) 552 1 I-a.e. From the assumption that x, e & (B) it follows that
there exists a subsequernice {#np, bren such that Xomp,-(B—onni-1,177= > | Fa.e. Hence
we conclude that Lt (AnB=z0)n[-1,1] T 1 I-a.e., which means that x, € ®(4  B).
Thus #(4) N $(B)c (4 n B) and we are done. .

From the above theorem it follows that the operation @ coincides with the
so called “lower density” (see [5], Th. 22.4). Put 7, = {P(A)—N: AeS, NeI}.

THEOREM 3. Ty is a topology on the redl line. -

This theorem is a consequence of Proposition 1, Section 1, Chapter 5 from [3].

Remark 2. Observe that 7, = {deS: Ac=®(4)}. Indeed, it A4S and
AcP(A), then 4 = ¢(4)—(P(4)—4) and N = ®(A)—Ael from Theorem 2,
Claim (1), and so de 7. Conversely, if BeJ;, then B = ®(4)—N for some
AeSand Nel We have 4~®(4)~B, so A~B. In virtue of Theorem 2, Claim (2),
@ (A4) = @(B). This means ‘that B< @(B) and obviously BeS.

DerINITION 2. We call 7, the I-density topology.

. o0
Remark 3. There exists an open set E.= |J(q,, b,), where {By}nen -tends

n=1

decreasingly to zero, a,; < b,4; < @, for every n € N such that 0 is an I- dispersion
point of E (cf. [6]). ‘

From the above remark it follows that the notion of an I-density point is
rather delicate and different from the notion of a residual point, .

Obviously 7 is stronger than the natural topology on the real line, and so
it is Hausdorff topology. Let us list some other properties of 7.

THEOREM 4. Every countable subset of R is T ;-closed, Consequently, (R, T )
is not a separable space and every compact subspace of (R, 7)) is finite.

The proof is immediate. . .

THEOREM 5. (R, ) is not a regular (Ty) space. .

Proof. It suffices to observe that if Q is the set of rational numbers, then 0
and Q—{0} cannot be separated by I ;-open sets.
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Now we shall study some basic properties of continuous functions from (R, 7 )
into R equipped with the natural topology.

DEFINITION 3. We say that a function f: R — R is I-approximately continuous
at x, if and only if for every & > 0 the set £~ 1((f(xo)—&, f(%o)+¢)) has x, as an
I-density point.

DEFINITION 4. We say that a function f: R — R is I-approximately continuous
if and only if for every interval (y;, y,) the set f™*((y1, y,)) belongs to 7.

COROLLARY 1. From Theorem 5 it follows that the topology Z y in R is not the
coarsest topology for which every I-approximately continuous function is continuous.

From the above definitions we obtain immediately the following theorem:

THEOREM 6. A function f: R — R is I-approximately continuous if and only if

it is I-approximately continuous at every point.

THEOREM 7. A function f: R — R has the Baire property if and only if it is
I-gpproximately continuous I-a.e.

Proof. Suppose that f has the Baire property. Then there exists a residual
set EcR such that the restriction f|E is continuous. Then f is J/-approximately
continuous at every point of E, ie. it is I-approximately continuous I-a.e,

Now suppose that f: R — R is I-a.e. I-approximately continuous. Let a e R,
E = {x: f(x) <a}, and let 4 be the set where f is I-approximately continuous.
Since E—A is meager, it suffices to show that E n 4 has the Baire property. If
x € E n A, there exists a set E(x) having x as a point of J-density and having the
Baire property such that E(x)cE; further, we can take E(x)cA. Then En A4
= |J E(x). Suppose that E n 4 does not have the Baire property. There exists

xeEnd

a pair of sets K and H such that K< E n A< H, K is of type G5, H is of type F,,
H-Ke S-1I and for each Be S, if Bea H—(E n 4) or B<(E n A)—K, then Be Tl
(compare [2], Th. 1.6, p. 25). The set (E n 4)—K is of the second category (in the
opposite case E would have the Baire property), so there exists a point
X, € (E n A)—K which is an I-density point of H—K; this follows from the fact
that (E n A)—KcH—K and the set of points belonging to H— K which are not
I-density points of H—K belongs to I (according to Theorem 2). The point x, is
an I-density point of E(x,), hence it is also an I-density point of E(x,)—K
= E(x¢) n (H—K). It follows that E(x,)—KeS~TI and (E n 4)—K>E(xy)—K,
a contradiction. Thus E n 4 has the Baire property and the proof is finished.

TueoreM 8. If a function f: R — R is I-approximately continuous, then f is
of the first class of Baire and has the Darboux property.

Proof. We shall need the following lemma:

Lemma 1. If 0 is'an I-density point of a set A, then for every natural number n
there exists a number 6, > O such that for every h with 0 < h < 3, and for every
natural number k fulfilling the inequality —n <k < n—1 we have

k+1

R - iy P
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Proof of the lemma. Suppose that this is not the case, i.e. that there exists
a natural number n, such that for every § = m~1 (m natural) there exist 4,,
0 <h, <m™!, and a natural number k,, —n, < k,, < no—1, such that 4 n
n [’;—': Ry 15'1":—1--/1,,,] = . Obviously we can find a subsequence {km,}pen, Which
is constant. For simplicity we shall suppose that the whole sequence {Kptmen is
constant, k,, = k, for each natural m, and that ko > 0 (the case k, < —1 needs
only a slight modification). For each natural m let n,, be the greatest natural number
such that n,'h, < 1. Then we have lim n,h, = 1, because 11,,,7"—:?0. Hence we

m->co
have for sufficiently large m (n, A) N [ﬁ, M
L .
sequence {n,,,p} pey Such that Atenyr )n[=1,31 g 1 I-a.e. —a contradiction. The lemma

is proved.

]= @ and there is no sub-

Proof of the theorem. Observe that the lemma is true for x, instead of 0
and for the intervals [x, +:—:h, x0+$'h], where ke[—n,n—1] for some neN.
In this situation we say that 4 is relatively n-dense on [xq—#, xo+h].

Now suppose that f is not in the first class of Baire. According to the theorem
of Preiss [7], which is an immediate consequence of a classical theorem (cf. [4],
p- 395), there exists a perfect set F and two real numbers a,b (a < b) such that
the sets Ty = {x: f(x) < a} and T, = {x: f(x) > b} are both dense in F, (ie.
TynFoF and T, n FoF).

Let P;=T; be a countable set, dense in T; (thus also dense in F) for i = 1, 2.
Suppose that Py = {x;, X, ...}. For any natural n take a numbér §, > 0 such
that T is relatively n-dense in [x,—&,, x,+9J,] (and in every shorter interval con-
centric with it). The existence of §, follows from the lemma. Obviously we may
suppose that &, — 0. The set ¥, of points belonging to infinitely many intervals

of the form [x,—6,, x,+35,] is residual in F. Similarly we construct the set ¥,
(for T,), which is also residual in F. Hence ¥y n ¥, is residual'in F; in particular,
it is non-empty.

Now we shall show that if ¥ € ¥y, then X is not an J-dispersion point of Tj.
Let {m;},on be an increasing sequence of natural numbers such that X € [x,,, ~ 8,
X+ O ). For simplicity of notation assume that X = 0. Suppose that infinitely
many x,,’s are positive (in the other case the proof is similar). ’

Modifying the subsequence {m,};.y We can suppose that all x,,’s are positive.
Then the piece of the interval [x,, —0,,, Xp,+0m] lying to the right from zero is
greater than the piece lying to the left. For sufficiently big k let 1, be the greatest
natural number such that n(x,,+6,,) < 1. We have n,-(x,, + 5mk)-;;> 1, since

x,,,,c+5,,,k-k—->0. Let By = nm'(Ty 0 [0, X, +8,,)). The set T, is relatively m,-dense
- 00 . :
on [xm;(_ 6mka xmk'l' 5mk]'

Observe also that there exists an open (in the natural topology) set G<=Ty
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iwhich is dense in T;. Tndeed, T, = {x: fx) < a} ‘=, U1 {x: f(0) < a—ni}. Obvi-
T =
ously {x: f(x) < a—%} has the Baire property for each n, and so {x:f(x) < a—}}
= Gy AP, where G, is open and P, is of the first category. We shall show that
G,e{x: flx) < a-—%} for each n. Fix n and suppose that this is not the case. Then
there! exists a point x,& G,—{x: f(x)'< a—%}, so f(x,) > a~;1. Let ¢ >0 be
a number such that fle)—¢e> a——%. Since f is I-approximately continuous at x,,
we have {x: f(x) > f(x,)—¢} € T, x, is an I-density point of this set and obvi-
ously {x: f(x) > flxe)—e o {x: f(x) < a——%} =@. Let {x: f(x) > %) —e}
= G,AP,, where G, is open and P,el By the above argument we have
(G, AP)N(G,AP) = @, whence it follows immediately that G, n G, = @.
But x, is an J-density point of G, A P,, and so in every neighbourhood of x, there
are points of G,. If we take the component of G, containing x, in its interior, we

R 3 o .
arrive at a contradiction. Thus G, {x: f(x) < a—-%}. Hence G = ULGnCTl' It
e

suffices to show that G is_dense in Ty, Let x, € Ty. There exists n, such that x,
e{x:f(x) < a—nlx}. Now it is'easy to see that in every neighbourhood of x, there
are some points of G, .. This proves that G is dense in T}.

From the two facts, namely, the relative my-density of Ty on [x,,—d,,.,
Xm0, ] and the existence of open set G with the above properties we infer that

o
for every increasing sequence {k,},.y of natural numbers the union U1Ek’" contains
| Do =

. ) 4
an open set dense in [0,-1]. Hence the set lim supE,, is residual on [0, 1] and
oo

{xg }pen does not tend to zero I-a.e. We have proved the existence of a sequence
{M}ren without a subsequence {r;, }, ey for which By, p—_m;)0 I-a.e. This means that

0 is not an I-dispersion point of T, (because E,cn,-Ty).

Similarly one can prove that if X & T, then % is not an I-dispersion point of T,.
b—a .
Let now x,e€ ¥y N ¥, and let ¢ > O fulfils also the inequality & < 3 Let

T = f~4(f(xo0)—¢, f(xo)+£))- A point x, is an I-density point of T' and it is an
I-dispersion point neither of T; nor of T,. Hence Tn Ty % @ and T' " T}, # @.
Let x e T Ty, x’ €T n T, We have |f(x")~f(xo)| < & and [f(x")—f(x))| < e,
and simultaneously f(x) < a and f(x") > b. Hence |f(x)~f(x')| < 28 <b~a
and simultaneously f(x")—f(x") > b~a, a contradiction. Consequently f is of the
first class of Baire. .

The fact that f has the Dérboux property follows immediately from Th, 1.1
@ in 13

Remark 5. An analogous theorem holds for the density topology (see [3]).

CoROLLARY. 2. Every interval [a, b] is a connected set in (R, T)).
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