

A category analogue of the density topology

by

W. Poreda, E. Wagner-Bojakowska and W. Wilczyński (Łódź)

Abstract. In this paper we introduce the concept of an *I*-density point of a set for an arbitrary σ -ideal *I*. In the case of the σ -ideal of null sets it reduces to the notion of a density point and in the case of the σ -ideal of sets of the first category it gives a new notion, which seems to be quite delicate and which can be considered as a starting point to the study of category analogues of approximate continuity, differentiability and so on.

Our paper is a continuation of the previous research concerning similarities and differences between measure and category and contributes, in some sense, to the excellent Oxtoby's book [5].

We start with some remarks concerning convergence in measure. Let (X, S, m) be a finite or σ -finite measure space. It is well known that a sequence $\{f_n\}_{n\in N}$ of S-measurable real functions defined on X converges in measure to a function f if and only if every subsequence $\{f_n\}_{m\in N}$ of $\{f_n\}_{n\in N}$ contains a subsequence $\{f_n\}_{p\in N}$ which converges a.e. to f. This fact allows us to introduce a generalization of the notion of convergence in measure in the following way (see [9], [10], [11], [12]): Let (X,S) be a measurable space and let $I \subset S$ be a proper σ -ideal of sets. We say that some property holds I-almost everywhere (in abbr. I-a.e.) if and only if the set of points which do not have this property belongs to I. We say that a sequence $\{f_n\}_{n\in N}$ of S-measurable real functions defined on X converges with respect to I to some S-measurable real function f defined on f and only if every subsequence $\{f_n\}_{n\in N}$ or $\{f_n\}_{n\in N}$ contains a subsequence $\{f_n\}_{n\in N}$ which converges to f I-a.e. We shall use the notation

$$f_n \xrightarrow[n\to\infty]{I} f.$$

Now let X=R (the real line), let S be the σ -algebra of Lebesgue measurable sets and m the Lebesgue measure. The point 0 is a *density point* of a set $A \in S$ if and only if

$$\lim_{h\to 0^+} [(2h)^{-1} \cdot m(A \cap [-h, h])] = 1.$$

Observe that this condition is fulfilled if and only if

$$\lim_{n\to\infty}\left[(2n)^{-1}\cdot m(A\cap\left[-\frac{1}{n},\frac{1}{n}\right])\right]=1.$$

The last limit can be described in terms of convergence in measure in the following way: 0 is a density point of A if and only if the sequence $\{\chi_{(n-A)\cap[-1,1]}\}_{n\in\mathbb{N}}$ of characteristic functions (where $n \cdot A = \{nx: x \in A\}$) converges in measure to 1 on the interval [-1, 1]. This fact is the basis for the following definition, where X = R, S is a σ -algebra of subsets of R invariant with respect to linear transformations and $I \subset S$ is a σ -ideal also invariant with respect to linear transformations.

DEFINITION 1. We say that 0 is an *I-density point* of a set $A \in S$ if and only if $\chi_{(n\cdot A)\cap [-1,1]} \xrightarrow{I} 1$.

We say that x_0 is an *I*-density point of $A \in S$ if and only if 0 is an *I*-density point of $A-x_0 = \{x-x_0 : x \in A\}$. We say that x_0 is an *I-dispersion point* of $A \in S$ if and only if x_0 is an I-density point of R-A. Observe that 0 is an I-dispersion point of A if and only if

$$\chi_{(n\cdot A)\cap[-1,1]}\xrightarrow[n\to\infty]{I}0.$$

Similarly one can define right- and left-hand I-density points. We can take some interval [-a, a], a > 0, instead of [-1, 1]. For a < 1 this follows immediately from Definition 1, for a > 1 this is a consequence of Theorem 1.

In the sequel we shall consider only sets having the Baire property as the σ -algebra S and for I we shall always take the family of meager sets. Under these assumptions we have:

THEOREM 1. A point x_0 is an I-density point of a set $B \in S$ if and only if for every increasing sequence $\{t_n\}_{n\in\mathbb{N}}$ of positive real numbers tending to infinity there exists a subsequence $\{t_{n_m}\}_{m\in\mathbb{N}}$ such that $\chi_{(t_{n_m},(B-x_0))\cap[-1,1]} \longrightarrow 1$ I-a.e.

Proof. The "only if" part is immediate.

The "if" part is a consequence of the following lemma (cf. [6]):

LEMMA. If A is an open set and the sequences $\{i_n\}_{n\in\mathbb{N}}$ and $\{j_n\}_{n\in\mathbb{N}}$ have the following properties: $i_n > 0$, $j_n > 0$ for each $n \in \mathbb{N}$, $\lim_{n \to \infty} i_n = \infty$, $\lim_{n \to \infty} j_n = \infty$, $\lim_{n \to \infty} j_n/i_n = 1$ and if $\chi_{(I_n,A)\cap[-1,1]} \xrightarrow[n\to\infty]{} 0$ I-a.e., then also $\chi_{(J_n,A)\cap[-1,1]} \xrightarrow[n\to\infty]{} 0$ I-a.e.

Remark 1. From the above theorem it follows that the sequence $\{n\}_{n\in\mathbb{N}}$ in Definition 1 does not play a distinguished role. However, we shall always use this sequence instead of $\{t_n\}_{n \in N}$ for the sake of simplicity.

Let us introduce the following notation: $\Phi(A) = \{x \in R: x \text{ is an } I\text{-density}\}$ point of A for $A \in S$; $A \sim B$ always means that $A \triangle B \in I$.

THEOREM 2. For every $A, B \in S$

- (1) $\Phi(A) \sim A$
- (2) if $A \sim B$, then $\Phi(A) = \Phi(B)$.
- (3) $\Phi(\emptyset) = \emptyset$, $\Phi(R) = R$
- $(4) \ \Phi(A \cap B) = \Phi(A) \cap \Phi(B).$

Proof. Conditions (2) and (3) follow immediately from the definition. Now we prove (1). The set A has the Baire property, so there exists an open set G and two meager sets P_1, P_2 such that $A = (G - P_1) \cup P_2$. If $x \in G$, then obviously $x \in \Phi(A)$, so $G \subset \Phi(A)$. Hence $A - \Phi(A) \subset A - G \subset P_2 \in I$. Observe also that $\Phi(A) - G \subset P_2 \subset I$. $-A \subset P_1 \cup \operatorname{Fr}(G) \in I$. Indeed, let $x \notin P_1 \cup \operatorname{Fr}(G)$ and suppose that $x \notin A$. We shall show that $x \notin \Phi(A)$. If $x \notin A$ and $x \notin P_1$, then $x \notin G$, so $x \in Int(R-G)$ and $x \in \Phi(R-G)$. But $(R-G) \triangle (R-A) = G \triangle A \in I$, and in virtue of (2) $x \in \Phi(R-A)$. This means that $x \notin \Phi(A)$. From the above reasoning we have $\Phi(A) - A \in I$, and finally $\Phi(A) \triangle A \in I$. This ends the proof of (1). To prove 4) first observe that if, $C \subset D$, $C, D \in S$, then obviously $\Phi(C) \subset \Phi(D)$. Hence $\Phi(A \cap B) \subset \Phi(A) \cap \Phi(B)$, because $A \cap B \subset A$ and $A \cap B \subset B$. Now suppose that $x_0 \in \Phi(A) \cap \Phi(B)$. Then let $\{n_m\}_{m\in\mathbb{N}}$ be an increasing sequence of natural numbers. From the assumption that $x_0 \in \Phi(A)$ it follows that there exists a subsequence $\{n_{m_p}\}_{p \in N}$ such that $\chi_{(n_{m_p}(A-x_0))\cap[-1,1]} \xrightarrow[p\to\infty]{} 1$ I-a.e. From the assumption that $x_0 \in \Phi(B)$ it follows that there exists a subsequence $\{n_{m_{p_r}}\}_{r\in N}$ such that $\chi_{(n_{m_{p_r}},(B-\mathbf{x}_0))\cap [-1,1]} \xrightarrow[r\to\infty]{} 1$ I-a.e. Hence we conclude that $\chi_{(n_{m_{p_r}},(A\cap B-x_0))\cap [-1,1]}\xrightarrow[r\to\infty]{} 1$ *I*-a.e., which means that $x_0\in \Phi(A\cap B)$. Thus $\Phi(A) \cap \Phi(B) \subset \Phi(A \cap B)$ and we are done.

From the above theorem it follows that the operation Φ coincides with the so called "lower density" (see [5], Th. 22.4). Put $\mathcal{F}_I = \{ \Phi(A) - N : A \in S, N \in I \}$. THEOREM 3. \mathcal{F}_r is a topology on the real line.

This theorem is a consequence of Proposition 1, Section 1, Chapter 5 from [8]. Remark 2. Observe that $\mathcal{T}_I = \{A \in S : A \subset \Phi(A)\}$. Indeed, if $A \in S$ and $A \subset \Phi(A)$, then $A = \Phi(A) - (\Phi(A) - A)$ and $N = \Phi(A) - A \in I$ from Theorem 2, Claim (1), and so $A \in \mathcal{F}_I$. Conversely, if $B \in \mathcal{F}_I$, then $B = \Phi(A) - N$ for some $A \in S$ and $N \in I$. We have $A \sim \Phi(A) \sim B$, so $A \sim B$. In virtue of Theorem 2, Claim (2), $\Phi(A) = \Phi(B)$. This means that $B \subset \Phi(B)$ and obviously $B \in S$.

DEFINITION 2. We call \mathcal{F}_I the *I-density topology*.

Remark 3. There exists an open set $E = \bigcup_{n=1}^{\infty} (a_n, b_n)$, where $\{b_n\}_{n \in \mathbb{N}}$ tends decreasingly to zero, $a_{n+1} < b_{n+1} < a_n$ for every $n \in N$ such that 0 is an I-dispersion point of E (cf. [6]).

From the above remark it follows that the notion of an I-density point is rather delicate and different from the notion of a residual point.

Obviously \mathcal{I}_I is stronger than the natural topology on the real line, and so it is Hausdorff topology. Let us list some other properties of \mathcal{F}_I .

Theorem 4. Every countable subset of R is \mathcal{T}_I -closed. Consequently, (R, \mathcal{T}_I) is not a separable space and every compact subspace of (R, \mathcal{F}_I) is finite.

The proof is immediate.

THEOREM 5. (R, \mathcal{F}_I) is not a regular (T_3) space.

Proof. It suffices to observe that if Q is the set of rational numbers, then 0 and $Q-\{0\}$ cannot be separated by \mathcal{F}_r -open sets.

Now we shall study some basic properties of continuous functions from (R, \mathcal{F}_l) into R equipped with the natural topology.

DEFINITION 3. We say that a function $f: R \to R$ is I-approximately continuous at x_0 if and only if for every $\varepsilon > 0$ the set $f^{-1}((f(x_0) - \varepsilon, f(x_0) + \varepsilon))$ has x_0 as an I-density point.

Definition 4. We say that a function $f: R \to R$ is *I-approximately continuous* if and only if for every interval (y_1, y_2) the set $f^{-1}((y_1, y_2))$ belongs to \mathscr{T}_I .

COROLLARY 1. From Theorem 5 it follows that the topology \mathcal{T}_I in R is not the coarsest topology for which every I-approximately continuous function is continuous.

From the above definitions we obtain immediately the following theorem:

THEOREM 6. A function $f: R \to R$ is I-approximately continuous if and only if it is I-approximately continuous at every point.

Theorem 7. A function $f \colon R \to R$ has the Baire property if and only if it is I-approximately continuous I-a.e.

Proof. Suppose that f has the Baire property. Then there exists a residual set $E \subset R$ such that the restriction f|E is continuous. Then f is I-approximately continuous at every point of E, i.e. it is I-approximately continuous I-a.e.

Now suppose that $f: R \to R$ is I-a.e. I-approximately continuous. Let $a \in R$, $E = \{x: f(x) < a\}$, and let A be the set where f is I-approximately continuous. Since E-A is meager, it suffices to show that $E \cap A$ has the Baire property. If $x \in E \cap A$, there exists a set E(x) having x as a point of I-density and having the Baire property such that $E(x) \subseteq E$; further, we can take $E(x) \subseteq A$. Then $E \cap A$ $= \bigcup E(x)$. Suppose that $E \cap A$ does not have the Baire property. There exists a pair of sets K and H such that $K \subset E \cap A \subset H$, K is of type G_{δ} , H is of type F_{σ} , $H-K \in S-I$ and for each $B \in S$, if $B \subset H-(E \cap A)$ or $B \subset (E \cap A)-K$, then $B \in I$ (compare [2], Th. 1.6, p. 25). The set $(E \cap A) - K$ is of the second category (in the opposite case E would have the Baire property), so there exists a point $x_0 \in (E \cap A) - K$ which is an *I*-density point of H - K; this follows from the fact that $(E \cap A) - K \subset H - K$ and the set of points belonging to H - K which are not I-density points of H-K belongs to I (according to Theorem 2). The point x_0 is an I-density point of $E(x_0)$, hence it is also an I-density point of $E(x_0)-K$ $= E(x_0) \cap (H-K)$. It follows that $E(x_0) - K \in S-I$ and $(E \cap A) - K \supset E(x_0) - K$, a contradiction. Thus $E \cap A$ has the Baire property and the proof is finished.

THEOREM 8. If a function $f: R \to R$ is I-approximately continuous, then f is of the first class of Baire and has the Darboux property.

Proof. We shall need the following lemma:

LEMMA 1. If 0 is an I-density point of a set A, then for every natural number n there exists a number $\delta_n > 0$ such that for every h with $0 < h < \delta_n$ and for every natural number k fulfilling the inequality $-n \le k \le n-1$ we have

$$A \cap \left[\frac{k}{n} \cdot h, \frac{k+1}{n} \cdot h\right] \neq \emptyset$$
.

Proof of the lemma. Suppose that this is not the case, i.e. that there exists a natural number n_0 such that for every $\delta = m^{-1}$ (m natural) there exist h_m , $0 < h_m < m^{-1}$, and a natural number k_m , $-n_0 \leqslant k_m \leqslant n_0 - 1$, such that $A \cap \left[\frac{k_m}{n_0} \cdot h_m, \frac{k_m + 1}{n_0} \cdot h_m\right] = \emptyset$. Obviously we can find a subsequence $\{k_m\}_{p \in \mathbb{N}}$, which is constant. For simplicity we shall suppose that the whole sequence $\{k_m\}_{m \in \mathbb{N}}$ is constant, $k_m = k_0$ for each natural m, and that $k_0 \geqslant 0$ (the case $k_0 \leqslant -1$ needs only a slight modification). For each natural m let n_m be the greatest natural number such that $n_m \cdot h_m \leqslant 1$. Then we have $\lim_{m \to \infty} m_m \cdot h_m = 1$, because $h_m \xrightarrow[m \to \infty]{} 0$. Hence we

have for sufficiently large m $(n_m \cdot A) \cap \left[\frac{k_0}{n_0}, \frac{k_0 + \frac{1}{2}}{n_0}\right] = \emptyset$ and there is no subsequence $\{n_{m_p}\}_{p \in \mathbb{N}}$ such that $\chi_{(n_{m_p} \cdot A) \cap [-1, 1]} \xrightarrow[p \to \infty]{} 1$ I-a.e. —a contradiction. The lemma is proved.

Proof of the theorem. Observe that the lemma is true for x_0 instead of 0 and for the intervals $[x_0 + \frac{k}{n}h, x_0 + \frac{k+1}{n}h]$, where $k \in [-n, n-1]$ for some $n \in \mathbb{N}$. In this situation we say that A is relatively n-dense on $[x_0 - h, x_0 + h]$.

Now suppose that f is not in the first class of Baire. According to the theorem of Preiss [7], which is an immediate consequence of a classical theorem (cf. [4], p. 395), there exists a perfect set F and two real numbers a, b (a < b) such that the sets $T_1 = \{x: f(x) < a\}$ and $T_2 = \{x: f(x) > b\}$ are both dense in F, (i.e. $\overline{T_1 \cap F} \supset F$ and $\overline{T_2 \cap F} \supset F$).

Let $P_i \subset T_i$ be a countable set, dense in T_i (thus also dense in F) for i=1,2. Suppose that $P_1=\{x_1,x_2,\ldots\}$. For any natural n take a number $\delta_n>0$ such that T is relatively n-dense in $[x_n-\delta_n,x_n+\delta_n]$ (and in every shorter interval concentric with it). The existence of δ_n follows from the lemma. Obviously we may suppose that $\delta_n \xrightarrow[n\to\infty]{} 0$. The set V_1 of points belonging to infinitely many intervals of the form $[x_n-\delta_n,x_n+\delta_n]$ is residual in F. Similarly we construct the set V_2 (for T_2), which is also residual in F. Hence $V_1 \cap V_2$ is residual in F; in particular, it is non-empty.

Now we shall show that if $\bar{x} \in V_1$, then \bar{x} is not an *I*-dispersion point of T_1 . Let $\{m_k\}_{k \in N}$ be an increasing sequence of natural numbers such that $\bar{x} \in [x_{m_k} + \delta_{m_k}, x_{m_k} + \delta_{m_k}]$. For simplicity of notation assume that $\bar{x} = 0$. Suppose that infinitely many x_{m_k} 's are positive (in the other case the proof is similar).

Modifying the subsequence $\{m_k\}_{k\in N}$ we can suppose that all x_{m_k} 's are positive. Then the piece of the interval $[x_{m_k}-\delta_{m_k},x_{m_k}+\delta_{m_k}]$ lying to the right from zero is greater than the piece lying to the left. For sufficiently big k let n_k be the greatest natural number such that $n_k \cdot (x_{m_k}+\delta_{m_k}) < 1$. We have $n_k \cdot (x_{m_k}+\delta_{m_k}) \xrightarrow[k\to\infty]{} 1$, since $x_{m_k}+\delta_{m_k}\xrightarrow[k\to\infty]{} 0$. Let $E_k=n_k \cdot (T_1\cap [0,x_{m_k}+\delta_{m_k}])$. The set T_1 is relatively m_k -dense on $[x_{m_k}-\delta_{m_k},x_{m_k}+\delta_{m_k}]$.

Observe also that there exists an open (in the natural topology) set $G \subset T_1$

which is dense in T_1 . Indeed, $T_1 = \{x: f(x) < a\} = \bigcup_{n=0}^{\infty} \{x: f(x) \le a - \frac{1}{n}\}$. Obviously $\{x: f(x) \le a - \frac{1}{n}\}$ has the Baire property for each n, and so $\{x: f(x) \le a - \frac{1}{n}\}$ $=G_n \triangle P_n$ where G_n is open and P_n is of the first category. We shall show that $G_n \subset \{x: f(x) \leq a - \frac{1}{n}\}$ for each n. Fix n and suppose that this is not the case. Then there exists a point $x_n \in G_n - \{x: f(x) \le a - \frac{1}{x}\}$, so $f(x_n) > a - \frac{1}{x}$. Let $\varepsilon > 0$ be a number such that $f(x_n) - \varepsilon > a - \frac{1}{\epsilon}$. Since f is I-approximately continuous at x_n . we have $\{x: f(x) > f(x_n) - \varepsilon\} \in \mathcal{F}_I$, x_n is an *I*-density point of this set and obviously $\{x: f(x) > f(x_n) - \varepsilon\} \cap \{x: f(x) \le a - \frac{1}{n}\} = \emptyset$. Let $\{x: f(x) > f(x_n) - \varepsilon\}$ $=\hat{G}_n \triangle \hat{P}_n$, where \hat{G}_n is open and $\hat{P}_n \in I$. By the above argument we have $(\hat{G}_n \triangle \hat{P}_n) \cap (G_n \triangle P_n) = \emptyset$, whence it follows immediately that $\hat{G}_n \cap G_n = \emptyset$. But x_n is an *I*-density point of $\hat{G}_n \triangle \hat{P}_n$, and so in every neighbourhood of x_n there are points of \hat{G}_n . If we take the component of G_n containing x_n in its interior, we arrive at a contradiction. Thus $G_n \subset \{x : f(x) \le a - \frac{1}{n}\}$. Hence $G = \bigcup_{n=0}^{\infty} G_n \subset T_1$. It suffices to show that G is dense in T_1 , Let $x_0 \in T_1$. There exists n_x such that x_0 $\in \{x: f(x) \le a - \frac{1}{n}\}$. Now it is easy to see that in every neighbourhood of x_0 there are some points of $G_{n_{x}+1}$. This proves that G is dense in T_{1} .

From the two facts, namely, the relative m_k -density of T_1 on $[x_{m_k} - \delta_{m_k}, x_{m_k} + \delta_{m_k}]$ and the existence of open set G with the above properties we infer that for every increasing sequence $\{k_p\}_{p \in N}$ of natural numbers the union $\bigcup_{p=1}^{\infty} E_{k_p}$ contains an open set dense in [0,1]. Hence the set $\limsup_{p \to \infty} E_{k_p}$ is residual on [0,1] and $\{\chi_{E_{k_p}}\}_{p \in N}$ does not tend to zero I-a.e. We have proved the existence of a sequence $\{n_k\}_{k \in N}$ without a subsequence $\{n_{k_p}\}_{p \in N}$ for which $\chi_{E_{k_p}} \xrightarrow[p \to \infty]{} 0$ I-a.e. This means that 0 is not an I-dispersion point of I (because $E_k = n_k \cdot T_1$).

Similarly one can prove that if $\overline{x} \in T_2$, then \overline{x} is not an *I*-dispersion point of T_2 . Let now $x_0 \in V_1 \cap V_2$ and let $\varepsilon > 0$ fulfils also the inequality $\varepsilon < \frac{b-a}{3}$. Let $T = f^{-1}((f(x_0) - \varepsilon, f(x_0) + \varepsilon))$. A point x_0 is an *I*-density point of T and it is an *I*-dispersion point neither of T_1 nor of T_2 . Hence $T \cap T_1 \neq \emptyset$ and $T \cap T_2 \neq \emptyset$. Let $x' \in T \cap T_1$, $x'' \in T \cap T_2$. We have $|f(x') - f(x_0)| < \varepsilon$ and $|f(x'') - f(x'')| < 2\varepsilon < b-a$ and simultaneously f(x') < a and f(x'') > b. Hence $|f(x') - f(x'')| < 2\varepsilon < b-a$ and simultaneously f(x'') - f(x') > b-a, a contradiction. Consequently f is of the first class of Baire.

The fact that f has the Darboux property follows immediately from Th. 1.1 (2) in [1].

Remark 5. An analogous theorem holds for the density topology (see [3]). Corollary 2. Every interval [a, b] is a connected set in (R, \mathcal{T}_1) .

References

- A. Bruckner, Differentiation of real functions, Lecture Notes in Math., No 659, Springer-Verlag, Berlin, Heidelberg, New York 1978.
- J. P. R. Christensen, Topology and Borel Structure, North-Holland Mathematics Studies, Vol. X, North-Holland American Elsevier, Amsterdam-London-New York 1974.
- [3] C. Goffman and D. Waterman, Approximately continuous transformations, Proc. Amer. Math. Soc. 12 (1961), pp. 116-121.
- [4] K. Kuratowski, Topology, Academic Press, 1966.
- [5] J. C. Oxtoby, Measure and category, Springer-Verlag, New York 1971.
- [6] W. Poreda, E. Wagner-Bojakowska, W. Wilczyński, Remarks on I-density and I-approximately continuous functions (in preparation).
- [7] D. Preiss, Approximate derivatives and Baire classes, Czech. Math. J. 21 (96) 1971, pp. 373-382.
- [8] A. Z. Tulcea and C. Z. Tulcea, Topics in the theory of lifting, Ergebnisse der Math., Band 48, Springer-Verlag, Berlin, Heidelberg, New York 1969.
- [9] E. Wagner, Sequences of measurable functions, Fund. Math. 112 (1981), pp. 89-102.
- [10] W. Wilczyński, Spaces of measurable functions, Rend. Circ. Mat. Palermo, Serie II, Tomo XXX (1981), pp. 97-110.
- [11] Convergence of sequences of measurable functions, Acta Math. Sci. Hung. Tomus 36 (1-2) (1980), pp. 125-128.
- [12] — Convergence almost everywhere of sequences of measurable functions, Colloq. Math. 45 (1981), Fasc. 1, pp. 119-124.

INSTYTUT MATEMATYKI UNIWERSYTETU ŁÓDZKIEGO 90-238 Łódź, S. Banacha 22

Received 29 July 1983