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Exotic ANR’s via null decompositions
of Hilbert cube manifolds

by

S. Singh (San Marcos, Tex.)

Abstract, The following theorem is proved.
TueoreM. For each Hilbert cube manifold M@, there exists a family {G: A in A} of upper
i d itions having the cardinality of continuum such that: (a) For each 2 in A,
the nondegenerate elements of Gj form a null collection of arcs and the associated decomposition
space MG, is an ANR; (b) any two decomposition spaces are topologically distinct, i.e., the family
of ANR’s M2/Gy's has the cardinality of continuum; (¢) for each A inA, M@|G; does not contain
any proper subset of dimension 3 2 which Is an PANR; and (d) for each A in A, M 2/G, % I is homeo-
morphic to M Qx| where I = [—1,1]. Moreover, the family of decomposition can be constructed
0 that, in addition, M2/G), is rigid (the only self-homeomorphism is the identity) for each A in A. This
result generalizes our earlier similar result for finite dimensional manifolds. .

§ 1. Introduction. By. AR (ANR) we mean compact metric absolute (neighbor-
hood) retract. Bing and Borsuk [5] gave an example of an upper semicontinuous
decomposition of the 3-cell whose nondegenerate elements form a null collection
of arcs such that: the associated decomposition space is a 3-dimensional AR which
does not contain any disk. This work of Bing and Borsuk is extended in several
directions in various papers; see [22, 23, 24, 25, 26, 28]. As a sample, we state the
following result which appears in [25]:

THEOREM. For each topological n-manifold with. 3 < n < o, there exists an
upper semicontinuous decomposition whose nondegenerate elements form a null col-
lection of arcs such that: the associated decomposition space is an n-dimensional
ANR (or AR when the n-manifold is the n-cell) which does not contain any proper
subset which is an FANR of dimension 2.

A compact metric fundamental absolute neighborhood retract is denoted by
FANR; this terminology is due to Borsuk [8]. The class of FANR sets includes
ANR sets and compacta shape equivalent to ANR sets; see Borsuk [8] for a sharper
statement.

The purpose of this paper is to ‘extend the theorem given above. Indeed, this
theorem remains valid in its entirety when the phrase “Q-manifold” is substituted
for the phrase “topological n-manifold with 3 < n < c0”; see § 5 for a sharper
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and more specific statement. This work is based on T. Lay’s thesis [21] and our
earlier work [25]. We have set things up so that we may apply “the Backing-up
Technique” given in [25]. This has helped in keeping the length under control,
however, this required a caretul review of some crucial results from [21]. In the
review, we have also included some proofs whenever they were necessary for latter
development, clarification, and motivation. The reader interested in the cell-like
decompositions of the Hilbert cube manifolds whose every element is nondegenerate
may consult [21] which proceeds in the spirit of [14].

The main results of this paper were announced in [3]. This work is dedicated
to the memory of late Professor K. Borsuk whose mathematics is a source of
inspiration. Finally, I wish to thank Steve Armentrout and R. J. Daverman for
helpful conversations.

§ 2. Notation and terminology. There are two types of manifolds that appear
in this paper. They are: (a) finite dimensional n-manifolds or simply #-manifolds,
and (b) infinite dimensional Hilbert cube manifolds or Q-manifolds where Q de-
notes the Hilbert cube. We often denote by M" an n-manifold which may have
nonempty boundary. All n-manifolds considered here will be orientable. We often
denote a Q-manifold by M2. A good reference for Q-manifold theory is Chapman
{10]. We equate Q with IT I, where I, = [—1,1], and we often factor Q as,

izl

Q=1Ix O 41, Where " = 11 I and Q. =[] I.. A disk with holes is a possibly
i=1 i>n

disconnected compact planar 2-manifold with boundary. All maps will be continuous.
We denote by Intd and Bd 4, the interior of 4 and the boundary of 4, respectively.
A 2-cell is often called a disk. We denote the compact n-ball, consisting of all the
vectors in the real Euclidean n-space E® having length <1, by B". The boundary
sphere of B" is denoted by S"~* .A collection C of subsets of a metric space is called
null provided for each ¢ > 0 there are at most finitely many sets in C each of whose
diameter is larger than &. The term “PL” will mean “piecewise lineat”.

§ 3. Wild Cantor sets in Q-manifolds.

(3.1) General comments. The combined works of Antoine [1] and Blankin-
ship [6] give an example of a wild Cantor set in E" for each 1 3> 3. Wong [27] gave
a similar example of a wild Cantor set in the Hilbert cube Q. Recently, Daverman—
Edwards [13] have given a general technique for producing wild Cantor sets in
an r-manifold with n > 3. An extension of this technique for Q-manifolds is
given by Lay [21].

‘We are mainly interested in the wild Cantor set construction in 0 -manifolds
given by Lay [21]. The section is devoted to a quick review of some useful results
from [21] with .a view to our specific application.

(3.2) I-essential maps and a property (CR). Consider the product M x B>
where M is a topological space (a manifold in our application) and B? is the 2-disk,
‘We shall identify M with the subset M x {0} of M x B* whenever the context is
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clear where O denotes a point in IntB%, A map h: H — Mx B> from a disk with
holes is called I-essential (“interior essential”) if h(Bd H)< M x BAB? and there is
no map &': H — M xBdB* which agrees with / along BAdH. A subset N of Mx
xIntB* satisfies Property (CR) in Mx B® if the image of any I-essential map
h: H - M x B* from a disk with holes meets N. Note that the “core” M x {0} has
(CR) in M xB?; the geometric idea is to replace this core by some other subset
without destroying this property, and hence, the name (CR) stands for core re-
placement in this sense. Property (CR) is called Property (+) in, [21].

(3.3) A Core REPLACEMENT LEMMA. Suppose M denotes a compact, orientable,
PL n~manifold with or without boundary. Suppose C is a Cantor set in M x B* Then,
Jor each & > 0, there exists a compact, orientable, PL n~manifold N with or without
boundary such that:

‘(a) Nx.B* is contained in (M xIntB?~C,
(b) N has Property (CR), and
(c) each component of N has diameter less than e.

Note. The products Nx B> and MxB? are not ambiently related. More
specifically, the product Nx B? is abstract and the B factor in Nx B2 is not con-
tained in the B* factor in M x B2, This is similar to the construction of Antoine’s
necklace where the product structures on the successive manifolds (unijon of disjoint
tori) are not related. As a rule, interpret all products to be abstract unless to the
contrary is clear from the context. :

This lemma is extremely useful for producing wild Cantor sets (missing some
preassigned Cantor sets) in M x B2, Daverman and Edwards first proved this lemma
for a closed n-manitold M. The extended version given above is due to Lay [21];
see Chapters II-IIT of [21]. )

The geometric meaning of this lemma can be éasily understood as follows.
The reader may draw a figure as in the construction of Antoine necklace [1, 5, 6].
Note that the curve J = {m}xBdB? is essential in the complement of M. This
lemma guarantees that J is also essential in the complement of Ny = N since Ny
satisfies (CR). Now apply the lemma to N; x B> to find N, and conclude that J
remains essential in the complement of N,. Continue in this manner to find
Ny, Ny, o such that J is essential in the complement of each N;, 1 <7< o0, and
the intersection of Ny x B%, N, x B?, ... is a zero dimensional compact set C’ (use (c)
to make the diameters of the components of N; go to zero as i goes to c0). By
discarding isolated points if necessary assume C’ is a Cantor set. The key fact is
that C’ satisfies (CR) in M x B%; in particular, the curve J is essential in (M x B—-C,
and thus, C’ is wild. For a complete proof see [21].

The following lemma due to Lay [21] shows how the preceding lemma can
be used to comstruct wild Cantor sets in Q-manifolds (compare Wo‘ng [27]).

(3.4) LemMA (A construction ‘of Wild Cantor sets in Q-manifolds). Every
compact Q-manifold M contains a wild Cantor set.. .
6!
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For the purpose of notation as well as other reasons, it is instructive to sketch
a proof of this lemma.

Proof. By the Triangulation Theorem (cf. [10]), M2 can be factored M2
= M x B> x Q. PutJ = {m} x Bd B* x {g} where m and g belong to M and Q, respectively.

Step (0): Put Ny = M and n(0) =
Step (1): Choose n(1) > n(0) such that diam Qn(1)+1< - Use (3.3) to find

a compact orientable PL (n+#7(1))-manifold Ny satisfying (CR) and having a PL
product neighborhood N, xB? contained in Nox Iy X Ip % ... X Iy x Int B2

1
* Step (2): Choose n(2) > n(l) such that diamQ; 5541 < 7 Use (3.3) to find

a compact orientable PL (n+n(2)-manifold N, satisfying (CR) and having a PL
product neighborhood N, x B, contained in Ny X (Jyqy+1X « X Jyay) X B2
Continue in this manner (the inductive step is clear). Put S; = N;% Q4
and let C denote the intersection of the nested sequence S, x.B%, S, x B?, ... We
refer to the collection of components of S; x B? by ith stage ot the construction.
Now C is a 0-dimensional compact metric space (review (c¢) of (3.3)) which, if
constructed more carefully, is a Cantor set or it contains a Cantor set with the
desired properties. At any rate, assume (without loss of generality) C is a Cantor set.
Let f: D ~ M2 be a map from a 2-disk such that f restricted to Bd D is a homeo-
morphism onto J. Since f is I-essential, f(D) meets S;xB? for each i > 1, and
thus, f(D) meets C. This proves that the fundamental group 7=,(M2—C) of the
complement. of C is nontrivial (since the loop J essential). Thus, C is wild. H

4. Construction of decompositions.

" (4.1) Linking in Q-manifolds. Suppose X and Y are two disjoint compact
subsets of a Q-manitold M2 We say X links Y if each neighborhood of X contains
a loop in (M®— ¥) which is essential in (M2— ¥). The following useful lemma due
to Lay [21] is a generalization to Q-manifolds of a finite dimensional result given
in [24]; see [24] for more discussions on linking in manifolds. An embedding of
a manifold M"” into another manifold N™ is said to be proper if it carries boundary
and interior of M" into boundary and interior of N™, respectively.

(4.1.1) A LiNkiNG LEMMA. Suppose Mx Q is a compact Q-manifold where
M is a compact connected PL n-manifold with n > 3. Suppose A is a closed subsct
of MxQ such that there exists an essential map h: A — S'. Then there exists an
integer k and a compact (n+k—2)-manifold N properly embedded in M x I* such that:

(2) N has a PL product neighborhood Nx B* in M x I¥,

(b) NxB*% Qyyy is contained in (Mx Q)—A, and

(c) A links Nx Q...

We present a proof of this crucial lemma since it is elementary and not lengthy.
Our proof is a slightly modified version of the proof given in [21]. Since [21] may
not be as readily available, we give sufficient details.
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Proof. Since S* is an ANR, there exists an extension of / to a neighborhood
of A. Choose a compact Q-manitold nbd. ¥ of 4 and an extension H: ¥ — St
such that H is essential. Let « and b be two distinct points of S, Write S* as the
union of two arcs L, R whose intersection is the set {a, b} consisting of their com-
mon endpoints, Choose an integer m such that the images, PulH 7Y@), pu(H™1(B)),
of the disjoint compact sets, H~*(a), H™'(b), are disjoint under the projection
map p,: MxQ — MxI". Choose a compact, bicollared, properly embedded PL
(n+m~1)-manifold N, contained in M x I" which separates the disjoint compact
subsets p,,(H™*(«)) and p,(H ().

Note that the intersection of the three sets H~*(L), H *(R), and N, x Q...
is empty. Choose an integer k& > m such that the intersection of three sets pk(H L),

P(H™1(R)), and py(Ny X Q,41) under the projection py: M x @ — M x I, is empty.
Choose a compact, properly embedded, and bicollared PL (14 k—2)-manifold N
in Ny % I 4q % ... x I separating the compact subsets [p(H (L)) N PNy X Q)]
and [p(H 1(R) N Pi(Ny % Qp1.1)]. Observe that the collars can be used to produce
a PL product neighborhood N'xB? in MxI*. Also, observe that Nx Q,., does
not meet 4. Thus a suitable thickening NxB?x Q,,; of Nx Q. is contained
in (Mx Q)—A. The only remaining step is to show that 4 links Nx Q.. This
is done below.

By the Bridge Theorems of Hu [17; p. 59], find the nerve L of a suitable open
cover of 4 such that A is homotopic to the composite doc where ¢: 4 — L is
a canonical map and d: L — §! is a suitable map. Observe that d is essential. This
implies that the restriction d': L' — §* of d to the 1-skeleton L* of L is also essential
since S* is aspherical (i.e., the higher homotopy groups of S* vanish). Find 2 map
e: L' — V such that H . e is homotopic to d’. Use the local path connectedness
of ¥ to construct ¢ or this follows from shape theory [8]. It is easy to see that there
exists a map g: S' — L' such that H.eog is essential. We next show that the
map f = eog: §* — V determines a loop which is essential in the complement
of NX Qpri.

Let F; B* -+ Mx Q be an extension of f (observe that our proof is finished
if there is no extension F). Consider F = (F;, F,) where F; = p,o F. Adjust F,
a little bit so that the new map which is again denoted by F satisfies: (a) the restriction
of Ho Fto$* = BdB? is still essential, and (b) F~*(N; X Q,,+,) is a finite collection
of disjoint simple closed curves and spanning arcs. Since H o F restricted to S* is
essential and N, X Qu+, soparates H™(a) from H™*(), there exists at least one
spanning arc « such that HF(Bd«) meets both L and R. Now F(c), and hence,
F(B?) meets Nx Qpyy Since Nx Oy separates the sets [H™(L) N (Ny X Qpuy)]
and [H™*(R) N (Ny % QD] This finishes the proof. B

(4.2) A countable collection of thickened codimension two manifolds. Suppose

2 == M"x Q denote a compact and connected Q-manifold where M" is a PL
n-manifold with n > 3. For each integer k > 1, choose a countable collection %,
of compact PL (#-+%)-manitolds such that: (a) each manifold is properly embedded
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in M"xI* (b).each is of the form S, x B> where S, is an (n+k~—2)-manifold called
the surface of the original (n+k)-manifold, and (c) for each & > 0 and for each
proper embedding e: Sx B — M"x I¥, there exists a manifold S, x B? in %, and

‘a surjective PL homeomorphism e': Sx.B? — S, xB* such that the distance
between the points e(x) and e'(x) is less than ¢ for each x in §x B2 Define %,
= {€ % Qi1 € belongs to ¥,}. Let € denote the union of the collections &, @s, ...
Enumerate clements of ¥ as M, M,, ... so that each element of ¥ is repeated
infinitely many times.

(4.3) Dyadic arcs. Recall M2 = M"x Q is a compact and connected Q-mani-
fold where M" is a PL n-manifold with n > 3. We will be brief and rely on [25]
for details. A collection {X;: 1< i < n} consisting of disjoint subsets of a metric
space X is called a d-chain provided each X, has diameter less than & and each
of the sets (X; U X)), (X U X3),..., (X,—; U X,), (X, U X, has diameter less
than 25; see [25] for some discussion relevant to this notion. We inductively proceed
to construct a null sequence of arcs one for each element M, of ¥ (see (4.2) for
a definition of #). These arcs are called “dyadic arcs” for geometric reasons.

Step 1. Proceed as in Lemma (3.4) to construct a wild Cantor set C in M.
Let {M(1,1), M(1,2),..., M(L, k(1))} denote the first stage in the comstruction
of C (see proof of Lemma (3.4) for the definition of ith stage). We construct this
first stage with additional care so that it is a }-chain (in M,). By a suitable ramifi-
cation process, see Cannon-Daverman ([9]; page 376]) or [25], we construct
a “parallel” first stage and a “parallel” Cantor set C’. The word “parallel” indicates
the geometric meaning, i.e., C and C' are disjoint and isotopic by an isotopy that
carries stages of C to the disjoint stages of C’; see [25] for more discussions. For
each i, 1 < i< k(1), put C(1,1) = Cn M(1,4) and C'(1,7) = C' A M(1, ). We
say C(1,7) and C’(l, ) are two parallel Cantor sets in M (1,7). Let A(1,{) be an
arc ‘inside M(1,7) which contains C(1, ) so that 4(1,:) is PL modulo C(1,i).
Similarly, find an arc 4'(1,7) in M(l, i) containing C'(l,7) so that A(l,i) and
A'(1,i) are parallel. Observe that {A(1,7) U A'(1,i): 1 <i<k(l)} is 4-chain
inside M, and we call it -chain of parallel arcs substituting for M,. For each i,
1 < i< k(1), construct a dyadic arc L(1,i) containing A(1,7) and 4'(1,7); the
details are as in [25] and we omit them. Observe that {L(1,7): 1 < I < k(1)} is
a l-chain in M; and we call it 1-chain of dyadic arcs substituting for M.

1
Step 2. Suppose for each i = 1,2,...,n—1, a -Ei«-i-chain of dyadic arcs

substituting for M, has been constructed. Proceed as in Step 1 to construct
1
271-—1
the additional requirement that the totality of arcs constructed thus far belonging
to the chains substituting for My, ..., M, are pairwise disjoint. Since this additional
requirement can be easily satisfied by using Lemmas (3.3) and (3.4), our inductive
step follows. i ‘

a -chain of dyadic arcs {L(n, 1), ..., L(n, k(n))} substituting for M, satisfying
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' * (4.4) A decomposition. We now describe an upper semicontinuous decomposi-
tion G of the Hilbert cube manifold M2 = "« Q (see (4.2) for a definition of M9).
The nondegenerate elements of G is the collection

L, 1sn<ow,1<ix km)}

of dyadic ares constructed in (4.3). Since this collection of dyadic arcs is null, it
follows that the decomposition is uppet semicontinuous. Let p: M2~ MP9/G denote
the natural projection onto the decomposition space. The main properties of this.
decomposition space will be given in § 5. .

(4.5) A family of decompositions. The following result appears in [16]:

There exists a family {4,: 1 belongs to A} of arcs having the cardindlity of
continuum such that the fundamental groups of the complements (M2 4) and
(MQ»—A,L) are non-isomorphic whenever ) # p.

By suitably including countably many disjoint arcs from this family, in ad-
dition to, the null collection of dyadic arcs given in (4.4), and keeping all the arcs
disjoint, we construct a new decomposition of M2 whose nondegenerate elements
is the null collection consisting of the totality of pairwise disjoint arcs. This method
yields a family of topologically distinct decomposition spaces having the cardinality
of continuum with additional properties; see-[25] and [16] for more details. A more
formal statement of these results appears in § 5.

§ 5. Main results. The main result of this paper is Theorem (5.1). Although,
the more general Theorem (5.2) also holds, we do not attempt its proof at present
since it is more technical and lengthy.

(5.1) TuEOREM. For each compact and connected Hilbert cube manifold M2,
there exists a collection {Gy: A in A} of upper semicontinuous decompositions of M2
having the cardinality of contimwm such that the following hold: :

(a) For each ) in A, the nondegenerate elements of G, form a null collection
of ares and the associated decomposition space MG, is an infinite dimensional ANR.

(b) Any two decomposition spaces M9/G, and M /G, are topologically distinct,
i.e., family of ANR’s M%/G,’s has the cardinality of continuum. 3

(c) For ecch ) in A, the decomposition space M?/G,, does not contain any proper
subset of dimension 22 which is an FANR (the term FANR is explained below).

(d) For cach ) in A, the ANR MG, is a O-manifold factor. More precisely,
MG, x I is homeomorphic to M2x I for each A in A.

Moreover, the construction of the decomposition can be performed with extra
care so that the following additional conclusion holds:

(e) For each X in A, the decomposition space M?(G, is rigid, i.e., it has no self-
homeomorphism- other than the identity.

(5.2) Remark, Theorem 5.1 also remains valid when 32 is noncompact, i.e.,
the assumption of compactness is not essential, however, it is a technical convenience.
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(5.3) Remarks on FANR sets. The notion of FANR (pronounced “fundamental
absolute neighborhood retract”) is a generalization of the notion of ANR; see
Borsuk [8]. An FANR will always be compact and metrizable; this is consistent
with [8]. Any compact metric space having the shape of an ANR is an FANR;
see Borsuk [8] for a sharper result.

(5.4) Proof of Theorem (5.1). Apply the Triangulation Theorem from {10}
to represent M2 as a product of the form M"x Q where M" is a PL n-manitold
with n > 3. Let G be the decomposition of M2 described in § 4; see (4.4). It suffices
to prove that M9/G satisfies the properties (a)-(e). The collection of similar
decompositions {G,: A in A} satisfying the conclusions of Theorem (5.1) has the
cardinality of continuum; this follows from (4.5).

The nondegenerate elements of the decomposition G form a null collection
of arcs. This follows from the construction; see (4.4). Since the decomposition is
null and its nondegenerate elements are arcs, it follows from a theorem of Koz-
lowski [19] that the decomposition space M?/G is an ANR.

Our proof of part (c) is essentially the one given in [25]. The key ingredients
are the dyadic arcs. The dyadic arcs allow us to apply the “Backing-up Technique”
discussed in [25]. Thus, the entire line of argument given in [25] is available in this
context, This proves (c¢). Part (d) follows from [29] and we omit details.

We rely on the results proved in [16] to construct rigid decomposition spaces
satisfying (). The details of this type of construction already appear in [16, 25, 26]
and we omit them, This finishes our proof of Theorem (5.1). B

(5.5) Concluding remarks. Each ANR given above, satisfying the conclusions
of Theorem (5.1) or (5.2), contains movable continua of dimension greater than
or equal to 2; a proof of this fact appears in [3]. The conclusion (¢) of Theorem (5.1)
can be sharpened as follows: {¢') For each 1 in 4, M%/G, does not contain any
proper closed subset of dimension >2 which satisfies UV*(sl); see [25] for related
discussions.
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