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Essential mappings and transfinite dimension
by

P. Borst and J. J. Dijkstra (Amsterdam)

Abstract. We construct a compact metrizable space with inductive dimension w+1 that
admits no essential mappings into Henderson’s' (w-+1)-dimensional absolute retract JOH,

1. Introduction. A continuous mapping f: X —I" = [0, 17" is called essential
if there is no continuous extension g: X — oI" of f|f~*(8I"), where 8I" is the
geometric boundary of 1" The following characterization is well known (see €.g.
Engelking [1], 3.2.10).

1.1 TueorEM. A normal spuce has dim > n iff it admits an essential mapping
into I". ‘

D. W. Hendorson [2] has attempted to extend this result to transfinite inductive
dimension.

1.2 DepNiTION. Ind(9) = —1. Let o be an ordinal and X a normal space.
Ind(X)<a if every pair of disjoint closed subsets of X can be separated by a closed
set with Iad <o (S separates A and B in X if X\S is the union of disjoint open
sets U and V with AcU and BeV).

1.3 Dermrrion (Henderson). For each countable ordinal « we define a com-
pact metric space J® its ,boundary” T° and a point preT™

@) if « is finite then J* = I° 7% = 8I* and p* = (0,0, ..., 0).

(i) If we have a successor a-+1 we define Jo*1 = Jox I, T*™ = (T*x ) v
L (I*x{0,1}) and p*** = (p*, 0).

(iii) If « is a limit, put K? = JP U LF for'every p<«, where L# is a half open
arc such that L¥ n J* = {p#} = (the end-point of LPy. J* is defined as the one-point
compactification of the discrete sum @ K 1o =0NU (JA\T#) and p* is the
compactifying point. L pex

A continuous mapping f from a space X into J* is called- essential if every
continuous g: X — J* that satisfies glf ™ (T") = f1f ~1(T%) is an onto mapping.

The following two theorems are due to Henderson [2].

1.4 THEOREM. J® is an absolute retract and Ind(J%). = a.

1.5 THEOREM. If there is an essential mapping from a normal space X into J*
then Tnd(X) =« or Ind(X) does not exist.


GUEST


42 P. Borst and 1. J. Dijkstra

Henderson asked the following question: if Ind(X)>a, is there an essential
Jf: X —J*? In view of Theorem 1.1 and the fact that there exist compact spaces
with dim <Ind it seems reasonable to restrict ourselves to metric spaces. We show
that the answer to the question is yes for « = @ and no for « = w+1. This also
solves two questions that were raised by R. Pol ([3], p. 238) who independently
showed the following. There exists a countable ordinal A such that for every
countable o> A there is an a-dimensional compactum without essential mappings
into J* ([3), Thm. 5.2). Note that Pol’s result, which was obtained by a method

completely different from our’s, also gives different information concerning Hender-
son’s question,

2. Two theorems. In this. section we prove the converse of Theorem 1.5 for
= o and we give an addition theorem that will be used in the next section.

2.1 TueoreM. If X is a normal space with infinite covering dimension then there
is an essential f1 X = J°.

Proof. Let dim(X) = co. We construct sequences HioH,>Hy> ... and
{4)ien of closed subsets of X such that for every i e N, dim(H,) = oo, dim(4,)>i
and 4, cH\H;,,. Put Hy = X and assume that H, has been constructed, Since
dim(H,;) = co there exist disjoint closed sets 4 and B in H; such that every closed
set M that separates 4 and B has dim > (see Engelking [1], 3.1.27). Select a closed
covering {F, G} of H, with FnB =G A = @. The union of F and G is in-

. finite-dimensional and hence (see. Engelking [1], 3.1.8) one of them, say F, has in-
finite dim. Put H;,; = Fand let 4,,, be a closed set that separates F and B in H,.

Then 4;,; < H\H,y, separates 4 and B in H, and hence dim(4,)>i. This com-
pletes the induction.

Consider now J® = {p®} U {J (/' U LY. Since dim(4;)>i we may select for
i=0

every e N U {0} an essential f;: 4,,,, — J' and a continuous g; from 4,,, , onto
the closed interval L u {p®}. Moreover, let &, be the constant function from
@

H = H; into {p°}. Put 4 = | 4, U H, which is a closed subset of X. Since
i=1 i=1

{d)ieN} is a pairwise disjoint collection of clopen subseis of 4 one easily
verifies that

Sy ] ®
h=iUf:

®
v U gi Uhm
=0 i=0

is a continuous mapping from A onto J°. The fact that the f{’s are essential guar~
antees in view of Henderson ([2], Prop. 3) that k is essential. Noting that J© is an

absolute retract we can find an extension fi: X — J® of h which is of course also
-essential,

2.2. CoROLLARY. If X is a metric space .uch that Ind(X)=w, or such that
Ind(X) does not exist, then there is an essential i X-Je,
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2.3 TueoreM. Let X be a hereditarily normal space and let o and B be two ordinals.
If Y is-a subset of X such that Ind(Y)<p and for every open neighbourhood U
of ¥, Ind(X\U) <o then Ind(X) <o+ B.

Proof. (By transfinite induction w.r(it. BYI B = (;3 then Y = @. Since O is
i rhood of Y we have that Ind(X)<a = a+f.
: nefiltbzube a limit ordinal such that the theorem is va.lid fo'r every f'< ﬁ.hIf
Ind(Y)<p then there is a y<p such that Ind(¥)<y. By induction we have that
<o+ B.
Ind(fq)o;u:;Zuxne glat the induction hypothesis is valid for all ordinals <f-+1.
Lét A and B be two disjoint closed subsets of X. Since X ’is normal there are closed,
disjoint neighbourhoods A’ and B’ of 4 and B, respectively. Assume tlhat ;’nd(OY)
< B+ 1. Then there are open, disjoint subsets 0% and ,02 of Y such that 4" n 0:: 1
B'n YcO0, and Ind(¥N(0; v O))<p. It is easdy' seen t]-1at‘C1_Y(A ual 1211?
ABUO0)=8=(4dv 0y) nCl(BU 0y). .Since‘ -X"IS hereditarily norn; - .]i
implies (Engelking [1], 2.2,1) that there exist disjoint open sets Uy anU o 1d
X such that 4u 0,cU; and By 0,cU,. Define X = XU, v sz) Van‘s
Y= Y\(U; v U,). Then we have that Ind( Y)slnd(?’\(o1 v 02))'<£i) hooxd
an open neighbourhood of ¥in X then VU U, u U, is an open neig. m:ll;e o0
of Y in X and hence Ind(X\V) = Inc{(X\(Vu Z{, U gz))<a. ApI:1 ymf1 the in
duction hypothesis we obtain that Ind(X)<a-+j. Since X' separates 4 an
we have proved that Ind(X)<«+p+1.

3, The counterexample. We construct a corgpact metric space X that admits
no essential mapping into J°** and has Ind(X) = w+1.

Consider the Hilbert cube Q = ¢gvl and let 0 = (0,0,0,
ieN the i-cube B; in Q by

B, = {(x)y e Qlx; € [0, 1/i] for j<i and x; = 0 for 7>i} .

.)€ Q. Define for

o .

Let A,(ieN) be the closed set };]xBj' Consider now the Cantor set C, -;e
presenfed in the usual way by a subset of 1. Let gai, by, ie‘ N, bfa g’n er}u::i:;a:f;
of the gaps of C. Select an order preserving quotient mapp}ni i .X : L such that
if p(x) = p(») then x =y or {x,} = {a, b;} for some tl ) O, ;) nd
construct a quotient space X of X by identifying the points v and de}{n ) for
every ieN and xed,;. Let g1 X — X ‘be the natural mapping

“projections” my: X — I and my: X — 4y by
7y 0q(r, %) =p()
and
g0 g(r, X) = X.
Since 7]g(C x {0}) is a homeomorphism, we identify .g(C x {0}) with L
3.1 Cram, X is a compact metrizable space.
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Proof. Since X is a quotient of a compact metrizable space, it suffices to
show that X is Hausdorff. Since n; and 7, are continuous, we only have to separate
the points («;, x) and (b;, x) for x ¢ 4,. It is easily verified that

9((I0, 2] n C)x (Al\Ai)) and g(([b;, 1] 0 C)x (Ax\Ai))
are disjoint open neighbourhoods of (a;, x) and (b;, x), respectively.
3.2 Cramt. Ind(X)<w+1. ’

Proof. This is a straightforward application of Theorem 2.3. We put ¥ =],
a=oand B = 2. If K is the complement of a neighbourhood of I in X then there
is an i e N with Kony '(4,\d,). It is left to the reader to verify that Ind ('n;z"' U AV D)
=i-1.

3.3 Ceam. Ind(X)>w+1.

Proof. Let {F,G} be a closed covering of X such that Fn iy} ({1
= G a7 ({0}) = @. Assume that Ind(F n G)<n for some ne N. We shall prove
that for every r e C, q{{r} x 4,,,) is contained in either ¥ or G.

Let re C and consider {Fn ¢({r}xB,), G n ¢({r}x B} for k=n+2. Note
that g|{r} x4, is an embedding. Since the cube qa({r}x By is a k-dimensional
Cantor-manifold (Engelking [1], 1.8.13) we have that either q({r}xBY<F or
q({r}xB)=G. If q({r}xB)cF then g({r}x (B N By, ,)), which is a k-di-
mensional face of q({r}x B,,,), is contained in F. Since also q{r}x B )< F or
gq({r}xB,.;)cG we have that q({r}x By, )cF. So we may conclude that
q({r}x4,,,) is contained in either F or G.

Having established this consider s = sup {reCl{r}xd,.,cq™(F)}. Since
q~*(F) is closed we have that {s} x4y ycq ™ Y(F). If t = inf{re Clr=s and {r}x
X Api2=q N (G)} then {t}xA,rrcqg™Y(G). Suppose that s = ¢ In this case
q({s} x 4, ,), which is homeomorphic to 4,.,, is contained in Fn G and hence
Ind(Fn G)zw. If s # ¢ then there is an ie N such that s = a; and ¢ = b,. Put
k = max{n+2,i} and note that a({s} xA4) = q({t} x4,). This means that
Ind(F ~ G)=Ind(g({s} x 4))) = o. :

3.4 CLaM. There is no essential mapping Srom X into Jett,

Proof. Let f be an essential mapping from ¥ into JO*+!. Recall that Jo+!
=({p°} v 'L__JO(J" U LH) xTI and put D, = f71(J x I). Observe that f|D;: D, - Jix[

is essential for every ieN u {0}. We shall prove that for every ne N there are x,
and y, in 73'(d,) such that |my(x)—m,(y,)|< Un,fx) e J°x {0} and f(»,)
€Jx{1}. If this is true then (%), and (»,), have the same set L of cluster points.
This implies that FD=@?x{0D N (I"x{1}) = & which contradicts the com-~
pactness of X.

Let 2 be Lebesgue measure on I and pick an arbitrary natural number n. Since
{DieN} is a collection of pairwise disjoint, closed sets we can find an i>n such
that A(D; N I)<1/n. ‘This enables us to select points 0 = py<p; < ... <py=1
in I such that p,,;<p,+1/n and {P1 P2y s Piey} A Dy =B, Since D, is closed
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there is a neighbourhood U of {py, py, .., pp1} in I'and a j>isuch that n7 *(U) o
A n;‘(AJ) n D; = @. Note that {p(a,)Im>j} is dense in I Select m(l), m(2), ...
..., m(lc—1) greater than j such that p(a,q)e U for I = 1,2,..,k—1,

P(f‘m(1))<1/": 1=p(@ug-1y)<l/n and 0<p(@ngs1y) =P @npy)<1/n

for [=1,2,..,k—2. Then
P = {[0, f/m(l)] nC, [bm(l): flm(zu] N C, ., [Bug-2y am(k—l)] N C, [bug-1y i}n C}

is a finite partition of C with clopen sets. Since for every <k, m(l)>j we have
that {g(Kx 4,) n D;|Ke @} is a clopen partition of D;. Note that

diam (m; o g(Kx 4;))<1/n

for every K € #. Since f|D, is essential we hanz thgt fla(Kx4) n D; is essenzx)al
for some K € 2. Then f(q(Kx 4,) A Dy)is dense in J* x Iand hencef(q(Kx.A,,) N ,()1
— Jix I. This can be seen as follows. Let x e J'x I and let _Vlbe a canonical closz
neighbourhood of x in J'x I, ie Vis an (i1+ 1)-cell. If f (I-/1) n Q(KXAOAﬂ ;
is contained in the (n— 1)-dimensional set 75 (Al\AT') then flf (V) ngKx4) n
A D, is not an essential mapping into ¥. This implies that

Fla(Ex4;) n Dyt q(KxA;) Dy — JixI
is not essential. So we may pick x, and y, in g(KxA4,) such that f(x,) € J'x {0}
and f(y,) € J*x {1}. This proves the claim.
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