40

M. Misiurewicz

[3] M. Gerber, Conditional stability and real analytic pseudo-Anosov maps, preprint 1983,

[4] Ph. Hartman, Ordinary differential equations, Wiley, New York 1964.

[5] M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed point, Isr. Journ. Math. 37 (1980), pp. 303-314.

INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY PKIN IX p. 00-901 Warszawa Poland

Received 25 May 1983

Essential mappings and transfinite dimension

by

P. Borst and J. J. Dijkstra (Amsterdam)

Abstract. We construct a compact metrizable space with inductive dimension $\omega+1$ that admits no essential mappings into Henderson's $(\omega+1)$ -dimensional absolute retract $J^{\omega+1}$.

- **1.** Introduction. A continuous mapping $f: X \to I^n = [0, 1]^n$ is called *essential* if there is no continuous extension $g: X \to \partial I^n$ of $f|f^{-1}(\partial I^n)$, where ∂I^n is the geometric boundary of I^n . The following characterization is well known (see e.g. Engelking [1], 3.2.10).
- 1.1 THEOREM. A normal space has dim $\ge n$ iff it admits an essential mapping into I^n .
- D. W. Henderson [2] has attempted to extend this result to transfinite inductive dimension.
- 1.2 DEFINITION. Ind $(\emptyset) = -1$. Let α be an ordinal and X a normal space. Ind $(X) \leq \alpha$ if every pair of disjoint closed subsets of X can be separated by a closed set with Ind $<\alpha$ (S separates A and B in X if $X \setminus S$ is the union of disjoint open sets U and V with $A \subset U$ and $B \subset V$).
- 1.3 Definition (Henderson). For each countable ordinal α we define a compact metric space J^{α} , its "boundary" T^{α} and a point $p^{\alpha} \in T^{\alpha}$.
 - (i) if α is finite then $J^{\alpha} = I^{\alpha}$, $T^{\alpha} = \partial I^{\alpha}$ and $p^{\alpha} = (0, 0, ..., 0)$.
- (ii) If we have a successor $\alpha+1$ we define $J^{\alpha+1}=J^{\alpha}\times I$, $T^{\alpha+1}=(T^{\alpha}\times I)\cup (J^{\alpha}\times\{0,1\})$ and $p^{\alpha+1}=(p^{\alpha},0)$.
- (iii) If α is a limit, put $K^{\beta} = J^{\beta} \cup L^{\beta}$ for every $\beta < \alpha$, where L^{β} is a half open arc such that $L^{\beta} \cap J^{\beta} = \{p^{\beta}\} =$ (the end-point of L^{β}). J^{α} is defined as the one-point compactification of the discrete sum $\bigoplus_{\beta < \alpha} K^{\beta}$; $T^{\alpha} = J^{\alpha} \bigcup_{\beta < \alpha} (J^{\beta} \setminus T^{\beta})$ and p^{α} is the compactifying point.

A continuous mapping f from a space X into J^{α} is called *essential* if every continuous $g\colon X\to J^{\alpha}$ that satisfies $g|f^{-1}(T^{\alpha})=f|f^{-1}(T^{\alpha})$ is an onto mapping. The following two theorems are due to Henderson [2].

- 1.4 THEOREM. J^{α} is an absolute retract and $\operatorname{Ind}(J^{\alpha}) = \alpha$.
- 1.5 THEOREM. If there is an essential mapping from a normal space X into J^x then $\mathrm{Ind}(X) \geqslant \alpha$ or $\mathrm{Ind}(X)$ does not exist.

Henderson asked the following question: if $\operatorname{Ind}(X) \geqslant \alpha$, is there an essential $f\colon X \to J^\alpha$? In view of Theorem 1.1 and the fact that there exist compact spaces with dim < Ind it seems reasonable to restrict ourselves to metric spaces. We show that the answer to the question is yes for $\alpha = \omega$ and no for $\alpha = \omega + 1$. This also solves two questions that were raised by R. Pol ([3], p. 238) who independently showed the following. There exists a countable ordinal λ such that for every countable $\alpha > \lambda$ there is an α -dimensional compactum without essential mappings into J^λ ([3], Thm. 5.2). Note that Pol's result, which was obtained by a method completely different from our's, also gives different information concerning Henderson's question.

2. Two theorems. In this section we prove the converse of Theorem 1.5 for $\alpha = \omega$ and we give an addition theorem that will be used in the next section.

2.1 THEOREM. If X is a normal space with infinite covering dimension then there is an essential $f\colon X\to J^\omega$.

Proof. Let $\dim(X) = \infty$. We construct sequences $H_1 \supset H_2 \supset H_3 \supset ...$ and $(A_i)_{i \in N}$ of closed subsets of X such that for every $i \in N$, $\dim(H_i) = \infty$, $\dim(A_i) \geqslant i$ and $A_i \subset H_i \setminus H_{i+1}$. Put $H_1 = X$ and assume that H_i has been constructed. Since $\dim(H_i) = \infty$ there exist disjoint closed sets A and B in H_i such that every closed set M that separates A and B has $\dim \geqslant i$ (see Engelking [1], 3.1.27). Select a closed covering $\{F, G\}$ of H_i with $F \cap B = G \cap A = \emptyset$. The union of F and G is infinite-dimensional and hence (see Engelking [1], 3.1.8) one of them, say F, has infinite dim. Put $H_{i+1} = F$ and let A_{i+1} be a closed set that separates F and G in G in the G in G in the G

Consider now $J^{\omega}=\{p^{\omega}\}\cup\bigcup_{i=0}^{\infty}(J^{i}\cup L^{i})$. Since $\dim(A_{i})\geqslant i$ we may select for every $i\in N\cup\{0\}$ an essential $f_{i}\colon A_{2i+1}\to J^{i}$ and a continuous g_{i} from A_{2i+2} onto the closed interval $L^{i}\cup\{p^{\omega}\}$. Moreover, let h_{ω} be the constant function from $H=\bigcap_{i=1}^{\infty}H_{i}$ into $\{p^{\omega}\}$. Put $A=\bigcup_{i=1}^{\infty}A_{i}\cup H$, which is a closed subset of X. Since $\{A_{i}|i\in N\}$ is a pairwise disjoint collection of clopen subsets of A one easily verifies that

$$h = \bigcup_{i=0}^{\infty} f_i \cup \bigcup_{i=0}^{\infty} g_i \cup h_{\omega}$$

is a continuous mapping from A onto J^{ω} . The fact that the f_i 's are essential guarantees in view of Henderson ([2], Prop. 3) that h is essential. Noting that J^{ω} is an absolute retract we can find an extension $h: X \to J^{\omega}$ of h which is of course also essential.

2.2. COROLLARY. If X is a metric space such that $\operatorname{Ind}(X) \geqslant \omega$, or such that $\operatorname{Ind}(X)$ does not exist, then there is an essential $f \colon X \to J^{\omega}$.

2.3 THEOREM. Let X be a hereditarily normal space and let α and β be two ordinals. If Y is a subset of X such that $\operatorname{Ind}(Y) < \beta$ and for every open neighbourhood U of Y. $\operatorname{Ind}(X \setminus U) < \alpha$ then $\operatorname{Ind}(X) < \alpha + \beta$.

Proof. (By transfinite induction w.r.t. β .) If $\beta = 0$ then $Y = \emptyset$. Since \emptyset is a neighbourhood of Y we have that $\operatorname{Ind}(X) < \alpha = \alpha + \beta$.

Let β be a limit ordinal such that the theorem is valid for every $\beta' < \beta$. If Ind $(Y) < \beta$ then there is a $\gamma < \beta$ such that Ind $(Y) < \gamma$. By induction we have that Ind $(X) < \alpha + \gamma < \alpha + \beta$.

Now assume that the induction hypothesis is valid for all ordinals $<\beta+1$. Let A and B be two disjoint closed subsets of X. Since X is normal there are closed, disjoint neighbourhoods A' and B' of A and B, respectively. Assume that $\operatorname{Ind}(Y) < \beta+1$. Then there are open, disjoint subsets O_1 and O_2 of Y such that $A' \cap Y \subset O_1$, $B' \cap Y \subset O_2$ and $\operatorname{Ind}(Y \setminus (O_1 \cup O_2)) < \beta$. It is easily seen that $\operatorname{Cl}_X(A \cup O_1) \cap (B \cup O_2) = \emptyset = (A \cup O_1) \cap \operatorname{Cl}_X(B \cup O_2)$. Since X is hereditarily normal this implies (Engelking [1], 2.2.1) that there exist disjoint open sets U_1 and U_2 in X such that $A \cup O_1 \subset U_1$ and $B \cup O_2 \subset U_2$. Define $X = X \setminus (U_1 \cup U_2)$ and $Y = Y \setminus (U_1 \cup U_2)$. Then we have that $\operatorname{Ind}(Y) \leq \operatorname{Ind}(Y \setminus (O_1 \cup O_2)) < \beta$. If Y is an open neighbourhood of Y in X and hence $\operatorname{Ind}(X \setminus Y) = \operatorname{Ind}(X \setminus (Y \cup U_1 \cup U_2)) < \alpha$. Applying the induction hypothesis we obtain that $\operatorname{Ind}(X) < \alpha + \beta$. Since X separates A and B in X we have proved that $\operatorname{Ind}(X) < \alpha + \beta + 1$.

3. The counterexample. We construct a compact metric space \widetilde{X} that admits no essential mapping into $J^{\omega+1}$ and has $\operatorname{Ind}(\widetilde{X}) = \omega + 1$.

Consider the Hilbert cube $Q = \prod_{i \in N} I$ and let $0 = (0, 0, 0, ...) \in Q$. Define for $i \in N$ the *i*-cube B_i in Q by

$$B_i = \{(x_j)_j \in Q | x_j \in [0, 1/i] \text{ for } j \le i \text{ and } x_j = 0 \text{ for } j > i\}$$
.

Let $A_i(i \in N)$ be the closed set $\bigcup_{j=1}^{\infty} B_j$. Consider now the Cantor set C, represented in the usual way by a subset of I. Let (a_i, b_i) , $i \in N$, be an enumeration of the gaps of C. Select an order preserving quotient mapping $p: C \to I$ such that if p(x) = p(y) then x = y or $\{x, y\} = \{a_i, b_i\}$ for some i. Let $X = C \times A_1$ and construct a quotient space \tilde{X} of X by identifying the points (a_i, x) and (b_i, x) for every $i \in N$ and $x \in A_i$. Let $q: X \to \tilde{X}$ be the natural mapping and define the "projections" $n_1: \tilde{X} \to I$ and $n_2: \tilde{X} \to A_1$ by

$$\pi_1 \circ q(r,x) = p(r)$$

and

$$\pi_2 \circ q(r,x) = x.$$

Since $\pi_1|q(C\times\{0\})$ is a homeomorphism, we identify $q(C\times\{0\})$ with I. 3.1 CLAIM. \vec{X} is a compact metrizable space.

45

Proof. Since \tilde{X} is a quotient of a compact metrizable space, it suffices to show that \tilde{X} is Hausdorff. Since π_1 and π_2 are continuous, we only have to separate the points (a_i, x) and (b_i, x) for $x \notin A_i$. It is easily verified that

P. Borst and J. J. Dijkstra

$$q(([0, a_i] \cap C) \times (A_1 \setminus A_i))$$
 and $q(([b_i, 1] \cap C) \times (A_1 \setminus A_i))$

are disjoint open neighbourhoods of (a_i, x) and (b_i, x) , respectively.

3.2 CLAIM. Ind(\tilde{X}) $\leq \omega + 1$.

Proof. This is a straightforward application of Theorem 2.3. We put Y = I. $a = \omega$ and $\beta = 2$. If K is the complement of a neighbourhood of I in \tilde{X} then there is an $i \in N$ with $K \subset \pi_2^{-1}(A_1 \setminus A_i)$. It is left to the reader to verify that $\operatorname{Ind}(\pi_2^{-1}(A_1 \setminus A_i))$ = i - 1.

3.3 CLAIM. Ind $(\tilde{X}) \ge \omega + 1$.

Proof. Let $\{F,G\}$ be a closed covering of \widetilde{X} such that $F \cap \pi_1^{-1}(\{1\})$ $=G\cap \pi_1^{-1}(\{0\})=\emptyset$. Assume that $\operatorname{Ind}(F\cap G)\leqslant n$ for some $n\in \mathbb{N}$. We shall prove that for every $r \in C$, $q(\{r\} \times A_{n+2})$ is contained in either F or G.

Let $r \in C$ and consider $\{F \cap q(\{r\} \times B_k), G \cap q(\{r\} \times B_k)\}$ for $k \ge n+2$. Note that $q|\{r\} \times A_1$ is an embedding. Since the cube $q(\{r\} \times B_k)$ is a k-dimensional Cantor-manifold (Engelking [1], 1.8.13) we have that either $q(\lbrace r \rbrace \times B_k) \subset F$ or $q(\lbrace r\rbrace \times B_k) \subset G$. If $q(\lbrace r\rbrace \times B_k) \subset F$ then $q(\lbrace r\rbrace \times (B_k \cap B_{k+1}))$, which is a k-dimensional face of $q(\{r\} \times B_{k+1})$, is contained in F. Since also $q(\{r\} \times B_{k+1}) \subset F$ or $q(\{r\} \times B_{k+1}) \subset G$ we have that $q(\{r\} \times B_{k+1}) \subset F$. So we may conclude that $q({r} \times A_{n+2})$ is contained in either F or G.

Having established this consider $s = \sup\{r \in C | \{r\} \times A_{n+2} \subset q^{-1}(F)\}$. Since $q^{-1}(F)$ is closed we have that $\{s\} \times A_{n+2} \subset q^{-1}(F)$. If $t = \inf\{r \in C \mid r \geqslant s \text{ and } \{r\} \times A_{n+2} \subset q^{-1}(F)\}$ $\times A_{n+2} \subset q^{-1}(G)$ then $\{t\} \times A_{n+2} \subset q^{-1}(G)$. Suppose that s = t. In this case $q(\{s\} \times A_{n+2})$, which is homeomorphic to A_{n+2} , is contained in $F \cap G$ and hence Ind $(F \cap G) \geqslant \omega$. If $s \neq t$ then there is an $i \in N$ such that $s = a_i$ and $t = b_i$. Put $k = \max\{n+2, i\}$ and note that $q(s \times A_k) = q(t \times A_k)$. This means that $\operatorname{Ind}(F \cap G) \geqslant \operatorname{Ind}(q(\{s\} \times A_k)) = \omega.$

3.4 Claim. There is no essential mapping from \tilde{X} into $J^{\omega+1}$.

Proof. Let f be an essential mapping from \tilde{X} into $J^{\omega+1}$. Recall that $J^{\omega+1}$ $=(\{p^{\omega}\}\cup\bigcup_{i=0}(J^i\cup L^i))\times I$ and put $D_i=f^{-1}(J^i\times I)$. Observe that $f|D_i\colon D_i\to J^i\times I$ is essential for every $i \in \mathbb{N} \cup \{0\}$. We shall prove that for every $n \in \mathbb{N}$ there are x_n and y_n in $\pi_2^{-1}(A_n)$ such that $|\pi_1(x_n) - \pi_1(y_n)| < 1/n, f(x_n) \in J^{\omega} \times \{0\}$ and $f(y_n)$ $\in J^{\omega} \times \{1\}$. If this is true then $(x_n)_n$ and $(y_n)_n$ have the same set L of cluster points. This implies that $f(L) \subset (J^\omega \times \{0\}) \cap (J^\omega \times \{1\}) = \emptyset$ which contradicts the compactness of \tilde{X} .

Let λ be Lebesgue measure on I and pick an arbitrary natural number n. Since $\{D_i|i\in N\}$ is a collection of pairwise disjoint, closed sets we can find an i>n such that $\lambda(D_i \cap I) < 1/n$. This enables us to select points $0 = p_0 < p_1 < ... < p_k = 1$ in I such that $p_{i+1} < p_i + 1/n$ and $\{p_1, p_2, ..., p_{k-1}\} \cap D_i = \emptyset$. Since D_i is closed

there is a neighbourhood U of $\{p_1, p_2, ..., p_{k-1}\}$ in I and a j > i such that $\pi_1^{-1}(U) \cap$ $\bigcap_{i=1}^{n-1} (A_i) \cap D_i = \emptyset$. Note that $\{p(a_m)|m>j\}$ is dense in I. Select m(1), m(2),, m(k-1) greater than j such that $p(a_{m(l)}) \in U$ for l = 1, 2, ..., k-1,

$$p(a_{m(1)}) < 1/n$$
, $1 - p(a_{m(k-1)}) < 1/n$ and $0 < p(a_{m(l+1)}) - p(a_{m(l)}) < 1/n$
for $l = 1, 2, ..., k-2$. Then

$$\mathscr{D}=\{[0,a_{m(1)}]\cap C,[b_{m(1)},a_{m(2)}]\cap C,...,[b_{m(k-2)},a_{m(k-1)}]\cap C,[b_{m(k-1)},1]\cap C\}$$
 is a finite partition of C with clopen sets. Since for every $l< k,\ m(l)>j$ we have that $\{q(K\times A_1)\cap D_i|K\in \mathscr{D}\}$ is a clopen partition of D_i . Note that

$$\operatorname{diam}(\pi_1 \circ q(K \times A_1)) < 1/n$$

for every $K \in \mathcal{P}$. Since $f|D_i$ is essential we have that $f|q(K \times A_1) \cap D_i$ is essential for some $K \in \mathcal{P}$. Then $f(q(K \times A_n) \cap D_i)$ is dense in $J^i \times I$ and hence $f(q(K \times A_n) \cap D_i)$ $=J^i\times I$. This can be seen as follows. Let $x\in J^i\times I$ and let V be a canonical closed neighbourhood of x in $J^i \times I$, i.e. V is an (i+1)-cell. If $f^{-1}(V) \cap q(K \times A_1) \cap D_i$ is contained in the (n-1)-dimensional set $\pi_2^{-1}(A_1 \setminus A_n)$ then $f | f^{-1}(V) \cap q(K \times A_1) \cap q(K \times A_n)$ $\cap D_i$ is not an essential mapping into V. This implies that

$$f|q(K\times A_1)\cap D_i\colon q(K\times A_1)\cap D_i\to J^i\times I$$

is not essential. So we may pick x_n and y_n in $q(K \times A_n)$ such that $f(x_n) \in J^i \times \{0\}$ and $f(y_n) \in J^i \times \{1\}$. This proves the claim.

References

[1] R. Engelking, Dimension theory, PWN, Warsaw 1978.

[2] D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), pp. 167-173.

[3] R. Pol, On a classification of weakly infinite-dimensional compacta, Topology Proc. 5 (1980), pp. 231-242.

SUBFACULTEIT WISKUNDE EN INFORMATICA VRIJE UNIVERSITEIT De Boelelaan 1081 Amsterdam The Netherlands DEPARTMENT OF MATHEMATICS UNIVERSITY OF WASHINGTON Seattle, WA 98195 U.S.A.

Received 8 June 1983