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The topological degree and fixed points
of DC-mappings

by

W. Kryszewski and B. Przeradzki (L46dZ)

Abstract. In this paper the class of DC-mapping ‘defined by B. Nowak [11] is examined. For
this class, a definition of degree and its properties are given, without assuming the regularity of
filtration. Several approximative fixed point theorems are proved as well.

Introduction. This paper is devoted to further investigations of a new class
of nonlinear operators — the so-called DC-mappings — introduced in 1981 by
B. Nowak in his dissertation [11]. These maps, defined on normed spaces
endowed with filtrations by finite-dimensional linear subspaces, possess properties
which allow us to obtain some results concerning the existence of approximate solu-
tions of certain equations.

The class of DC-mappings includes the family of Leray-Schauder operators
(i.e., maps of the form “the identity + compact mapping”). Unlike Leray-Schauder
operators, form a module over the ring of continuous and bounded scalar functions.

Below, we develop a theory of the degree of DC-mappings which generalizes
the Leray—Schauder degree [8]. We omit Nowak’s assumption of the reg.ﬂamty of
filtration by using a certain approximation. lemma.

Attempts to extend the Leray-Schauder theory have been made by many authors,
see a survey by W.V. Petryshyn [13] on A-proper mappings and an article by
R.D. Nussbaum [12] on condensing maps. These extensions, however, concern
proper maps (continuous A-proper maps on bounded domains are proper [13],
1.1C), while there are examples of DC-mappings which are not proper (see [11D.
Recently, one of the present authors has shown that a DC-mapping is 4-proper
iff it is proper (see [6]). Moreover, there are continuous A~-proper maps which are
not DC-mappings.

Finally, we.should mention that DJ-mappings (i.e., uniformly continuous
DC-maps) were examined in [14] and multivalued mappings of this type were
studied in [7].

1. Preliminaries. For a subset 4 of a topological space, we denote its closure
by 4 or by cld, and its boundary by Fr4.
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By a metric space with filtration we shall mean a pair (X, (X,)iZ;) composed
of a metric space X and an increasing sequence (X;)i= of its closed subsets such that

(LD AdUX,=X.
n=1

Let (X, (X)%y).and (¥, (¥,)ins) be. two metric spaces with filtrations.
A mapping f: X — Y for which there exists a positive integer m, such that

(1.2) (X,,) e ¥,

for nzn, is said to be an F-mapping. If, instead of (1.2)
1.3) lim supdy(f(x), ¥;) =0,
n—+oo xeXp

then f is said to be a D-mapping.

Obviously, any F-mapping is also a D-mapping.

A continuous mapping satisfying (1.2) or (1.3) will be called an FC-mapping
or a DC-mapping, respectively. :

Let- E be a normed space, and let (E,);=y be its filtration conststmg of finite-
dimensional linear subspaces of E (in the sequel, when speaking about a normed
space, we shall consider only such filtrations). Let 2 be an arbitrary open bounded
subset of E. It is easy to verify that (@, (@,)5%;) and (FrQ, (FrQ,)=.,), where
2, = QN E,, are metric spaces with filtrations (comp. Lemma 4.1, [7]).

After Nowak we quote

ProposiTioN 1.1. (i) The space of all DC-mappings defined on a metric space X
with filtration, taking values in a normed space E with filtration, is a module over the
ring of continuous and bounded scalor functions on X and is closed in the set of all
continuous maps X — E (uniform convergence topology). :

(i) Let X, Y, Z be metric spaces with filtrations and let f: X - Y, g: ¥~ Z
be DC-maps. If g is uniformly continuous, then g o [ is a DC-mapping.

PROPOSITION 1.2. Let Q be an open bounded subset of a normed space E with
Jiltration, and let f: Q - E be compact. Then f and I—f are DC~mappings (I stands
Jor the identity map).

. '2. FC-approximation lemma. The following theorem will be basic for the de-
finition of the degree of a DC-mapping in the next section.

TrEoREM 2.1. Let (X, (X,)) be a metric space and (E, (E,)) — a normed space
with filtrations. For an arbitrary 8> 0 and any DC- ~mapping f: X — E, there exists
an FC-mapping f,: X — E such that

@n L) —£O <e:
for dl yeX.
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Proof. For any x € X, we put n(x) = inf{n: B(f(x), &) n E, # @} and take
a(x)e B(f(x), 3) N By where B(y,r) = {z€E: ||z—y|| <r}. Denote by
UR) =1 (B(f (), &2) n B(a(x), &)

a neighbourhood of x and consider a locally finite partition of unity {1,: x& X}
inscribed into the open cover {U(x): x € X} of X. We define a mapping f,: X — E
by the formula

2.2 S = gx (¥ a@®), yeX.

The continuity of f; is obvious. We shall show that £, is an FC-mapping. Indeed,
2.(») # 0 implies that

@.3) fD-fEll <e/2,

(2.4) () —a@)ll <e. .

By the definition of DC-mapping, there exists an r, such that, forn > no and ye X,,
2.5 B(f(»),e2)"E, # B.

If, for such n and y, A.(¥) # O, then, by (2.3), B(f (%), &) n E,  @. Hence n > n(x)
and a(x) € E,. So fi(X,) < E, for nxzn,.

Inequality (2.1) is a simple consequence of (2.4). M

One can give a proof of this theorem, based on Michael’s selection theorem [9],
under the assumption of the completeness of E. Then the FC-approximation lemma
and the degree theory can be generalized to the case of a complete linear metric lo-
cally convex space.

3. The topological degree of DC-mapping. We are now ready to introduce the
notion of a topological degree for the class of DC-mappings defined on a bounded
domain in a normed space with filtration. The resulting degree will have all standard
properties and, in some sense, will constitute a generalization of the well-known
Leray-Schauder degree of compact vector fields.

Let (E, (Bye1) and (F, (F)ru;) be two normed spaces with filtrations, such
that !

dimE, = dimF,
for n = 1,2, .. On each E, and F, we fix certain orientations. Let Q be an open
bounded subset of E, let f; § ~ F be a DC-mapping and let y e F\f (Fr@). For
&= dF(y f(Fr)) >0, choose an FC-mapping g which is an 52- -approximation
of £, i.e., ||.f(x)~g(¥)|| < g2 for all x e (see Th, 2.1) and a positive integer 7,
such that

3.0 9@)<=F,
and .
¢2) de(y, E) < ol2

2 — Fundamenta Mathematicae 126, 1
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for all n2ny (2, = @ 0 E,). According to (3.2), there exists a sequence (J,)nmu,
such that y, € F, and ||y,—»|| <&2. Then, it is easily seen that

dF(ym H(FIQ,‘)) > 0.
Having all these, we are able to define an integer
(33) . Sy = deg ((bn ° (9!57,,), *Qn: qsn(yu))
for n>n,, where @,: F, — E, is an arbitrary linear isomorphism which preserves
orientations (the symbol deg denotes here the Brouwer degree in finite-dimensional
spaces, see [9], def. 1.3.2). In addltlon, put s, = 0 for n<ny.

HZ/ @Z and the canonical homomorphism
n=1 a=1

v: ﬂZ - %, we define the topological degree of the DC-mapping f on Q at the
n=1
point y by the formula

(34) . Deg(f: Q’ y) = V(('Sn)l‘:ll) .

The degree is.well defined, for it does not depend on the choice of the mapping g»
the sequence (y,)rzy, and the family of linear orientation-preserving isomorphism
&,: F, - E,. Indeed, consider another FC-mapping g’ such that g’(Q,) = F, for
n=ngand || f(x)—g'(x)]| < &/2 for all x € Q, and another sequence (¥))ik.., satislying
the following condition ||y;—y|| <&/2 for n>ny. Define the family g,: @ — F,
t€0, 1), by the formula g(x) = tg(x)+(1—£)g'(x) and, for n=max(g, np),
the sequence of functions y,: {0, 1) — F, — by the formula y,(t) = t3,+(1~1)y;.
Then, for any such n, y,(t)¢ g,(FrQ,). Therefore, by Proposition 1.4.3, [10],
deg(®, o (9,/2,), Q,, B,(»,(t))) does not depend on te{0, 1. The independence
of the choice of &, is self-evident.

Remark. Assume that £ = F and E, = F,. Then, in (3.3) &, can be omitted.
Nowak [11] considered the case where the filtration (E,) is regular, i.e., there arc
linear projections P,: E — E, with sup{||P,]|: n € N} < ¢o; he then defined a degree
alternatively as

Introducing a group 9 =

v((deg(Pnflﬁn’ ‘Qm Pny)):;i) ey

Applying a similar technique, one can prove that in this case the two definitions are
equivalent.

Notice that Nowak’s definition is qux’ce similar to that of Browder and Petry-
shyn [3] for A-proper mappings. If f: @ — E is A-proper map, they defined
D(f,RQ,y) as the set of limit points of (s,) where s, = deg(P,f|Q,, 2,, P,»).
Nowak’s degree gives more information about the homotopy class of f than D does,
for there may exist sequences (s,) and (s;) with v((s,)) 5 v((s5)) but with the same
set of limiting points.

4. Properties of the degree. The degree introduced above has similar properties
to those of Brouwer and Leray-Schauder.
Let E, F, E,, F,, Q satisfy the assumptions of Section 3.

icm°
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PROPOSITION 4.1. (i) (Homotopy invariance). 7 h: @ x{0, 1) - Fis a DC-map-
ping relative to the filtration (@, x 0, 1)), in @x {0, 1), andy ¢ | (A(Fr2 x40, 1)),
then

Deg(h(-,0), Q,y) = Deg(h(*, 1), 2, ») .
(ii) Deg(f, Q,y) is uniquely determined by the values of the DC-mapping
f: @ F on FrQ.

(ili) If f: @ — F is a DC-mapping and y, y' belong to the same camponent of

the set F\f (FIQ), then

Deg(f, 2,3) = Deg(f, 2, ).

(iv) If y € Q, then Deg(l, Q,) == 1 where I denotes the identity mapping and
1=v((s) with s, =1 for n=1,2, ...

Proof. (i) Let & = dp(y, h(FrQx{0, 1)), and let g be an. ¢/2-FC-approxi-
mation of k. Choose a positive integer 7, and a sequence (¥,)ien, Such that
g(@,%x{0,1Y) = F, and ||y,—y|| <&/2 for n>n,. Then

deg (D, 0 g(-> 0 Byr Qs B(vy) = deg(B,0 g (-, DI 2ys ., $u(3))

for such z. This ends the proof if we notice that g (-, 0) and g (-, 1) are FC-approxi-
mations of i(-,0) and h(-, 1), respectively.

(ii) is an immediate consequence of (i). The proof of (iii) is similar to that of
Proposition 5.1, [7]. (iv) is an easy consequence of the definition. B

PROPOSITION 4.2. If f: @ = F is a DC-mapping and Deg(f,2,y) #0e 9,
then y e?(!)). -

Proof. Suppose to the contrary that y¢ f(Q). For &= dF(y f (9))
< dp(y,f(FrQ)), as in the definition, we obtain an appropriate FC- -approxima-
tion g as well as a sujtable sequence (y,) such that y, ¢ g(@,) for sufficiently large n.
Hence deg(®, ° (4]2,), 2, Pu(3) = 0. B

Let us consider a double sequence ()4 satisfying the following condition:

(A) for any i, (s,,),1 1 E HZ and, for any n, ()2, € 6—) Z. In this case we put
Z (=) = V((ZS.JWQ

Proposition 4.3. Let QL i=1,2,.
of Q, and let f: @ — F be a DC- -mapping. If v ¢ clf(Q\ U Qi) then

, be a sequence of open disjoint subsets

Deg(f, 2, =i§1Deg(f, L.

Lo
Proof. Let s = dg(y,/ (@\ U £9). Taking an appropriate FC-approximation g
i=1 @
of f and a sequence (y,), we get y,ég (Q,l\ U Qf,) The double sequence
RIS

o
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s = deg(9, 0 (g1 2Y), @, 8,(y,)) satisfies condition (A) and, by Proposi-
(-]

tion 1.4.4, [10], deg(®,o (g(Q,, Qs G,(¥,) = Y54 for sufficiently large n. W
=1

COROLLARY 4.4. If K is a closed subset of Q and y ¢ cl(f (K) u f (FrQ)), then

Deg(f, @, ) = Deg(f, ONK, ) .

Let E, E’ be two normed spaces with filtrations (E,)y=y, (En)szy, respectively’
and let Q< E, Q' < E’ be open and bounded. Take two DC-mappings f: @ — E
and f': Q' — E'. It is easy to see that fxf” is a DC-mapping, where Ex E’ is
equipped with the filtration (E, X E;)y=1-

ProPOSITION 4.5, If y é f(FrQ) and y' ¢ f'(Fr ') then

(v, ¥ ¢l % ) (Fr(2x Q7))
and
Deg(fxf', 2x &, (y,y)) = Deg(, 2,7) Deg(f’, ', ') .
Proof. It is a consequence of the simple equality cl(fxf")(Fr(RxQ")
= f(FrQ)xf'(Q) uf(Q)xf(FrQ’) and Proposition 1.4.6, [10]. M
_ We know that each Leray-Schauder operator on @ of the form I—f, where
Sfi @ E is compact, is a DC-mapping relative to an arbitrary filtration in E,

The next result shows the connection between the notion of the Leray-Schauder
degree and ours.

THEOREM 4.6. Let f: G — E be a compact mapping and vy ¢ o(FrQ) where
¢ = I~f. Then, for cach filtration (E,)s~, in E, Deg(p, Q,y) can be defined and

Deg(e, 2,) = v((s)y)

where s, = d(@, 2,)) for n=1,2, ..; d(p, Q, y) stands for the Leray-Schauder
degree of .

Proof. Firstly, one can easily show that y ¢ ¢(FrQ). Hence Deg(p, 2, y)
can be defined. For ¢ = dg(y, ¢ (FrQ)) > 0, take a finite ef4-net S for the set f—f_ﬂ)

belonging to UlE,,. Choose ny such that S < E,  and de(y, E,,) <s/4. Let P denote
n=

the Schauder projection onto convS. Then Pf is an e/4- FC-approximation of f
Taking a sequence (y,)i,, such that yn€E, and [|y,—yl| <s&/4, we have

@1 Deg(p, Q,5) = v((deg(I—Ff |2,, 4, 3)) -

On the other hand,

(42) d(¢. Q,y) = d((P, Q, yno)

icm
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since y, ¥,, belong to the same component of E\g (FrQ). Moreover, by definition
(see 2.3, [10]),

(43) d(e, Q, Vo) = deg(I-Pflﬁno’ 'Qn;, ynn) .

As in the standard Leray-Schauder construction, we easily find that, for any n > n,,
44) deg(I—Pf [Qy, Qy, Pn) = deg(T~Pf |Gy Qs Ino) -

By a straightforward calculation, we show that y, and y,, lie in the same component
of the set EN\(I—Pf)(FrQ,). Hence, for each n 3 n,,

(4'5) deg(I~Pflﬁn: ‘Qn’ yn) = deg(I_Pfl?jn! Qn: yno) .

To this end, it is sufficient to combine (4.1)-(4.5). W :
As in the case of finite-dimensional and Leray-Schauder operators, one could
use the degree introduced above to obtain certain results on the existence of fixed
points and solutions of equations involving nonlinear DC-mappings. However,
as follows from the properties of our degree, such results would determine only the
existence of approximate solutions. In Section 5 we present such theorems.

At present, we generalize the classical theorems on noncontractibility of the unit
sphere and on nonretractibility of the unit ball onto its boundary. Let E be a normed
space with filtration, and let B = {xe E: ||x|| <1}, S= {x e E: ||x]| = 1}.

PRrOPOSITION 4.7. (i) The sphere S is not DC-contractible, i.e., there exists
no DC-mapping h: Bx {0, 13 - E such that, for x€ B, h(x,0) = x, h(x, 1)= ¢y & S,
and 0 ¢ clh(Sx{0, 1}).

(ii) There exists no DC-retraction of B onto S.

Proof. Part (i) follows from Proposition 4.1 (i), (iv) and Proposition 4.2.

(i) If there existed a DC-retraction r: B — S, then, by setting A(x, 1)
= r((l—t)x) and applying Proposition 4.1 (ii), we would obtain a contradiction
with (). B

5. Nonlinear alternative and its consequences. Using the notion of degree intro-
duced above, we are able to prove a certain analogue of the nonlinear alternative
theorem (comp. [5], p. 61).

THEOREM 5.1. Let Q be an open bounded neighbourhood of the origin in a normed
space E with filtration, and let f: @ — E be a DC-mapping. Then, at least one of the
following conditions is satisfied: .

@) inf[lx—fGl] =0,

xe

(i) inf lx—f )l =0.

xeFr2,te(0,1)

Proof. Suppose that (ii) does not hold. Then there exists an g, > 0 such that,
for x e FrQ and t e {0, 1), ||x—1f (%)|| > &. It is easily seen that A (x, t) = x—tf (x),
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xe @, 1€¢0, 1), is 2 DC-mapping and 0 ¢ clh(Fr@x{0, 15). In view of Propo-
sition 4.1 (i), we have

1 = Deg(/, 2, 0) = Deg(/—/, 2,0),
which, together with Proposition 4.2, proves condition (i).
COROLLARY 5.2 (comp. [S], p. 61). If f* E — E is a DC-mapping, then cither,
ffar any n>0, the set e(f)={xeE: inf ||x—~tf(X)|<n} is wbounded or
inf J|x—f(x)|| = 0. tel01)
xeE

Proof. Suppose that e(f) is bounded for some 7, i.c., &,(f)= By
= {xeE: .Hx|| < R}. The mapping f| By satisfies the assumptions of Theorem 5.1
but for this map (ii) does not hold. B

Now, we prove an ¢-fixed point theorem which is an analogue of the well-
known results of Rothe and Altman (see [15], [1], [S].

. THEOREM 5.3. Let f: @ — E be a DC-mapping, where Q is an open bounded
neighbourhood of the origin in E. If one of the conditions
(i) (Rothe type condition)
S NFE <l
GG ”f.!.i "
(i) (Altman type condition)
(5.2) @M <L —x]1"+11x]17,

for some g>1 and

(5.3 sup || f()l <o,
x&Frf2

xeFrQ,

xeFrQ

is satisfied, then inf||x—f(x)|| = 0.
xeQ

Proof. Suppose &, is such that f has no &,-fixed point, ie, [Ix=f )| > s
for each x € Q. By Theorem 5.1, there are sequences {x,} < Fr@ and {t,} = (0, 1)
such that |[e,|| = 0 where u, = x,~1,f (x,). Then ' ’

8 < ”xn“"f<xu)” < ”Xn"'tnf(xn)”'l'(l'—' n)“f(xn)”

whence, for almost all #'s, we have (1--1,)|f (x,)| ] ich i

'S, . W1 2 8f2. By (5.3) (which is also
a cor.ls:qucn(c):e of (5.1)), it thus follows that # = sup f, < 1. Similarly, we infer that
o = inft,>0, i.e., ’ ‘

tyela, B,

Now, we easily get a contradiction with (5.1). I
8 D). In fact, under t i
of (5.1) we have for each n ) ’ o the sssumption

O<a<f<l.

[Peall < Tltall+ 1 11F el < ot +B11%,| 5

whence |[u,|| = (1—p) inf ||x||, contrary to Ju,]| = O,
xeFR " '
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To get a contradiction with (ii), observe that |5, —1,a,| — 0and |c,~ (1 —2,)a,| -0
where 4, = [ f (I, by = Hxalls €= || f (o) =l If Condition (5.2) held, ie.,
al< bi+c?, we would obtain

all(1 1) —(1— )1 < A= [ = 1) a1+ b= (1a )" -
Tt follows that the right-hand side of this inequality tends to 0 as n — oo. Since
inf [1—-t"—(1-2)]>0,
tela,f>
we get a, » 0. But we have already noticed that || f Gl = e0/2(1—1,) for all but
finite n’s, which contradicts a, — 0. H

PROPOSITION 5.4. If (H, (H, ©.1) is a unitary space with filtration, @ is an open
bounded neighbourhood of the origin 0e H and f: 0 - H is @ DC-mapping such
that '

(54) Re(x—f(x)|x)=0"
for xeFrQ, then inf flx—f )| = 0.
xef2
Proof. Suppose that the assertion is not true. Using a method similar to that

in the proof of Theorem 5.3, We obtain a sequence {5 totone = FT2x (0, B>
where 0 < f < 1, for which

(5.9 [t S Ge)ll = O
We have
= D% = Re(tyXy =%l %) = Re(t %y =1, (0) 1 %) —Re (xy =] EHIEAR
so if (5.4) were true, we would have
Re (%, — 1, (i) [ %) 2 m*(1 =)

where m = inf [|x||, which is inconsistent with (5.5). B
xeFr

Remark. Let us observe that (5.2) and (5.4) are equivalent if ¢ = 2. Hence,
when fis bounded on Fr, the preceding proposition is a straightforward conclusion
from Theorem 5.3.

When f is compact, Proposition 5.4 implies Krasnosielski’s fixed point theorem.

The next statement follows immediately from Proposition 5.4 (comp. [10], 1.6.3).

COROLLARY 5.5. If f: H - H is a DC-mapping, coercive in the sense of a Hilbert
space, i.e.,

Re(f@)|x)|Ixl|™* = o

as ||x]] = oo, then f(H) = H.

6. Some other results. We now present some further results concerning the ap-
proximative solvability of equations that involve DC-mappings.
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TueoreM 6.1. Let E be a normed space with filtration, and let f: E — E be
a DC-mapping; coercive in the sense of a Banach space, i.e., || f (x)]} = co as |[x]} = 0.
If there exist a yo€ E and an open ball B such that dist(f~*(y,), ENB) >0 and

((B)] Deg(f, B, yo) # 0,

then f(E) =

Proof. Let ye E, and let 4 = {tyo+(1—1)y: <0, 1)}. Since 4 is bounded
and f is coercive, f~1(4) is bounded as well. Hence, there exists an open ball B’
such that dist(f~(4), ENB') > 0. Without any loss of generality we may assume
that B’ = B. Due to Proposition 4.1 (iii), we have

Deg(f’ B, yO) = ch(f, B, y) .
On the other hand, by Corollary 4.4,

ch(f’ B’: J’o) = Deg(f) Ba yO) .

In view of (6.1) and Proposition 4.2, we get y & f(—E) cf(E). B
The next theorems are analogous to the classical results connected with the

name of K. Borsuk [2]: Antipodensatz, Borsuk’s fixed point theorem and the
Borsuk-Ulam theorem on antipodes.

Let E, F satisfy the assumptions of Section 3.
THEOREM 6.2. Let Q be an open, bounded and symmetric neighbourhood of the

origin in E. If f: @ — F is a DC-mapping such that 0 ¢ f (FxQ) and f is odd on the
boundary of Q, i.e., f(~x)= —f(x) for all x € FrQ, then

Deg(f, 2, 0) = v((sw)r1)
where s, is an odd number for each n = 1,2, ...

Proof. Let ¢ = xirll’fﬂ” S|, and let g: G - Fbe an arbitrary g/2-FC-aproxi-
mation of f. Consider the following mapping §: @ — F:
62 569 = (9-g ()2
Obviously, g is an FC-mapping and, since

g C)—F Gl < llg ) —F /2 +1lg (=) =f (=)llf2 <82,

the homotopy / defined by h: ©@x(0, 1 o (x, ) = 17(x)+ (1 —1) f(x) satisfies the
assumptions of Proposition 4.1 (i). It follows that
Deg(f: Q,0) = DEg(ﬁs Q, 0) .

By §6.2), g|@, is odd on FrQ, for sufficiently large n; therefore, from Borsuk’s
Antipodensatz, we infer that deg(®, < (5|3,), 2,,0) is an odd number. W
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COROLLARY 6.3. Let Q satisfy the above assumptions, and let f: Q—E be
a DC-mapping, odd on the boundary of Q. Then

il:illx-—f(X)Il =0.

Let (E, (E)y-1) be a normed space with filtration. We consider the filtration
(R* @ E,)%., in the normed space R* @ E. Let Q be an open, bounded and symmetric
neighbourhood of the origin in R*@ E, k> 1.

TueorEM 6.4. () If f: @ E is a DC-mapping odd on FrQ, then
inf || f(x)]] = 0.

xeFri2

(i) If f: @ — E is an arbitrary DC-mapping, then inf fx)—f (=) = 0.

mf l|f(x)]|>0 Treating f as

a DC-mapping into R* @ E, we get by Theorem 6 2 that Deg(f, £2,0) is generated
by a sequence of odd numbers. On the other hand, from Proposition 4.1 (iii) and
Proposition 4.2 we infer that Deg(f, 2,0) =0e%.

(ii) is immediate if we apply (i) to the mapping 235x +f(x)—f(—x). ®

Finally we should observe that all result concerning approximate solutions
are in fact generalizations of the classical theorems on compact operators. If we
assume that the mappings are closed (such are the Leray-Schauder maps), we get
exact solutions. Another possibility is to assume the demiclosedness of the maps
and the weak compactness of their domains.

A mapping f: Eo A — F is said to be demiclosed [4] if its graph is closed
in Ex F while E is endowed with the weak topology and F with the strong one. One
can easily prove.

PROPOSITION 6.5. If A is weakly compact, a mapping f: A — F is demiclosed
and inf || f(x)}] = O, then there exists an xo & A such that f(x,) = 0.

XA

Proof. (i) Suppose on the contrary that
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On some dynamical properties of S-wnimodal maps
on an interval

by

Tomasz Nowicki (Warszawa)

Abstract. A globally expanding mapping is introduced. It has a uniform hyperbolic structure
on the set of periodic points and on the set of preimages of the critical point. For S-unimodal
mappings the existence of one such structure is equivalent to the existence of another. When the
iterates of the critical point are away from the critical point itself, then the mapping is globally
expanding.

0. Introduction. The aim of this paper is to present some results on the dynamics
of S-unimodal mappings of an interval. The results are related to the results of
Collet and Eckmann [1], Guckenheimer [3] and Misiurewicz [4].

In Section 1 we introduce two notions:

1. global expanding — which means that the length of every interval with two
consecutive critical points of f” as endpoints expands exponentially under .

IL. wniform hyperbolic structure on the set Per(f) which means that there are
two constants K> 0; A> 1 such that if f°(x) = x then | f(x)| > K2* and on the
set of preimages of the critical point C.,,, i.e., if f"(x) = ¢ then | )] > KAm
This notion in another form appears in. [1].

In Section 2 we prove that if f is globally expanding, then f has a uniform
byperbolic structure on Per(f).

In Section 3 we show that a mapping has a uniform hyperbolic structure on
Per(f) if and only if it has a uniform hyperbolic structure on C_ .

In Section 4 we demonstrate that if f has an uniform hyperbolic structure on
Per(f) then for n large enough f" has no restrictive central point. Hence f has
sensitivity on initial conditions (see [3]).

In Section 5 we prove that if f has a uniform hyperbolic structure on C_,and
for some K>0; 1> 1 and every n we have | f "(£(c))] > KA" then the length of the
interval of monotonicity of /" diminishes exponentially with ». Hence, if f ' has no
sinks and the images of the critical point are separated from the critical point itself,
then £ is globally expanding (see [1] and [4D).
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