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Homeomorphisms of products of Boolean separable
spaces

by

Véra Trnkové (Praha)

Abstract. We construct a Boolean (= compact Hausdorff zero-dimensional) separable space X
homeomorphic to X? but not to X A more general setting of sum productive representations of
ordered commutative semigroups is investigated.

1. Preliminaries and the main theorems. In [4], W. Hanf constructed a Boolean
algebra B isomorphic to the product (that is to say, a direct product) B x B x B but
not to BxB. His result was strengthened by J. Ketonen in [5]: he constructed
a countable Boolean algebra B isomorphic to Bx Bx B but not to BxB.

The dual result (i.e. for sums in place of products) depends on the cardinality
of the Boolean algebras: there exists no countable Boolean algebra B isomorphic
to B+ B-+ B but not to B+ B, by [9]; however, there exists a large Boolean algebra™
with this propetty, by [10]. There is a natural problem: what is the smallest cardi-
nality of a Boolean algebra B isomorphic to B+B+B but not to B+B. In the
present paper, we construct a Boolean (= compact Hausdorff zero-dimensional)
separable space X homeomorphic to X but not to X2, This solves the above problem
under the continuum hypothesis: the cardinality of the Boolean algebra B of all
clopen (= closed-and-open) subsets of X is 2% and, by the Stone duality, B is iso-
morphic to B+B+B but not to B+B.

We investigate a more general setting of sum-productive representations of
ordered commutative semigroups. Let C be a class of topological spaces, (S, @, <)
an ordered commutative semigroup. A sum-productive representation of (S, @, <)
in C is any collection {X(s)| s € S} of spaces from C such that for every 5,5’ S.

(i) X(s) x X(s") is homeomorphic to X (s@s') and

(i) X(s) is homeomorphic to a clopen subset of X(s') iff s <s'.

The aim of the present paper is to prove the following theorems.

THEOREM 1. Every countable ordered commutative semigroup has a sum-productive
representation in the class || BS of all spaces which are sums (= disjoint unions as

«©
clopen subspaces) of countably many Boolean separable spaces.
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THEOREM 2. Every finite Abelian group with the discrete order hus a sum-j;roductive
representation. in the class BS of all Boolean separable spaces.

The special choice of the represented group in Theorem 2 as {0, 1} with 1+1 = 0
gives immediately the result mentioned in the abstract, we obtain a Boolean separable
space X = X(1) homeomorphic to X’ 3~ X(1+1+1) and even no clopen subset
of X?~X(0) is homeomorphic to X and vice versa.

Let us mention that some strengthenings of the above theorems are presented
in the part IV. “Concluding Remarks” of the present paper.

II. The general construction and the proof of Theorem 1.

TL1. Let (w, +) be the additive semigroup of all finite cardinals. Then for any
set M, o is also a commutative semigroup (with the addition + defined by
(f+9)(m) = f(m)+g(m) for all me M) and the set expw™, ordered by the in-
clusion, is an ordered commutative semigroup. Let us denote by U the ordered sub-
semiigroup of (expw®, +, &) consisting of all nonempty countable subsets of w®,
Then .

U is universal for all countable ordered commutative semigroups,

i.e. for every countable ordered commutative semigroup (S, @,
a map ¢: S — U such that for every s, 5, € S,

@) o(s1®s2) = @(s)+0(s;) and

(0) o) @(sy) iff 5, <500
In fact, in [7], for every commutative semigroup (S, @) a disjoint homomorphism
Vi (S, @)~ (expw™, +) is constructed with M =N,-cardS (a disjoint homo-
morphism means a homomorphism such that ¥ (s;) N ¥ (s,) = @ whenever s; # s,).
In [1], a given ordered commutative semigroup (S, @, <) is embedded into an
ordered commutative semigroup (S, @, <) such that cardS =¥,-card$ and

<) there exists

if x,y,ze8 and z<x®y then z = x,@y, for some X13 91 el with x; <x
and y; <.

This condition implies that if : (5, @) — (exp ™, +Yis a disjoint homomorphlsm
then the map

?: (S, @, <)~ (expo, +, <)

defined by @(s) = {J (#).is an order preserving embeddmg, hence the class
teS, 158

of all (expw™, +, €), M ranging over all sets, is shown in [1] ] to be a universal class
for all ordered commutative semigroups. The result of [7] has been improved in [8]:
for every commutative semigroup (S, ®) there exists a disjoint homomorphlsm Y of

(S, @) into (expw™, +) such that M =¥, cardS and

cardy (s) =N,y-cardS - for every seS.
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Thus, by [1] and [8], U is really universal for all countable ordered commutative
semigroups. To prove Theorem 1, we show that U has a sum-productive represen-
tation in the class ]_[ BS. i

1L.2. Now, we describe a general method of constructions of representations.
Let {X,, ne o} be a collection of topological spaces. For every fe »® put

X)) =T1x[",

new

i.e. X7™ is the product of f (1) copies of the space X, (X/™ is a one-point space
whenever f(n) = 0) and X(f) is the product of all of them. Clearly,

X(f)xX(g) is homeomorphic to X(f+g).
For every nonempty countable A< w® put
X() = IL(IT X
i.e. X(4) is a sum (= disjoint union as clopen subsets) of N, copies of each X(f)
with fe 4 (a sum is denoted by the symbol [] in the present paper). Then
X(4) x X(B) is homeomorphic to X(4+B).

In fact, each summand of X'(4 + B) is of the form X( f+¢) so that it is homeomorphic
to the summand X(f) % X(g) of X(4)x X(B); and vice versa. Since both X (4 +B)
and X'(A4) x X(B) contain each its summand in N, copies, they are homeomorphxc
Hence

X)) 4e U}

is a sum~productive representation of U whenever the following implication (¥) is
fulfilled.

O] . X(A) is homeomorphic to a clopen subset of X(B) = A< B.

The aim of the mext parts IL3-I1.13 is to construct the starting collection
{X,| new} such that each X, is a Boolean separable space and (x) is valid for
this collection. This will prove Theorem 1.

IL3. Let « be a nontrivial vltrafilter on . Denote by
P() = o v {a}

the subspace of the #-compactification fe of the discrete space o consisting of all
the isolated points of S and the point «; all the neighbourhoods of « intersect
precisely in the ultrafilter «. Let us recall (see e.g. [2]) that
if f+ P(&) = P(0) is a continyous map such that f(¢) = « and f ()< o, then
there exists % e o such. that f(j) =j for all je %.

This assertion will be used without any explicit reference to it.
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We construct a space Seq by means of o as follows: the underlying set of Seq is
the set of all finite strings g, g, ... g, of elements of ®, the empty string A included,
i.e. Seq = | w,. For every string s = ¢ ... g, € Seq we have a canonical map

nemw
W P(o) — Seq
defined by
W) =5,
V(i) = 5 = g4 ... q;J for every jew.

We investigate Seq being endowed with the finest topology, for which each map
Vs, s € S, is 2 homeomorphism of P(x) into Seq. This topology is obtained by itera-
tions of the following closure operator cl: for every 4< Seq,

cld = A U {s e Seq| there exists % e a such that sje 4 for all je %} .

LEMMA. Let @ be a subset of Seq, s be in its closure @ and s ¢ 0. Then

{jew| sie 0}
is in the ultrafilter a.

Proof. Let us suppose the contrary. Then % = {je | gj ¢ 0} is in «. If sf is
not in @, there exists its neighbourhood 77, in Seq disjoint with 0. Then

{sfuU7;
Jjeu

is a neighbourhood of s disjoint with @, which is a contradiction.
. PROPOSITION. Seq is extremally disconnected.

Proof. Let 0 be an open subset of Seq, s be in the closure @ and s ¢ 0. By the
previous lemma, @ N y(P(®)) is a neighbourhood of s in ¥,(P(%)). Analogously,
for every t€ 0 n Y,(P(%)), the set § n (P («)) is a neighbourhood of ¢ in ,(P(x)).
Repeating this procedure, we see that 0 is a neighbourhood of s in Seq. Thus 0@ is
open, Seq is extremally disconnected.

COROLLARY. Since a f-compactification of an extremally disconnected space is
extremally disconnected again (see e.g. [3]), fSeq is extremally disconnected.

IL4. Let X be the space which is obtained from fSeq and the Cantor discon-
tinuum C by glueing a point a € C with the empty string 4 € Seq= fSeq; denote
the obtained point by a again. Let us suppose, for shortness, that Seqe fSeqe X
and let us denote by C the copy of the Cantor discontinuum contained in X, so that

X=CupSeq and CnBSeq={a}.
Observation. X is a Boolean separable space.

IL5. Let & = {«,| new} be a collection of nontrivial ultrafilters on . Let us
use the construction described in IL3~4 for each o = «, (and let us add the index n

e ©
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to each constructed object), so we have constructed an extremally disconnected
space Seq, and a space X,, such that

X, = C, v f8Seq,, C,n ﬁseqn = {an}

(where C, is the copy of the Cantor discontinuum contained in X;). Thus, we have
defined a collection {X;,| n € w} of Boolean separable spaces. Let X(f) and X(4)
be defined by means of this collection as in IL.2, Let us denote by a(f) the point
of X () with all its coordinates equal to a,. Denote by (+) the following statement.

(+) Ifaclopen neighbourhood of a Q“) is homeomorphic to a clopen subset of X (g),
then f = g. )

PROPOSITION. If the statement () is fulfilled, then the statement (x) of IL2 is
also fulfilled. : ’

Proof. Let 4, B<: 0 be given, let 4 be a homeomorphism of X (4) onto a clopen
subset of X(B). For any fe 4, X(f) is a clopen subset of X(4). Since X(f) is
compact, h(X'(f)) is covered by finitely many spaces X(g4), ..., X(¢,,) with g,& B.
Choose that g among the g,’s for which A (a(f)) € X(g). Hence a(f) has a clopen
neighbourhood homeomorphic to a clopen subset of X(g), so that, by (+),f = g € B.
We conclude that A< B.

Remark. Let us mention that the heart of the proof of Theorem 1 is to prove
that if the collection & = {o,| n€w} of ultrafilters has suitable properties (na-
mely (1) and (2) of IL8) then the statement (+) is fulfilled for the collection
{X,| ne w} constructed by means of . This is given in the parts IT.6 - IL12 below.

II.6. For any topological space Z, we denote

8(Z) = {x eZ| x has an uncountable character but any its neighbourhood
contains a point with a countable character}.

For every x € S(Z) and every 7 € , let us denote by #5(Z) the set of all homeomor-
phisms % of P(a,) into Z such that A(a,) = x. We define a binary relation R on the
set A H(Z) as. follows,

hRg iff there exist

(2) a continuous map c¢: Z — fSeq, such that c¢(x) = a, and ‘

(b) & set % e o, such that ¢ o & and ¢ o g coincide on % U fe,} and this restricted
map is a homeomorpbism. of % U {w,} into fSeq,.

Let us say that #'s #5(Z) is R-independent iff no pair of distinct elemfil?.ts
of # is in the relation R; let us denote by fi(n) the supremum of the cardlnalxt1§s
of all R-independent subsets of #%(Z), Hence, for every x € S(Z), we have defined
a function ‘

fet @ - Card.

4 — Fundamenta Mathematicae 126. 1
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Denote

M(Z) = {x e S(2)| there exists a neighbourhood % of
x such that £, <f, for every y # x, ye % n S(2)},

where f, <f, means that f(n) <f.(n) for all new and Iy # S
OBSERVATION. If Z, is a clopen subset of a space Z,, then S(Z), = Zy 0 8(Z,).
Moreover, for every x e S(Z,) and every n,

H(Z,)s #YZ,) and for any h e #(Z,) there exists /' e HHZ,) such that
hRH,
hence
M(Z) =Z, n M(Z,).

IL7. Since we are going to deal with coordinates of points in X(f), we ex-
press X(f) in a form more suitable for the handling of coordinates. Let us denote

L) ={U.ml new, j=1,..,f(n)}

and for every ! = (j,n) e L(f) put | = n. Then
X(NHr= 11 xi.
1€L(r)
Denote by m,: X(f) - X; the Ith projection.
OBSERVATION. S(X())) is precisely the set of all x e X (f) such that m(x) e Cs
Jor all e L(f) and, for at least one I, € L(f), my(x) is equal to aj,. ‘

T.8. Now, let us suppose that the collection o = {o,] new} of ultrafilters
fulfils the following two conditions:

(1) each o, is a weak P-point of w* = o \w @.e. it is an accumulation point
of no .countable subset of @*);

(B if n # m, then the types of a, and «,, are incomparable in the Rudin-Keisler
order (i.e. there exists no continuous map g: P(a,) — P(x,) such that g(o,) = oy,
g(w)s o and vice versa). '

A collection & with these properties really does exist, by [6].

For' each new, let us denote by P, the subspace {a,} U {j| Jjew} of X,
(i.e. P, consists of the empty string 4 = &, and all the strings of the length 1 in Seq,).
Clearly, P, is homeomorphic to P(x,), by the hdmeomorphism Jer ), oo,

LeMMA. Let m, n be in w. Let k: P(,) » X, be a continuous map such that
k(a,) = a,. Then

either there exists % e a,, such that k(@)= C,

or m = n and there exists U € a,, such that k@)= Py and k(j) = j for all je %.

Proof. (a) Since X,=C,upBSeq, and C, N B8eq, = {a,}, ecither
{jeol k(HeC,} or {jew] k(j) e pSeq,\{a,}} is in . Let us suppose the last
case. We have to prove that m = n and there exists % & o, such that k(%)< P,
and k(j) = j for all je.
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Any countable subset of a compact Hausdorff extremally disconnected space is
C*-embedded in it, see [2]. Hence P, is C*-embedded in fSeq, by IL3, so the
closure R of R = P\{a,} in 8Seq, is homeomorphic to fw; denote by 1: K - fo
the homeomorphism with h(j) = j for all Jjew, hia) = «,.

(b) Put

Vv =k"Y(R).
We prove that #" is in o,,. Let us suppose the contrary, i.e. the set Z = k~1(8Seq,\P,)
is in a,,. Then, for every Y= Z with Ye Ow> Oy 18 in the closure of ¥; hence a, is
in the closure of k(¥). Since o, is supposed to be a weak P- point of w* (see IL.8(1)),
a, is an accumulation point of no countable subset of R\R, hence there exists Y=< Z

in o, such that :
kKY)nR=9.

(c) Since R is homeomorphic to w, we can choose, for every je R, a clopen
neighbourhood ¢; in BSeq, such that
0;nR={j}and 0,n 0, =& for j .
Then
for each #'< Y in «,, a, is not in the closure of
JW)={jeR| O;nk(¥)=@}.
In fact, let us suppose that , is in the closure of J(#") for some #°< Y in o,,. Since

each point j of J(#) has a neighbourhood disjoint with k(#"), namely %;,

k(WYnNJ(#)=0.
Conversely,

kKW)nJ#)=0
because W' Y, J(#)=R and k(¥Y) A R = .
Since fSeq, is extremally disconnected, necessarily

k(W) nTH) = 2.
Since a, € W), a, cannot be an element of .1(7 ), which is a contradiction.
(d) Let h: R — Bow be as in (a). For each w e K(#) define
t(w) =j whenever we @; (such j is uniquel),
t(w) = a, if no such j exists,
t(a) = a,.

By the conclusion of (b),s = kot kisa continuous mapping of P(x,) into P(o,)
such' that »%~*(w) e o, Since a,, and a, are supposed to be incomparable whenever
m # n (see IL8. (2)), necessarily m = n. Then there exists ¥ e a,, such that % (j) = j
for all j & #". We may suppose #'c Y, i.e. k(#) n R = @. Foreveryj e W choose

4
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open (in f Seq,) neighbourhoods M; of k(j) and N; of #(k(})) such that A, i NN,=0
and put M = | (M;n @), N= ) (N;n 0;). Then M and N are disjoint open
jeW kew

sets, hence botJh k(#)s M and t(k(#))= N are open in k(#") U t(k(#)). Since
k(W) U t(k(#)) is countable, it is C*-embedded in §Seq,. This is a contradiction
again because the function equal to zero on k(#") and equal to 1 on t(k("//f )) cannot
be continuously extended to a@,. We conclude that

¥ =k"YR) is in a,.

(e) If ¥ = k™(R) is in o, then necessarily m = n, hence there exists ¥ < ¥
in a,, such that k(j) =j for all je %, which has to be proved.

Remark. In the preliminary version of this lemma, the ultrafilters e, were
presumed to be selective. The present proof, using only weak P-points, was done by
Petr Simon.

ILY. Let of = {u,| new} be as in 1L.8 and X(f) be as in IL2.

LevvA. Let there exist a homeomorphism I of P(a,) into X(f) such that
k(o) € S(X(F)). Then f(n)>0 and

k() e C; for all 1e L(f) and

n(h(0)) = a for at least one le L(f) with | = n.

Proof. If m(e,) e Xi\C; for some e L(f), then h(w,) ¢ S(X(f)), which is
a contradiction. Hence m(h(s,))e C; for all IeL(f). Let us suppose that
k(o)) # apforalll e L(f) with | = n (this happens necessarily whenever f(n) = 0).
By IL8, for every /e L(f) there exists % e, such that m(h (%)) = C;. Denote
by X, the space on the same set as X; such that C, is its clopen subspace and ¥,
is discrete outside, let 7,: X, — X, be the identical map. Then 7, o / factorizes through

iy so that h factorizes through theidentical mapi: ] X5~ [] X;.Since [] X
leL(f) leL(f) teL(f)
is metrizable, this is impossible.

IL10. Now, we prove two auxiliary lemmas.

Lemva A. Let G be a G-subset of o* = Bonw; let o be in G. Let g: fo — fo

be a continuous map such that g(z) = z Jor all z.& G. Then there exists U<  in the
ultrafilter o such that g(n) = n for all ne .

Proof. Let Gy, k=1, 2, ..., be open in fe such that G = w* a Gy. For
each k find ¥ in « such that #°,< G,. Then H = o* n ﬁ Vo (whe;: 1the bars
denote the closures in fw) is a subset of G so that 9(2) = ;Ef]or all z e H. We may
Suppose ¥4 S ¥ and 151 7w = @. Then there exists k, such that gn) =n

forall ne ¥7,. In fact, let us suppose the contrary, i.e., for every k there exists
?cke'ff « such that g(x;) # x,. Then g(z) s z for every z in the closure % of an
infinite #°<{x;] k =1,2,..}. Thisis a contradiction because W n H # &.
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LemMMA B. Let 9: (Bw)? — Bw be a continuous map. Then there exists no Gy sub-
set G of w* and its element « such that

3(z,0) =z and 8(«,2) = z forall ze@G.

Proof. Let us suppose that there exists a Gy-subset G of w* and a € G with
the above property. Put g(—) = 8(~,0): fo - Bw. By Lemma A, there exists
% €« such that g(n) = n for all ne %. Since the map 8(n, —): fw ~ fow sends «
to n, there exists ¥, € « such that 8(n,m) = n for every me ¥’ »- Hence for every
ned and every xe ¥ ,\¥,, 8(n,x) =n. Put H = N (T\Y,). Then H is
a Gysubset of w*, ae H, and for every ze H, | ome¥

3(m,2)=n forall new,

hence 8(«, z) = o Since e e H n Gand H A Gis Gy in w*, H A G\{«} is nonempty.
Thus for y € H n G\{c} we have (e, ¥) = o, which is a contradiction,

ILIL Let few®, s#5(X(f)), R be as in IL6. Let us denote for every
ke X))
p(W) ={leL(f)] 1 =n and there exists % e o, such that m; o 2 maps %
into P,\{a,}}.
LemMa. Let hy, by be in #5(X(f)). Then

hiRhy i p) np(hy) + B

Proof. If p(i;) np(hy) + B, choose I in their intersection and define

c: X(f) 5 X; N BSeq,, where r is the retraction sending any point of C, to a,.
This map ¢ and a suitable % e o, fulfil the requirements of the definition of R, hence
hyRh,. To prove the converse, let us suppose that p(h,) N p(h,) = & but there
exists a continuous map ¢: X(f) — BSeq, and a set % €, such that c(x) = a,,
c(m () = c(ha(j)) for every je@ and cohy is a homeomorphism of % U {«,}
into $Seq,. By IL.8, we may suppose that ¢(hy(7) = je P\{a,} for all je %. Since
both p(hy) and p(h,) are finite, there exists ¥"'C %, ¥ in a,, such that

for i = 1,2 and for all lep(h), m(h))) = jeP;
For every / e L(f") choose a countable system {04 k£ =1,2,..} of clopen subsets

0
of Cj such that () 0, = {a;} and find %, , =¥, U,y in «, such that
k=1

for all jey .

for every e L(f)N\p(h) v p(hy),
n(h(%,)) = 0, for
for every lep(h,),
m(hj(%,)) € 0, for

i=1,2,

(L} =112
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and put

G= () @ \%,0-
GLeED

Then G is a G;-subset of f¥"\7" and o, € G. Let hf': f(¥") — X(f) be the conti-
nuous extension of I;: ¥ U {o,} - X(f), i=1,2. Let us define a map
h: (B7)* - X(f) by

ﬂz(]l()’p }'2)) = 771(]1?(}'1)) for lep(lhy),
”z(ll(J'1, J’z)) = ”z(h;.((yz)) for  lep(hy),
751("’()’1, J’z)) =mx)=a for [eL(/INp0)vphy).

Since each m; o & is continuous, % is continuous. One can verify that 11(z, «,) = hi(z)
and 71(e,, z) = hi(z) for all ze G. Put

8: BV 5 X(f) S BSeq, S for,

where r is the retraction sending any string ¢4 ... ¢, with &k > 1 to ¢,. Then 8 is a con-
tinuous map which sends (z, «,) to z and («,, £) to z for all z e G. This contradicts
IL.10B.

IL12. Let fe w® let S(X(/)), #5(X(f)) and fi(n) be as in I1.6.

LEMMA. For every x & S(X(f)) and n & w, the number f,(n) is precisely the mimber
of all le L(f) such that n(x) = a,.

Proof. By IL9, p(k) is nonempty for every he #5(X(f)). If he #HX(f))
and /ep(h), then m(x) = a,. Hence by IL11, fi(n) is the maximal cardinality of
a pairwise disjoint system of nonempty subsets of the.set Tow={leL(f)ll=n
and m(x) = a,}, which is equal to card7 .

The proof of Theorem 1. Let us finish the proof of Theorem 1. Let a(f)
be the point of X(f) with all coordinates equal to ;. If xe SXIINaH},
then there exists /, € L(f) such that m,(x) is in C;,\{#;,}. Then any neighbourhood
of x in X(f) contains a point y & S (X (f))\{x} with f, = f,. In fact, choose y such
that

() = m(x) for all Ie LN},
my(y) is in Cy\{a5}, sufficiently near to (%) but distinct from it,

Cleatly, £, <fir) for every x & S(X(f)Na(f)}. Henco
MX()) ={a(/)} and Sy =1.

This implies (+), by Observation IL.6. This completes the proof of Theorem 1, by
ILS and (%) in IL2.

Remark. Clearly, if A< w®, then 4 = {f] xeM(X(4)}.
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IIL. Compactifications and the proof of Theorem 2.

YL.1. In the proof of Theorem 2, we use the construction described in IL
If 4 is a nonvoid countable subset of w®, we denote by X(4) the space constructed
in IL.2, by means of a system &/ = {,| new} of ultrhfilters on w, satisfying (1)
and (2) of ILS.

First, we show that “the set 4 can be recognized from the topological structure
of a suitable compactification of the space X (4)”. Let §(Z) and M(Z) be as in IL.6.
Let W(A) be a compactification of X(4). Since each copy of X(f) in X(4) is clopen
in W(A), the set M (X(4)) is contained in M(W(4)) and each point of M (xe)
is an isolated point of M (W(A)). Let us suppose that the compactification W(4)
fulfils that

(+)  M(X(4)) is precisely the set of all isolated points of M (w(4)).

Then, by I1.6 - IL.12, A is precisely the set of all f;, with x being an isolated point
of M(W(A)). We conclude that for any 4, Be U, X(d) and X(B) being as in IL.2
and W(4), W(B) being their compactifications which satisfy (%),

W(4) is homeomorphic to a clopen subset of W(B) implies that A< B.

HI.2. To prove Theorem 2, it is sufficient to construct compactifications W(A4)
for each A4 € U such that (xx) is fulfilled and W(4) x W(B) is always homeomorphic
to W(A4+ B). Such construction is unknown, in general; this is the reason why Theo-
rem 2 speaks only about a sum-productive representation of finite Abelian groups
with the discrete order.

First, we present a construction of the compactifications in the case that the
represented group is a cyclic one (with the discrete order), say ¢,.; = {1,...,1—1},
t>1 (where the group-operation of ¢,_, is the addition modulo 7—1). Let
@: ¢y — U be an embedding which satisfies (a), (b) of IL.1. Put 4 = ¢(1) and
for every positive natural number denote

kA = A+...+ 4 (k times).
For every k choose a bijection
bi: (wx A - wxkA
such that
by((ny, £1)s ooor (s /1)) = (n,f) - where n is an element of w and
fHi+otfi=S.
Since 1 = ¢ (mod¢—1), we have 4 = t4; hence b, is a bijection of (wx4)' onto
x4,

Let X(4) be as in IL2; we can express it as

XA = I XU
(mfleoxA
where (X(f)), is a copy of X(f). Then b, defines a homeomorphism %, of (X ()
onto X(k4) as follows: if (x, ..., x) € (X(4))¥, then for each s = 1,..., k find
the unique pair (1, ;) such that x, e (X(f)),,, i.e. x, is a tuple {(x,),| 7e L(f)},
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where L(f,) is as in IL7; then /(x4 ..., xp) is the tuple {(x)l; s =1, .., k, e L(f)}

situated in the copy (X(/)), with (2,f) = (1, f1), s (m» f1))- Since b, is a bijec-
tion of (& x 4)* onto @ x 4, i is a homeomorphism of (X(4))' onto X(4).
Let W, = {£} U X(4) be a one-point compactification of X(4), let us denote by

ho,gt Wy = Wy = W

the continuous extension of the homeomorphism /#,; Ag,4 sends the whole set
WiN(X(4))' to & Consider the following chain (= inverse spectrum) % over :

ho,1 k1,2 k2,3
Wo<—— Wy Wys— Wy<—...,

where Wi,y = (W) and By g = (—q,)'. Let W be its inverse limit, let X be
its subspace, which is an inverse limit of the following subchain & of #:

X () x(ay < x () LX) e .

Since all the (4,)"s are homeomorphisms, X is homeomorphic to X(4). Clearly,
W is a compactification of X. The product of ¢ copies of the chain #" is #" again,
shifted oné step to the right, hence W* is homeomorphic to W (because products
commute with inverse limits of chains).

IIL.3. We are going to prove that {W* k = 1,...,¢t—1} is 2 sum-productive
representation of the group ¢,..; = {1, ...,#—1} in the class BS. Clearly, cach
space W* is really in BS; by IIL.2, W* is homeomorphic to . Hence it is sufficient
to show that

if k,pe{l, .., t—1} and W*is homeomorphic to a clopen subset of W?, then k = p.

Let ke {1, ..., t—1} be given. Let us denote by 5, the homeomorphism of X(kA4)
onto X(A)*, inverse to /.. Let Wy(k4) be a compactification of X (k4) such that there
is a homeomorphism o of Wy(kd4) onto W, which extends s,. Consider the following
diagram.

9k W[‘]‘ hgnA Vﬁ’ —— h{z 0 hgs -k
incl.

e XA id (X141 (0 {x14)% M’ﬂ)k--x’f

r s Iy 5 n 5 r 5,

Z(kA) XlkA) X(kA) XRAY e o R
incl,

¥lka) Wu[kA)T wykA) ~— Wo(kA)'.<_.._._g e WIkA}

. 1,2 2.3
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In the above diagram, we define
m

n

5o
$ut X (eAY" —> (X(AM)" — (X (4"},
where p, permutes the coordinates and analogously
o

ot W)™ ——> (WA~ (WL = W
where ¢, permutes the coordinates. Finally, we define

= -1 k
gn.u+1 - rn ° hn,n+1 @ rn+1 .

Clearly, gyns1 = (gn-1,n)" -

Let us denote by X (k4) an inverse limit of % (k4) and by W(k4) an inverse
limit of %" (k4). Then X (kd) is homeomorphic to X(k4) and W(kA) is its com-
pactification. Hence it is sufficient to prove () for W(kA4).

The inverse limit W(kA) is the subspace of T[] (Wo(kA4))" consisting of all
n=0

sequences w = {w,}n=o such that g,_, ,(w,) = w,_,; for each n, r,(w,) is a k-tuple
of elements of W, = (W,)", say {w, | i=1,..,k}; and each w,, is a "tuple
of elements of Wy, say {w, ;1 j=1,..,t". If for every new, i =1, ...,k and
J=1, .., 1" w,,; is distinct from ¢, i.e. it belongs to X(d4), then we X (kA). If
there exists no such that w,, ; ;= & for some ie {1, ..., k} and je {1, ..., 2™}, then
W & (X (kA))™; hence w, ¢ (X(kA))" for all ne w, Let us denote

K(W(kd)) = {we S(WkA)| for every new, ie{l,..,k}, je {1, ..., 1"},
either w,,;,; = & or w, ;€ M(X(4))},

E(W(kA) = S(WEADNK(W(EAD) L X (kd)) .

We prove that no point of M(W(k4))\X (k4) is an isolated point of M (W (kA))
such that we prove that

fwe K(W(kA))\X’(kA), then any its neighbourhood in W(k4) contains
infinitely many points of M(W(k4)) and

if we E(W(k4)), then w is not in M(W(kd)).

The first statement is evident: any neighbourhood of ¢ in W, contains infinitely
many points of M(X(d)); if we K(W(kA))NX (kd), then each w,,,; is either & or
in M(X(4)) and at least one s really equal to ¢ (and each point v € W(kd) with
all v, ;; being in M(X(4)) is in M(X (k4)), hence in M(W(kA4)).

The second statement follows easily from the lemma below.

LEMMA. Let w be in E (W(kA)). Then for every neighbourhood U of w in W(kA)
there exists a homeomorphism v of W(kA) onto itself such that t(w) e U\{w}.
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In fact, since weS(W(kA)), t(w) is also in S(W(kA)); for every neao,
#7(W(kA)) and #"(W(kA)) are in one-to-one correspondence preserving the
relation R, hence f,, = fiy; thus, w is not in M (W(kA)).

Proof of the lemma. Since w is in E(W(kA)), there exist ny € 0, i € {1, ..., k}
and joe{l, ..., t™} such that W = W, s, j, i in X(A)\M(X(A)). Find fe 4 and
p € o such that W is in the pth copy of X(f) in X(4), say X (f),. Since w & S(W(kA))
and since W ¢ M (X(f),), there exists its coordinate, say the /th one W,, such that
W e Ci\{ai} (where Cj and 7 are as in IL.5). Choose a homeomorphism g, of X;
(where X7 is as in IL5) onto itself such that u,(»} = y for all y € Xi\Cj, (W) # W,
w(%) is in C\{a;} and sufficiently near to W,. Then we define a homeomorphism
u, of X(f), onto itself such that for each point of X'(f), we change at most its /th
coordinate and we use for this change the homeomorphism s, Since X(f ), is
clopen in W, we can extend u, to a homeomorphism p of W, onto itself as follows:
u is identical outside X(f), and equal to u, on X(f),. The special forms of y and
ho,1: W5 — W, admit to find a homeomorphism ji of W} onto itself such that
ho,yofi = piohy,, and that there exists je {1, ..., ¢} such that [ changes at most
the jth coordinate of some points of W (in fact, u is identical outside X'(f), and
BSA(X (D)) = X(fp XX X (R With ((fys 2Oy s (£ 2) = BT 1) ot
restricted to X'(f}),, X... X X(f),, only collects coordinates in L(fy), ..., L(f):
hence the /th coordinate in X'( /), corresponds to precisely one coordinate in precisely
one of the spaces X (f1)pys s X(f)ps 58y in X(f))y,0 Je {1, ..., ).

Now, we define a homeomorphism g,, of W§"® onto itself such that we change
at most the joth coordinate of points of W5°, by the homeomorphism u. The special
forms of p and hy 4 q = (fo,;)" admit to find a homeomorphism g, of W onto
itself for each n 2 n, such that g, changes at most one coordinate of points in W}
and i, 41 00011 = Qo Bypey. If we put 7, = (9, or,, then for ail 12 Hy,
Inn+1®Tnst = TyoGuner and the homeomorphism t = limt, of W(kd) onto

new

itself has the required properties.

IM4. Now, we present a generalization of IIL.2 to obtain a sum-productive
representation of a given finite Abelian group G in the class BS.

m=1

First, let us express G as ] C,—1, Where ¢,y are cyclic groups of order t;—1,
=0

i.e. any element g of G is an m-tuple g = oy s Gu-1) With g, e {1, ..., =1}
We choose a collection of = {o,,| iem, new} of ulirafilters on o such that the
whole collection fulfils (1) and (2) of IL.8 and construct the sum-productive represen-
‘tation of the cyclic group ¢,-4 by means of o= {a,,| new} as in IL - 1112,
i.e. we choose @;: ¢,—y - U, denote 4; = @(1), construct X(4,) by means of &,
as in IL2-5 and for ke {l,...,4,~1}, W} is a compactification of X' (kd;) con-
structed by means of the chain %% as in IIL2. For each g = (Gos eves Gm—1) €C
we put '

rig) =] wi.

iam
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Then {r(g)| g€ G} is a sum-productive representation of G in BS. In fact, the
r(g)’s are in BS, evidently; r(g+g') is homeomorphic to r(g)x #(g") because for
each iem, WIx W? is homeomorphic to any W7 with z = (9;+g))mods;—1.
Moreover, all the sets g;4;, iem, can be recognized from the topology of r(g).
We have only to investigate the sets #7 ,(Z) of all homeomorphisms % of P(o;,,)
into Z (with h(e;,,) = x € §(Z)), the relation R;, on #7,(Z) and functions Six
as in IL6, but depending on a given iem. Finally, we define

M(Z) = {x e S(Z)| there exists a neighbourhood % of x in Z such that

for every ye (% n SZ)NX, fi,<fix for all iem and
fiy <[i,» for at least one iem}.

Similarly as in 11.-IIL.2, we can see that
gid; = {fi,s * is an isolated point of M(r(s))} -

This shows that if g 3 g', then r(g) is not homeomorphic to a clopen subset of
r(g").

IV. Concluding Remarks. Let us present some strengthenings of the Theorem 1
and Theorem 2.

IV.1. First, let us recall that, in the proof of Theorem 1, we constructed a sum-
productive representation of the ordered semigroup U in [[ BS. The semigroup U

a
contains all countable ordered commutative semigroups, but also some natural
uncountable ones.
ExAMPLES. () The additive group of all real numbers with its natural order
Let ¢: (Q, +, <) — U be an embedding of the additive group of all rational
numbers (with their natural order) into U. For every real number r put
o) = U o@-
qeQ
as<M
Then ¢ is an embedding of the additive group (R, -+, <) of all real numbers with
their natural order into U; hence (R, +, <) has a sum-productive representation
in T] BS.
o
(b) Many nonhomeomorphic square roots. Let (expw, @, <) be the semigroup
of all subsets of o with an operation @ defined by

s, @5, =& for all

and ordered by the inclusion. Let (S, @, ) be its ordered subsemigroup consisting
of all finite subsets of . Since S is countable, there exists an embedding
¢: (S, ®, €)= U. For any tSw put
() = U o).
teS

sEr

S1,8S 0
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Then ¢ is an embedding of (expw, @; ) into U; thus, (expw, @, <) has a sum-
productive representation {X(s)| seexpw} in []BS. Then the space X = X(2)

has 2% nonhomeomorphic square roots in [] BS: each X(s) with scw fulfils
@

X xX(s)=X.

IV.2. Both Theorem 1 and Theorem 2 can. be strengthened as follows: givén
a space P in C, then (S, @, <) has a sum-productive representation {X(s)] s e S}
in C such that the space P is a retract of each representing space X(s), where either

C=][BS and (5,®,<)=U

or C = BS and (S, @, <) is an arbitrary finite Abelian group,

In fact, let N be aspace in C such that any its point has an uncountable character.
If Ae U, replace the space X(4) in IL.2 by the space

Y(4) = [J(PxNY'xX(4).
HE®

Clearly, P is a retract of Y(4): we choose y, € N, x5 € X(4) and embed P onto
Px {yo} x {x;}; the summand (P x N)* x X(4) can be retracted onto P x {yo} x {xo}
by the first projection, the other summands are mapped into it e.g. by a constant
map. Since each X (4) is homeomorphic to a sum of w copies of itself ¥(4)x Y(B)
is homeomorphic to Y(4+B), for every 4, Be U. If n = 0, (PxN)° is a single
point, so we can identify (P x N)° x X(4) with X (d). Since any point of (PxN)'x
x X(4) with »>1 has an uncountable character, we have

S(Y(4) = S(X (D) and  M(Y(4)=M(X(4)).
Thus, {Y(4)] 4e U} is a sum-productive representation of U in 11 BS by spaces
with the given retract P. (We can combine this result with IV.1; Wezbtain e.g. that
every space P € | | BS can be embedded as a retract into a space X e 118s

o
which has 2% nonhomeomorphic square roots in ] ] BS.)
(2]

If P is in BS and 4 = t4, we can construct a compactification of ¥(4) similarly
as in III: we choose a homeomorphism % of ¥(4)' onto Y(d) such that it maps
X(4) onto X(4) as in I1I.1 and define a one-point compactification W, of Y(4)
and kg 11 Wi — W, extending k. Then we construct the chain % as in IIT. The
limit W of %" has P as its retract (in fact, choose f'e 4; then Px N x X (f ) is clopen
in W and P is its retract). The proof that {W, W2, ..., W'"'} is a sum-productive
representation of the cyclic group ¢, is quite analogous to IIL. as well as the step
from the cyclic groups to the finite: Abelian. groups.

) IV.3. Let {X(s)| s& S} and {X"(s)| s S} both be sum-productive representa-
tions of an ordered commutative semigroup (S, @, <). We say that these repre-
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sentations are nonhomeomorphic if none of the spaces X (s) is homeomorphic to
any of the spaces X'(s). All the results of this paper can be strengthened in the way
that there are many nonhomeomorphic representations. Let o = {a.liel,new}

. be a system of ultrafilters on o such that (1) and (2) of IL.8 are satisfied. Let us con-

struct a sum-productive representation {X;(s)| se S} as in II. and III. by means
of the system &/; = {o;,,| 1 & }. Similarly as in II1.3, one can prove that if  # 1/,
then the representations {Xy(s)] s€S} and {X,(s) se S} are nonhomeomorphic.
Since there exists o = {a,,| iel,new} with (1) and (2) of IL8 such that
cardI> 2%, by [6], we obtain that there is at least 2™ nonhomeomorphic repre-
sentations.

Acknowledgment. I am indebted to my colleague Petr Simon for valuable
discussions, particularly for the improvement of the proof of Lemma II.8, which
admitted to eliminate selective ultrafilters from the construction and obtain the
absolute result.
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