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Some remarks on embeddings
of Boolean algebras and topological spaces, II

by

Ryszard Frankiewicz (Warszawa)

Abstract. We prove the existence of a mode] of ZFC+MA+7CH in which the algebra P(w;)
is not embeddable in P(w)/[w]<* and the existence of model ZFC+-LM/4 is not embeddable into
P(w)/[w]<®.

The following theorem is well known in the foundations of set theory and general
topology:

Assume CH. Then each Boolean algebra of cardinality ¢ can be embedded
in P(w)/[w]“®. For the proof see Comfort and Negrepontis [1]. In Kunen’s disserta-
tion and in [3] it is shown that the above theorem is not true in some models of ZEC
set theory, for example in L[{c,| « < w,}], where ¢,’s are Cohen reals. The question
arises whether the theorem follows from Martin’s Axiom MA. Analyzing the classical
proof, we see that gaps in P(w)/[w] ™ are a unique obstacle as regards the existence
of embedding of P(w;) in P(w)/[w]*® (under MA). The solution is negative. We
shall prove the following:

THEOREM. Assume the consistency of ZFC. There is a model of ZFC+MA -+
+CH+ O, in which the algebra P(w,) cannot be embedded in the algebra
P(w)/[w] %,

The above theorem was obtained in 1980 (see [4]) during the TOPSET con-
ference in Toronto. It was proved independently by J. Baumgartner. Two years
later J. van Mill in [6] proved a similar result. Namely, in Kunen’s model (un-
published) in which there are only (w,, ®;)-gaps and (@, , ¢)-gaps and MA+ "1CH
holds, the universal (for embeddings) algebra of cardinality ¢ cannot be embedded
into P(w)/[w]<®. It is not known whether the theorem holds in Kunen’s model.

It seems that the existence of (@, , @,)-gaps will not contradict the existence of
embeddings of algebras of power ¢, which are hereditarily .c.c. But, unfortunately,
that is not true. The following theorem will be proved in Sec. 3.

THEOREM. If ZFC is consistent, then it remains consistent with LM/4 not being
embeddable into P(w)/[w]<°.
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1. Let {4, <) be a partially ordered set. For arbitrary ordinals %, A a subset
& ={a,, bp: w<x,B<A} of 4 isa(x,A)-chainif foralla<o’<x and f<p' <
we have a,<a, <bgp<bs. (%, )-chain & forms a (x, 1)-gap, if we do not have
a,<c<bg, all a<x and p< 4 for any c in 4.

A classical theorem of Hausdorff says that there are (w, , w,)-gaps in the algebra
P(o)/[w]"®.

For a given chain & = {g,,b;: a<x,f<i} in P(w)/[w]*® we denote by
E(%) the set of all pairs {s,#) where s, ¢ are functions with dom(s) e [x]~°
dom(?) € [A]°® and ranges < o satisfying the following condition:

U {as(@): vedom(s)i<s N {byu 1(B): fedom(r)}. We order E(¥) by
inverse inclusion. Thus, E(%) is a natural partial ordering to kill a gap.

LemMa 1. If & is an (0, , 0,)-gap in P(0)/[w]™®, then there is a c.c.c.-set P
such that for each generic GS P we have V[G] I+ “E(%) is not a c.c.c.-set”.

Proof. We choose representatives from equivalence classes and work in P(w)
instead of P(w)/[w]~°. Let & = {a,,b;: «, B < ®,}. Thus, for each o < w, there
is an n, € w such that a,\n,<b,, and hence there are an uncountable A< w,,
and » such that a,\ncb, for all e 4. Let P* consist of all finite s= 4 with the
property:

an&Ebg, for a<fins.

P* is ordered by inverse inclusion.

We prove first thet P* is a c.c.c.-set. Suppose, an the contrary that
C = {s,: a<m,} is an uncountable antichain in P*. Applying the 4-Lemma, we
may assume that s,’s are pairwise disjoint. Moreover, replacing C-by a subfamily,
we obtain maxs, < mins, for a < f. Now, if 4, = () (a,;\n), B, = |J by, then the
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chain {4, B,: s,te C} is not an (w,, w,;)-gap and consequently .f} is not a gap
either. Thus, P* is a c.c.c.-set. .

Let P<P* consist of all s such that for uncountably many « we have
s U {o} eP*. We easily check that P*\P is at most countable (again using the
assumption that & is an (w,, w;)-gap), and hence each generic GS P is uncount-
able. In V[G] we have an uncountable antichain {{Pus 4y w€ ) G} of E(2),
where p, = {{a,n)} and g, = {{a, 0)}, which finishes the proof. ‘

Using the A-Lemma and Ramsey’s Theorem, one can prove the following
(unpublished) result of Kunen:

LemMA 2. If & is not an (w,, w;)-gap in P(w)/[0]<®, then E(¥) is a.c.c.c.-set.

2. In this section we shall prove our theorem, formulated in the introduc-
tion. We start from a model L of constructible sets and fix a regular cardinal % > w,.
Enlarge 2°* to %, using a standard set of conditions. Then, in the model V'
thus obtained, the principle <>, still holds true, (see [2]). Let (S,: o« <ux) be a O,-se-
quence in V and F: % — H(x) — a fixed bijection of % onto the family H(x) of all
sets of hereditary power <ux.
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We now define a sequence P,, for « <, of partial orderings P, € H(x). Assume
that P, has been defined. Suppose that F(S,) is a term in V7= and Ps  F(S,) is an em-
bedding of BA ([w;1°%) in P(w)/[0]<®”. (Here and later BA(X) denotes the sub-
algebra generated by a subset X of a given Boolean algebra.) Since BA ([w,]%%)
contains 2% = % (w;, ®)-gaps and P(w)/[w]*® has cardinality ¢ = 2% <, there
exists an (o, ®;)-gap &£ in BA ([w,]%°"), (in ¥®), such that: p, “F(S)(Z) is
a gap in P(w)/[w]™*".

Let P be a ¢.c.c.-set corresponding to the (e, @,)-gap F(S,)(#) asin Lemma 1
and put P,y = P, *xP.

Suppose now that

ke, “F(S,) is a partial ordering with c.c.c.”

In this case we define P, = P, F(S,). Finally, if F(S,) is not as above, we put
P,., = P,. For limit ordinals 1 <x, P, is defined as the direct limit of the preceding
Ps.

It is clear that in. P"* both MA and <>, hold true. It remains to prove that in ¥~
the algebra P(w;) is not embeddable in P(w)/[w]**. Suppose, on the contrary, that
Irp,f is an embedding of P(w,) in P(w)/[w]®” .

Then, f embeds the subalgebra BA ([o,]%**) in P(w)/[w]<®. Since P, satisfies c.c.c.,
we may assume that f < H(x). There exists a closed unbounded set C<» such that,
for limit a € C, f, = f n V"= is an embedding of BA ([w,]<®") in P(w)/[0]=® in V*=.
The set I' = {x <x: f n F[«] = £,} is again closed and unbounded and for a limit
aeCnT we have F(S,) = fn'Fle] = f,. Hence, by the construction of P,,,
and Lemma 1, the set E(F(S,)(#)) does not, in ¥« and a fortiori in VP, satisfy
the c.c.c.-condition. Since there are no (o, ®,)-gaps in P(w,), it follows that
J(£) = F(S,)(£) cannot be an (w;, ®;)-gap in P(w)/iw]® and consequently,
by Lemma 2, E(f (%)) is a c.c.c.-set, which gives the desired contradiction.

3. The continuum hypothesis (CH) implies that the algebra LM/4 (the Lebesgue
measurable sets of the unit interval modulo the sets of measure zero) is embeddable
in P(w)/[w]“®. Moreover, there is an embedding ¢ which satisfies

measure of a = density of @ (a)

(the density of a subset A<  is defined as the limit lim|4 nlfn, if it exists). We
n

shall now prove that the assumption CH is essential here.

TreoreM. If ZFC is consistent, then it remains consistent with the following addi-
tional statements:

(@) LM/4 is not embeddable in P(w)/[w]<°.

(b) ¢ = 2% = g,

The proof is obtained as a modification of Shelah’s proof from [7]. More pre-
cisely, properties. (a) and (b) of the Theorem are both true in modification of
Shelah’s model, in which the Lebesgue measure has no Borel lifting,
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Since our proof is identical with that of Shelah from a certain point on, we shall
indicate below only the principal differences. In view of [8], IV, See 3, it is sufficient
to prove the following lemma: |

LemMA. Let M be an wy-oracle and h an embedding of LM/4 in P(w)/[0]<®.
Then there exist a forcing P satisfying the M-chain condition, and a P-name X of
a Borel set such that, for every generic GESPx Q over V (Q is a Cohen forcmg),
there is no A< w in V[G] satisfying the following conditions.

(i) for every BeBorel”, if V1< X[G] mod 4, then h(B)< A mod[cu]“’.

(i) for every BeBorel”, if B"'%'n X[G] = @modd, then h(B)n A= &
mod [w]<?

Outline of proof. Pis deﬁned as in Shelah [7]. Let Se denote the set of mono-~
tonic sequences & = {a;: i<w), where 4;, for i<w, are rationals, a; # a,,4,

lima,= a,, and a, is an irrational. Let PF= P({a": a<p)), where f< w,, @*c Se
i<o . )
and a;, is are pairwise distinct, consist of the conditions p = (u,, f,» where

a. u,' (0, 1) is open, cl(u,) has measure <1, 7, is a function from u,to {0,1};
n=1

b. there are 7, b, J; such that 0 = by <b; <...<b,_ <b, =1, u, = ) J
and J; are open with cl(J)= (b, by q); =0

c. J, is either a rational interval and £}/ is constantor J; = J (65, Agmt1)s
n)Sm<e

for some x<pf and n(l)<cu, and f, on (a4,n+1k, Aam+a2x+1) 18 constantly k 1f
n(ly<2m+k, ke{0,1}.
The ordering < on P is as follows

pzqg if w,cu, and f and cl(ilp)'mu—h—.u‘

Let X, be the union of all.rational mtervals (a b) such that for some pe G, we
have (a b)cu, and f, on (a, b) is constantly zero.

Define inductively a sequence (P,, d<wmg)as follows assume that P, has been
defined, let M;e M, (p*, q*)ePaxQ and let 4 be a Pyx @ — name of a 'set 4.
Then we can find an o’ € Se"and an infinite subset o(d®) of w satisfying ¢ (a?)
Ch(bl, b,), whete by, b, are rationals, b; <a’, <b,, and h(by, d2) does not split
@{al)into two infinite sets, so that all the following holds: if Py, = P({a@* 0 < 6)),
then

(A) every predense subset of P; belonging to Ma is predense in Pyyq;

(B) there is a (p, ’) EPH.]_ x @ such that (p ry<{p¥ q*) and either, for
some ne o,

<p s > ”'Fath”(P(aw)E AmOd[a’]<w : o

and
. U (a4m+1: a4m+3) NX # @
- L _— n<m<
and SR )

@ (ali)) -C— *h ( U (dim-i-?, » aim'f-pn)),}
n<m :
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or
$PorDbpping"0@) 0 A= Omod[0]*®  and U (@, )X
n<m<o
and

qD([Iw)E*ll( U (aim’az—m-)—l))”
n<m<awo

Now, we show how to find o and ¢ (a2) with the properties described above. Let 1 be
a cardinal and take a countable N< {(H (1), e) containing P,, {a*: « <8y, 4, M,
and /. Let @ be a random (over N) real, a4 e (0; 1)\cl(up.,) We work i m Na®]:
Iet ¢ (ad) be an infinite set almost:contained in each h(b, %), where b <d’, is a ra-
tlonal and let (b,: n <) be a strictly increasing sequence of rationals converging
to @’. Define, in N [3], a forcing R consisting of pairs {f, ), where f is a finite
sequence of natural numbers satisfying f(i)>i for all i<n = dom(f) and g is
an arbitrary function from ® to w, and order R as follows:

L= Ml fef and Yi[g() <g'G)]
and .
Vilie dom(fNdom(f)— () = g ()] -
Let f* be R-generic over N[a3] and define in N[a2][F*] a sequence {n(b): b < o)
of natural numbers as follows:
n0) =0 and a+1D) = nQ).
Now, if for m<4 and k<o,

k
A = U (bn(4l+m)abn(4l+m+1])’

k<i<o
then 45 (m =0, 1,2, 3) is a partition of (by, a’) and hence, for some unique m*,
we have
@ (@)= h(49)mod[w]<®.

Since we can chémge J* at finitely many places, we can assume that a’, e A%.. Put
& = (B 1<y (a) .

From now on the proof goes exactly as in Shelah [7].
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On rest points of dynamical systems
by
Roman Srzednicki (Krakéw)

Abstract. For a dynamical system = in an ENR-space X we define the index of rest points
I(z, U) in a relatively compact open set U as lim ind(m;, U). We prove, that if K is a compact
10+

set such that any positive semitrajectory intersects X then I(x, int K) is equal to the Euler charac-
teristics ¥(X). If X is a separable 2-manifold having the Betti numbers finite and any trajectory inter-
sects K then I, intK)> x(X). ‘

In the present paper we apply the theory of isolated invariant sets and the fixed
point theory to prove some results concerning rest points of dynamical systems.
The theory of isolated invariant sets was introduced and developed by C. C. Conley,
R. W. Easton, R. C. Churchill and others, but the main idea comes from paper {13]
of T. Wazewski. We base ourselves on paper [2], in which there are references and
historical remarks concerning this theory. We use the fixed point index constructed
by A. Dold and presented in [3].

In Section 1 we present the basic facts in the theory of dynamical systems and
isolated invariant sets. Section 2 is devoted to asymptotically stable sets. The main
result of this section is Theorem 2.4. It presents a sufficient condition for the exi-
stence of an asymptotically stable set in a space X, such that X is its region of attrac-
tion. In Section 3 we present the notion of an ENR and we prove that for dynamical
systems in 2-manifolds there are blocks which are ENR’s (Theorem 3.3). The index
of a rest point is defined in Section 4. We compute the index in the interior of a block
(Theorem 4.4). In Section 5 we assume that a dynamical system is generated by
a C* vector field v and we compare the index with the degree of v. In Section 6 we
apply the properties of the index to prove some results concerning the existence of
trajectories and rest points in a given set.

The author expresses his gratitude to Professors A. Pelczar and . Sedziwy
for their valuable remarks during the preparation of this paper.

1. Preliminaries. In this paper X denotes a topological locally compact space
satisfying the second axiom of countability. We say that

n: RxX —» X


GUEST




