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Abstract. For a dynamical system = in an ENR-space X we define the index of rest points
I(z, U) in a relatively compact open set U as lim ind(m;, U). We prove, that if K is a compact
10+

set such that any positive semitrajectory intersects X then I(x, int K) is equal to the Euler charac-
teristics ¥(X). If X is a separable 2-manifold having the Betti numbers finite and any trajectory inter-
sects K then I, intK)> x(X). ‘

In the present paper we apply the theory of isolated invariant sets and the fixed
point theory to prove some results concerning rest points of dynamical systems.
The theory of isolated invariant sets was introduced and developed by C. C. Conley,
R. W. Easton, R. C. Churchill and others, but the main idea comes from paper {13]
of T. Wazewski. We base ourselves on paper [2], in which there are references and
historical remarks concerning this theory. We use the fixed point index constructed
by A. Dold and presented in [3].

In Section 1 we present the basic facts in the theory of dynamical systems and
isolated invariant sets. Section 2 is devoted to asymptotically stable sets. The main
result of this section is Theorem 2.4. It presents a sufficient condition for the exi-
stence of an asymptotically stable set in a space X, such that X is its region of attrac-
tion. In Section 3 we present the notion of an ENR and we prove that for dynamical
systems in 2-manifolds there are blocks which are ENR’s (Theorem 3.3). The index
of a rest point is defined in Section 4. We compute the index in the interior of a block
(Theorem 4.4). In Section 5 we assume that a dynamical system is generated by
a C* vector field v and we compare the index with the degree of v. In Section 6 we
apply the properties of the index to prove some results concerning the existence of
trajectories and rest points in a given set.

The author expresses his gratitude to Professors A. Pelczar and . Sedziwy
for their valuable remarks during the preparation of this paper.

1. Preliminaries. In this paper X denotes a topological locally compact space
satisfying the second axiom of countability. We say that

n: RxX —» X
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is a dynamical system in X if = is continuous, 7(0,x) =x and n(s+¢, x)
= n(s, n(t, x)) for any xe X and s, # € R. Sometimes we will write m,(x) instead
of (¢, x).

For Ac X and J= R we define

n(J, 4) = {rn(t,x): teJ,xc 4} .
We use the notation:
n(Ad) = n(R, 4),
" (4) = ([0, o0), 4),
77 (4) = n{(— o0, 0], 4).
If A = {x} we omit the brackets, i.e., n(x) = n({x}), etc.
A point x.€ X is called a rest point if m(x) = {x}.

If m is a dynamical system in X, X = Xu {co} is the one-point compactlﬁca-
tion of X..By # we will denote the extensmn of n defined by:

#=nin RxX, 1’t(t oo)mooforanyteR

# is a dynamical system in X.
Set

/1+(.X) {yeX Elt,,,t = 0, such that n(z,, x) —>y},

A @) ={yeX: At,,1, > —0 suph that 7(z,, ;c) - J}.

A set S is called invariant if 7(S) = S. An invariant set is called isoldted if it
is compact and is the maximal invariant set in some neighbourhood of itself.

We say that Z'c X is a section if there exists a 6 >0 such that | (Ls,5)xx 18
a homeomorphism ‘with an open range. "

Let B be a compact set and let £+ and 3~ be sections with disjoint cIosures.
Let 6> 0 be such that

7((=86,8),Z%) n((—34, 8,7 )=0.
B is called a block if
@ EEINEHYNB=0, )
®) (=8, 8),2%) 0 B = 2([0, 6), Z*  B),
7((~8,8),27) n B = n((~8,0],Z" n B),
(c) for each x € 3B\(Z* U Z~) there are real numbers &y, 8, & <0 <e, such
that n(eq, x) e 2%, n(e,, ) €2~ and

7Z([31: 32] x)C dB.

Sections X% which fulfil the conditions from the definition of the block B are
called associated with B.
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Let B be a block. Set
b* =3* 8B, b~ =" 0B,
A" ={xeB: n*(x)c B}, 4™ = {xe B: = (x) =B},
q+"= AT b, a =AD",
A=4a%Y 04",
The set S(B) = 4" n A~ is the maximal invariant set in the interior of B, and so

it is an isolated invariant set.
The proofs of the following two proposmons are in [2], pp. 336-338,

PROPOSITION 1.1. The: sets b*, A%, a* aré compaét and-
a* c inth*(relzt) .
For x € B define )
for xe B\ZT,

. inf{t <0 n(lt, 0], x) "I = B}
o) = {0 for xeX®,
) = (sup{r=0: n([O ;%) E™ =@} for xe BNZT,
o { for xeZX~
PROPOSITION 1.2. The functions
 o*:Bo[-w,0l, o B0,

are continuous. * ,
PROPOSITION 1.3 x € 86T (rel =*) if and only 'if

#([0, e~ ()], x)= 6B‘.

The same is valid if ‘we 'interchange the signs + and —.

.+ Proof. The ifnplication from the left to the right is proved in [2] (Prop. 3.7(c),
p. 338). Assume that x eintb™(relZ¥). Then =(5/2, x) belongs to the open set
7((0, 5), intd*(relZ*)) = B (since Z* is the local section and (b) is valid). Thus
#(6/2, x) €int B, contradicting the assumption.

In the sequel we adopt the following convention. If we deal with several
blocks B;, j=1,2,..., the corresponding sets and functions will be denoted b
aji, o‘}t, etc.

PROPOSITION 1.4. Let B be a block and Z% be sections associated with B. Assume
that d<=b* is compact and a cmtd(relE*) Then

B =B\ U (0,071, %)

xebt\d
is also a block, bf = d and S(By) = S(B).
Proof. Since the set b¥\intd(relZ*) is compact and separated from a*, the
function o~ restricted to this set is bounded from above by a finite constant Q.
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The set {xeB: ¢~ (x)—o*(x)> Q} is open, contains 4 and is contained in B,.
This implies A < int B, (rel B). The set B, is compact. Let {x,} = B; and let lim X, =Xg.

n= o
We can assume that xo ¢ 4. Thus n(o*(x,), x,) € B; 0 b¥ = d, n(a*(x,), xXo)ed
and x, € By. It suffices to prove that the sections 2 fulfil (a), (b), (c) for the set B,.
Conditions (a) and (b) follow simply from the analogous conditions for B. In order
to prove (c) assume that xedB,\(Z* U X7). Observe that ¢*(x)>—co and
07(x) < 0o since 4 cintB,(relB). We prove that

n(lo*(x), o~(¥)], x) = 0B, . -

If x € 8B, the assertion is obvious. Assume that there exists a sequence { X,} < B\B,
such that lim x, = x. Put

n—oo

In = 71'(0'+(x"), x,,), y = n(a*(x),x) .

Let 7€ [0, 67(»)] be arbitrary. We have 3, e b*\d and
nl_i)m (min(t, a~ (), 1) = n(t, ¥),
which implies that n(¢, ) € 8B,. This shows that
#([6*(x), 6~ (x)], x) = =([0, s~ (»)], y) < 8B,

We will need the following theorem concerning isolated invariant sets.

THEOREM 1.5. Let w be a dynamical system in X and S < X be an isolated invariant
set. For any U, an open neighbourhood of S, there exists a block B < U such that
§ = S(B). .

Proof. We extend the system = to X, the one-point compactification of X.
Since X is locally compact and fulfils the second axiom of countability, XI. 8.6 in [4]
implies that X is compact and mietrizable. In this case the theorem was proved in [2]
(Th. 3.4).

2. Asymptotically stable sets. A nonempty compact invariant set S is called
positively asymptotically stable (PAS) if:

(1) for each open neighbourhood U of § there is an open neighbourhood ¥V < U
of § such that z* (V)< U,

(i) there is an open neighbourhood W of § such that A*(x) = S for any x € W.
) The maximal set W in (ii) is open and invariant. It is called the region, of attrac-
tion of S. If we change the sign + to — in (i) and (ii), we obtain the definition of
a negatively asymptotically stable (NAS) set. Note that asymptotically stable sets
are isolated and invariant.

The following criterion for asymptotic stability has been proved in [2], p. 337.

THEOREM 2.1. Let B be a block. S(B) is PAS (NAS) if and only if a~ = @
(resp. a* = @),
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PROPOSITION 2.2. If S is PAS then for any block B, § = S(B) there exists
a block By such that S = S(B,), 3B, = b}t = af and 0B,, @ are sections associated
with By. An analogous result for NAS-sets is also valid.

Proof. Let B be a block, S = S(B). By the previous theorem ¢~ = @, and so

By =B\ U n(lo* (), 0], x) = 4

is also a block (see Prop. 1.4). Thus bf = af, b7 = B and, since aj < inth{ (relz*)
for any section Z* associated with B, (Prop. 1.1), a;" is open in Z* and so ay isasec-
tion associated with B,. The fact that af = 0B, is a trivial consequence of condi-
tion (c) for B,.

ProposITION 2.3. If a set S is PAS and U is its region of attraction, then any
block B which fulfils the claim of Prop. 2.2 is a strong deformation retract of U.

Proof. Let U be a one-point compactification of U. It is easy to see that {0} is
an isolated invariant set for # and B, = U\intB is a block, b = 0B;. Thus {o0}
is NAS and the mapping

t: Bi\{w} s x > oy (x) € [0, c0)

is continuous. The homotopy

H: XxI->X
(I=1[0,1]) given by
x for xeB,
Ht, x) = {n (tr(x), x)  otherwise

defines a strong deformation retraction.

The main results of this section is the following:

THEOREM 2.4. If K is a compact subset of X such that, for any x € X, n*(x) 0
N K # O, then there exists a PAS-set S such that X is its region of attraction. (By
definition, S must be compact.)

Proof. First observe that {oo} is an isolated invariant set for the system # in X
since there are no invariant sets in X\K. Let BcX\K be a block, {c0} = S(B).
The existence of such a block follows from Theorem 1.5. It is easy to see that the
set a* is empty, and so {co} is NAS. By Prop. 2.2, there exists a block B;,
{0} = S(B,), such that 3B, is a section associated with By and a; = 0B;. We put

B, = X\intB, .

One can verify that B, is also a block for the system = and the set S(B,) satisfies
the theorem.

3. Euclidean neighbourhood retracts. A topological space X is called a Euclid?an
neighbourhood retract (ENR) if there exists a positive integer n and ¥ < R”, ?bemg
homeomorphic with X, such that there is an open set U, Y< U< R"and Y is a re-
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tract of U. The class of ENR’s coincides with the class of ANR’s (absolute neigh-
bourhood retracts) which are locally compact, metrizable, finite-dimensional and
fulfil the second axiom of countability (see [6], Ch. V).

. The following lemma is an immediate consequence of 6.1(iv), p. 90 in [1]:

Lemma 3.1, If X is an ENR and Y'is a closed subset of X such that 8 Y is an ENR
then Y is an ENR.

We prove two results concerning isolated invariant sets.

PROPOSITION 3.2. Assume that X is an ENR, B is a block and £* are sections
associated with B. If E+ Z” and 6b+ (velZ*) (or b~ (velZ™)) are ENR’s then B,
b* and b~ are ENR’s.’

Proof. By Lemma 3.1 it suffices to prove that 4B is an ENR. Since b '”(wl):*)
a,nd Z* are ENR’s, b* is an ENR. The set

— {n(t;0): xedb* (relZ*), te[, ()]}
in a}n'ENR-since it is homeomorphic with 8b* (rel*)xI. The mapping
9% (elZ*) 3 x —» (o™ (x), x) e b”

is a homeomorphism onto éb~ (relX~) since P10pos1t10n 1.3 1is valid. Thus b~
an ENR by Lemma 3.1. We have
B =btub-uC.
Since b* ~ Cand 5™ n C are ENR’s, 2.9, p. 102 in [1] implies that 8B is an ENR.
This completes the proof. ‘

TuEOREM 3.3. If X is a 2-diviensional manifold and S is an isolated invariant set,
then for any open neighbourhood U of S there exists a block B, B < Uand S = (SB)
such that B is an ENR and b™ and b~ are 1- dtm@nuonal mamfolds with boundary.

Proof. Let B be a block, B< U and § = S(B). The existence of such a bolck
follows from Theorem 1.5. Assume that X% are sections associated with Band 6 >0
is a number satisfying conditions (a), (b) and (¢) in the definition of the block B
‘We assert that there are 1- dlmenswnal manifolds 21 < Z* such that f are sections
associated with B. We argue as follows. 7* = Til(=s,5 x5+ 15 & homeomorphism with
an open range and b* < n((—4, 0), Z ). Let Wy, ..., W, be connected .components

of n((~86,6),Z") such that b* < U W;. W, is open; thus there exists a compact

and connected set K such that bi cintKe K W;, where b =b* A W,
i=1,..,r. Put

Z, = P (m*~1(K)),
where p: (~3,8)x 2" —» 3% is the projection. It is easy to see that Z; is compact
and connected, i.e., it is a continuum and has more than two pomts By Th. 1.6,
p- 164in[5], Z; is homeomorphic with S* or I, We putZ; = Z,if Z,is homeomorphlc

to, S and Z; = h((0, D) if h: I Z; is a homeomorphism. The set I} = U Z
T ' ‘ 11
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is a section Whlch is associated with B. Similarly we construct Z7.ByProp. 1.14% is
compact and a¥ < intb* (relZ;"). We can ﬁnd a 1-manifold with boundary b7 such
that by is a compact subset of b* and a* cintby (relZ}). We put

Bo=B\ U a(l0,0"(0)], %)

xeb+\ bo

By Prop. 1.4 B, is a block. The claim of our theorem follows from Prop. 3.2.

4. The Index. Denote by G the class of all pairs (f, U), where f: Z — X'is a con-
tinnous function, X is an ENR, UcZ < X and U is open, such that the set

Fix(f,U) = {xe U: f(x) = x} .
is compact.
Let (f, U) belong to G. By ind(f, U) we will mean the index of £ [U (see 31,
Ch. VII). It satisfies the following properties:
(@) If W is open Fix(f, U)c W< U, then ind(f, U) = md(f, w).-
(i) If f is ¢onstant, then ind(f, U)=11if f(U)e U and md(f, U) =0 if
FW)¢U.

(i) If U = U U;, U, is open and U, n'U,. n Fix( f, Uy = Qs fo; i# ], then

111d(f, U) = Zmd(f, U).
@v) If ﬂ 7 X is a homotopy, tel, such that: U le(f,, U) is ‘compact,

then ind(fy, U) = ind(f;, U).
W IfUcX, UcX',f: U= X', f': U - X are continuous, then

ind (/o f",f" (1)) = ind(f" o5 fTHUN)

provided the sets Fix(fo /", /' ~*(U)) and Fix(f' < f,f *(U)) are compact.

Condition (v) implies the following result:

PROPOSITION 4.1. Assume that Uc WX, X is an ENR and U, W are open.
By the Theorem of Hanner, W is also an ENR. Let f: U— W be continuous and

: W= X be the inclusion. Then ind(f, U) = ind(i o f, U).

A consequence of (iv) is the following

PrOPOSITION 4.2. If fi: X — X is a homotopy, X is an ENR, Uc X is open
with compact closure and, for any (x,t)edUxI, fi(x) # x, then ind( fo, U)

lnd(f 1> U)

Let X be an ENR and = be a dynamical system in . Assume that U is an open
subset of X. If there are no rest points of = in 8U and U is relatively compact, then
ind(m,, U) has a constant value for 0 < <g, provided & is small enough. In fact,
the compactness of U implies that there is a constant. 7> 0 such that T (X) # %
for.xedU, te (0, T), which by Prop. 4.2 proves the remark.
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The index I(x, U) of the system = in the set U is defined as the limit
I(z, U) = lim ind(x, U)
0+

provided that the limit exists.

From the observation made above it follows that the index is well defined
for open sets having compact closure.

The index has the following properties:

PRrOPOSITION 4.3. (1) If U and W are open, U< W, W is compact and there are
no rest points in WU, then I(x, W) = I(zn, U).

) If X is compact, Uy, ..., U, are open, Uy U; = @ for i # j and there are
no rest points in X\ U;, then

1, ) = 3162, U) = 1K),

where y, denotes the Euler characteristic.

(3) If there are no rest points in the set U, then I(x, U) = 0.

(@) If n is generated by the equation X = Ax, where A is a real nonsingular matrix
and k denotes the number of its eigenvalues having the positive real parts, then for any
open set U, 0e U: I(n, U) = (- 1)~

Proof. Assertions (1) and (3) are obvious, (2) is a consequence of the Lefschetz
Fixed Point Theorem ([3], VIL 6.22) and (4) follows from exercise VII. 5.17.3 in [3].

Now we compute the index of a dynamical system in the interior of a block.
A similar result is obtained in [8].

THEOREM 4.4. Let B be a block such that B and b~ are ENR’s. Then

I(r,intB) = x(B)—x(b7).

Proof. The continuity of = and the compactness of S(B) imply that there exists
a number T7>0 and U, an open mneighbourhood of S(B), such that
n([0, T], U) = intB. Obviously, in B\U there are no stationary points, and thus:

I(r,intB) = I(x, U) = ind(n,, U)

for r€ (0, T). Now we describe the construction of a space B and a function #.
The details of this construction are presented in [12].

Let S* denote the set {x e C: || = 1}. In the topological direct sum of B
and b x S* we identify any point x €5~ = B with the point (x, 1) e b~ x §*. We
get the space B with the quotient topology. The space is a compact ENR and, since
1(d” xS = 0, we have

2(B) = x(B)—x(b7).
Let #: [0, 0)x B — B be the mapping
n(t, x) if£=ux xeB and 1< o™ (x)

#(t, %) = {(n(c” (), x), exp2ni(t—o7(x))) if % =x, xeB and 3 07(x)
X, oexp2mit if£=(x,0)eb" xS t>0.
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Prop. 1.1 implies the continuity of #. For any ¢ >0 the mapping %,: B — B is homo-
topic to the identity, and thus by the Lefschetz Fixed Point Theorem

ind (%, B = x(B)—x(67).

It is easy to check that if 7€ (0, 1) then Fix(#,, B) = S(B). Choose &< min(7T, 1).
By (I) and Prop. 4.1, we have for ze (0, &)

ind(r,, U) = ind (%, U) = ind (%, B).
The theorem is proved.
A space Y is said to be of finite type if ¥ has the homotopy type of a compact
polytope. Any compact ENR is of finite type (see [14]).

COROLLARY 4.5, If S is a PAS-set and U is its region of attraction, then U is of
Jinite type and )

I(m, U) = (V).

Proof. Uis an ENR since it is an open subset X. By Prop. 2.2 and 2.3 there
exists a block B, S = S(B) and b~ = @, such that B is a strong deformation re-
tract of U. Thus B is a compact ENR and has the homotopy type of U. Since
x(®7) = 0, the claim follows from Theorem 4.4.

5. The case of a smooth dynamical system. Let f: R" - R" be continuous and
U an open and bounded subset of R". For p ¢ f(0U) we define deg(p, f, U), the
degree of f with respect to p and U, as follows (compare [10], Ch. III):

Let f be of class C'. Denote by Z the set of x & U such that Jxf (the Jacobian
of f at x) vanishes. If the set f~1(p) A Z is empty, we put

deg(p:.ﬂ U) = Z sgnjxf;
P

(x)=

if it is not empty, then

deg(p,f, U) = lim
=, [~ DnZ=0

deg(q,f, U)
For f continuous we define

deg(p, f, U) = limdeg(p, f,, U)

where {f.} is an arbitrary sequence of C'-mappings converging uniformly to f.

Observe that if g: R"— R" is sufficiently close to f then deg(p, g, U)
= deg(p, f, U). A similar result is valid for the index of a continuous mapping in R".
More exactly, assume that Fix(f, R") n U = @. If for any xedU

9@~ <|f(=)-x|,
the homotopy f;,

Jx) = f)+(1-0g(x), tel,
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has no fixed points in dU, and thus by Prop. 4.2
ind(f, U) = ind(g, U).

Assume that © is a dynamical system in R® and a C'-mapping v: R - R*
is the velocity vector field of z. Let U< R" be an open and bounded set, v(x) 0
for x € 0U. The following result has also been obtained by M. Mrozek (unpublished).

THEOREM 5.1 Under the assumptions stand above,

Iz, U) = (—1)"deg0, v, U)

Proof. Since v is of class C*, (n(t, x)—x—to(x))/t = 0 if £ 0, ¢ % 0, uni-
formly in some neighbourhood of U (see [11], L. 5.3). Put

Q = min{lu(x)|: xedU}.
There exists a 7> 0 such tllat;-for any t, 0<t<T and v edU,
[ (t, x)—~x—tv(x)| <tQ.
The 6bséfvation made above implies that if 0 <¢ <7 then
I(n, U) = ind(n,, U) = ind(id+1v, U).
Since 1d+v and 1c1+tu are homotopic,
I(m, U) = md(ld-i-v U).

By Sard’s Theorem there exists a C* vector field w close to p such. that 0 is its
regular value and

deg(0, w, U) = deg(0, v, U), ind(id+w, U) = ind(id+v, U).

By the definition of deg(0, w, U) and property (iii) of the index, in order to prové
the theorem it suffices to assume that 0e U, w™*(0) = {0} and jow 2 0.
We can find a real linear operator L having all eigenvalues with nonzero real

parts, L close to the differential of w in 0, and an open neighbourhood ¥ of 0, ¥ < U,
such that

deg(0, L, V) = deg(0, w, U), ~ind(id+L, V) = ind(id-+w, uy.
Usmg a similar argument to that used at the beginning of this proof, we can assort
that .

ind(id+L, V) = I(g, V)
where ¢ is the dynamical system generated by the cquation % = Lx. By Propo-
sition 4.3 (4), I(g, V) is equal of (—1)%, where & denotes the number of the eigen-
values of L with positive real part. Since deg(0, L, V) = (—1)""* = (= 1"~ 1)
we obtain the theorem. .

S
0
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6. Applications of the index. As 2 consequence of Theorem 2.4 and Corollary 4.5
we obtain the following result:

Turorem 6.1, Let X be an ENR and w be o clynamzml system in X. If there is
a compact subset K of X such that, for every xe X, nt(x) n K # @, then:

() Xis of finite type;

(2) K has a rest point provided that y(X) # 0;

(3) If there dre no rest points in K, then

I(r, intK) = y(X).

Before stating further results, we introduce the following definition.

Let f* = {171} be the Cech cohomology functor having @ as coefficients.
Assume that, for a topological space Y, HY(Y) is fiditely generated and is trivial for
almost all ¢. We set

o

WY = Z (~1)Wim H4(Y).

In the sequel we agsume that M'is a 2-dimensional topological manifold WhICh
fulfils the second axiom of countability and = is a dynamical system in M. i

LiMMA 6.2, If' S is an isolated invariunt set for m and ¥ (S) is defined, then, for any
open U= 8 such. that S is the maximal invariant subset of U,

I(n, U)<%(5) )

Proof. By Theorem 3.3 there exists a block B, § = S(B), such that B is a com-
pact ENR and 57 is a compact 1-manifold with boundary. Following Churchill
([2], p. 340), there is an exact sequence

= HYB, ™) = HYS) -~ HYa™) » H™¥ (B, b7) > ..

The cxactness implies that
X(B’ b_) ""J\E(a*) = B'C(S) s

since the Cech and singular cohomologies of B and b~ are isomorphic. The set:a”
is a compact subset of the 1-manifold b~, and thus it is a disjoint union of several
copics of S* and compact subsets of R. This implies that x(a™) = 0. Since |

A(B b7) =y (B)=x(07) = I(z, U)

(see Theorom 4.4), the lemma is proved. ‘ '
Now we present the main result. ‘ ‘ o
THEOREM 6.3, Assume that all the Beiti mumbers of M are ﬁmte. Let K be a com-

pact subset of M having no vest points in its boundary. If, for every x € M, 7(x) 2l K # 0

then ‘ T

I(rn, intK) 2 y (M) .
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Proof, Observe that if we assume M to be compact the theorem is a trivial
consequence of Prop. 4.3 (2).

If M is noncompact with the Betti numbers finite, the classifying theorem for
open surfaces (see [9], p. 268) implies the existence of a compact 2-manifold N such
that M <N, S = N\M is finite, S = {p;, ..., P} We extend the system m to the
system # in IV setting #(p;) = p; for i = 1, ..., m. The assumption that every trajec-
tory of = intersects K implies that S is an isolated invariant set for £ and N\K is
its isolating neighbourhood. Any rest point of # must belong to § or to XK. By
Prop. 4.3(2)

I(#, intK) = y(N)—I(#®, N\K) .
By Lemma 6.2
I(#, intK) =y (N)=x(S).

Since x(N)—x(S) = y(M) by VI.7.21 and VII.8.6 in [3] and I(x,intX)
= I(#, intK) by Prop. 4.1, the desired inequality follows.

The following corollary is an immediate application of the previous theorem.
I am indebted to the referee for pointing out that this result is also a trivial conse~
quence of Theorem 33 in [7].

COROLLARY 6.4, If M = R* and there exists a compact set K such that
n(x) K # & for every x & R, then K has a rest point.

Note that the contrapositions of Theorems 6.1 and 6.3 supply sufficient con-
ditions for the existence of a trajectory or a positive semitrajectory in the set X\X.

As a consequence of Theorems 5.1 and 6.3 we obtain the following result:

COROLLARY 6.5. Let v: R® — R* be the velocity field of a dynamical system .
Assume that v is of class C*, v(0) = 0, and the differential of v has two real eigen-
values, A and p, A< 0 < p. If U is an open bounded set such that v™*(0) n U = {0},
then there exists an x such that n(x) < R*\U.
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