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Preassigning eigenvalues and zeros of nuclear operators

R.J.KAISER and J. R, RETHERFORD*

Abstract. We. solve problems of Saphar (Problem 17 and 18, Studia Mathematica 35
(1970), p. 472) and a problem of Pefczyniski. Every non-zero square summable sequence is the
eigenvalue sequence of some nuclear operator. Also, there are nuclear operators with certain
preassignéd finite-di ional kernels and arbitrarily assigned square-summable eigenvalues.

0. Introduction. The classical Weyl inequality [13] asserts (among other
things) that for a trace class operator T on Hilbert space with eigenvalues

(a(T))
(1) T M <+
n=1
Of course, a trace class operator T has a representation
o0
@ T=Y T,
n=1
where rank T,< 1 and
3) 2T < +20.
n=1
Since (2) and (3) make sense for arbitrary Banach spaces, it is natural to
extend the trace class operators to arbitrary Banach spaces by using these
defining properties. This was done by Grothendieck ([3), [4]) who called
such operators nuclear.
While this definition produces a useful (and well studied) class of
operators, in general (1) is lost. Indeed, Grothendieck [4] proved the

following result: If X is a Banach space and T: X — X a nuclear operator
with eigenvalues (1,(T)) then

@ 5 AT < +oo.
n=1
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Moreover, two is the best possible exponent. This fundamental result of
Grothendieck motivated the problems of Saphar and Pelczynski discussed
below.

1. Grothendieck factorization. Since we are concerned with spectral
properties of operators, we only consider operators T. X — X, X a complex
Banach space. We write Te N (X) to mean that Tsatisfies (2) and (3). Observe
that this means that Te N(X) can be written

(5) T= Z /‘Lnfn®xn
n=1

X . n
where Y [4,) < +0, f,eX* x,&X and lim ||x,| = lim || f]| = 0.
n=1 n=on n-+on
This observation yields Grothendieck’s factorization theorem for Te N (X):
Such & T factors

(6) K Kz

D
Co——>

where K, and K, are norm limits of finite rank operators apd D is a
diagonal mapping corresponding to (4,), i.e. D(&,) = (4,¢,). In particular, D is
nuclear.

2. Related operators. Observe that the operator D in diagram (6) further
‘factors:

D
o>

o)) o N %
lp .

producing, finally, a factorization of the form
X——>X

@®) A

icm
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Such pairs (4, B) were called by Pietsch ([8], p. 375) related operators.
Clearly, AB and BA have the same eigenvalues. This simple fact yields a
truly elementary proof (discovered by Pietsch) of (4): D, D, (from (7)) is a
Hilbert-Schmidt operator.

3. Two is best possible. Grothendieck’s original example to show two is
the best possible exponent for eigenvalue summability of nuclear operators
was a convolution operator on L;[—mn, ©]. We give here an alternative
example which shows more and, in particular, motivates the main result of
this work: Let (4,)el, have no non-zero terms and let D be the diagonal
mapping I, ~ 1, given by (4,). Then D is in the Hilbert-Schmidt class and
(A(D)) = (4,). Let @: 1, — I be an isometric embedding. Then D is nuclear
[since D*@* is the composition of a Hilbert-Schmidt operator and an
operator I, — [, and the spaces in question have the metric approximation
property].

Clearly, a nuclear operator can be extended to a superspace by replacing

the functionals in the representation (5) by Hahn-Banach extensions. We
thus obtain the diagram

loo
i
©® ?
—— 3,

with T nuclear. Among the eigenvalues of T'is the sequence (4,). Since (A)el,
was arbitrary (except all terms different from zero), two is the best possible
eigenvalue summability exponent for nuclear operators.

4. The problems of Saphar and Pelczyniski: The result 4) of
Grothendieck led Saphar (1969) to ask the following questions ([11], prob.
17 and 18): “Soit (4,) une suite de nombres complexes telle que Fhl? <
+ 0. Existe-t-il un opérateur nucléaire 7, tel que le spectre de T soit la suite
(47" “Si la réponse est non, caractériser les suites (4,) qui sont spectre d'un
opérateur nucléaire.”

Pefczyfiski elaborated on these problems by asking if there are nuclear
operators with prescribed eigenvalues and a preassigned number of linearly
independent zeros. : ’

The answer to Saphar’s first question and to that of Pefczynski is
affirmative. :
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5. The main lemma. The first three parts of the following lemma require
only trivial modifications of the construction given in the deservedly
neglected paper [6]. The last two parts are a bit more delicate.

MAIN LEMMA. Let X be an infinite-dimensional Banach space and (a,) € ¢,
with 1 >0y >ay > ... > 0. Then there are sequences (x,) in X and (f,) in X*
such rhat

(10) (x,) is a Schauder basis for its closed linear span [x,];
(11 Sup {3 1f () IfIl <1} < +o0;
n=1
(12 Ju(Xm) = 0Ly Oy
(13) 1/l —O.

Moreover, if X is separable then

(14)  the (f,) can also be chosen to be total, ie. if f,(x) =0 for all n then
x = 0.

A quick perusal of [6] will show how to vary the weights in the proof
there to achieve (10), (11), (12), (13). However, the f,’s there obtained are via
Hahn-Banach extensions and that method cannot work to achieve (14).
Instead, one takes the “Dvoretzky” elements obtained in [6] before weighting
but after blocking so that the elements remain bounded and bounded away
from zero. Then apply the remark of Singer ([12], p. 213), (see also remark
7.6, [12], p. 214-215). After the total extension is obtained apply the weights
to force (11), (12) and (13).

We should mention that the full strength of the Dvoretzky g-isometry.

theorem [1] (as used in [6]) is not needed for the above construction (unless
one is interested in precise bounds). Indeed, the relatively easy Dvoretzky-
Rogers theorem [2] suffices for the lemma.

6. The main theorem. Our principal result is a simple consequence of the
above lemma,

MAIN THEOREM. Let X be an infinite-dimensional Banach space and
(A€ly, A, # O for each n. Then there is an operator T: X — X such that T'is
the norm limit of finite rank operators and the eigenvalue sequence of T is
precisely (). Moreover, if X is separable, T can be constructed to be one-to-
one.

Proof. Given such a '(A,,)elz, there are sequences (a,)€co, (el
1>y >0;>...>0, f,#0 for each n and a,f, =4, Choose (x,), (/)

icm

satisfying (10), (11), (12), (13), (and also (14) if X is separable) with respect to -

(o). Define the following operators:

A: X>co,  Ax=(f,(¥);
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B: cyp— 1y,

BE) =(f£); and,
C:lhoX, CE)=7Y &
n=1

Let T= CBA. Since §, # 0 for each n, B is one-to-one and C is one-to-one
since (x,) is a basis for its closed span. When ( f.) is total A is also one-to-
one. A routine calculation using (10) and (12) shows that the eigenvalue
sequence of T'is precisely (4,).

Actually we have proved a bit more than asserted. The operator B
above is clearly absolutely two-summing (even two-nuclear). See [8] for
appropriate definitions. Thus, on every infinite-dimensional Banach space there
is an absolutely two-summing operator (two-nuclear operator) with preassigned
eigenvalues.

7. Concerning zeros. It is now relatively easy to construct, in the
separable case, an operator T'such that Tis the limit of finite rank operators,
has preassigned eigenvalues, and preassigned finite-dimensional kernel.

Indeed, if (4,)€l, has finitely many zeros and X is separable construct
(), (By) as in the main theorem except that 8, = 0 if and only if A, = 0. Let
(4¥) be (4,) with the zeros removed, (¢}) and (B¥) are appropriate
subsequences of («,) and (8,), and construct (x,) and total (f,) according to

the main lemma (with respect to o) and let T'= Y B*f,®x,. If n)koy
n=1
k
denotes the set of indices for which f, =0 let P = y g,,j®x,,j where (g;) is
j=1
biorthogonal to (x;) (ie. (g;) are suitable multiples of { /). Then P is a
bounded projection (whose norm may be quite large). We claim that T= T
—P), I the identity operator, has the desired properties.
Indeed, since T is one-to-one,
Ker T= Ker(I— P) = Range P = Dxwj J =1, .., k]

so the zeros are preassigned.
Suppose x %0, 1# 0 and Tx = Ax. Then

oo k
L B AW %= 3 Byt (9%, = 2x.

If me{n;}t.,, applying g,, implies
ﬂ;fm(x)_j‘:tgm(x) = ;“gm(x) or ;Lgm (x) = 0’ ie. Im (x) =0
If m¢ (n;}%. |, again applying g,, yields B0k G (X) = Ag,(x) (for all m), so

there is an N such that A= 1}. On the other hand, T(x,) = T(I—P)x,)
=Tx, if n¢ in;)¥., and so the eigenvalues are precisely (A¥) and the
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eigenvalues are preassigned. Let us remark that if T'is constructed to be one-
to-one with preassigned eigenvalues and if Y is an arbitrary Banach space
then T defined on X@Y (any Banach space norm) by T(x, y) = (T, 0) then
the eigenvalues of T are the same as those of T and Ker T= {(0, y): ye Y.
That is, with obvious identification, Ker =Y. In this sense we can
arbitrarily preassign the zeros.

8. The Pisier space. Recently Pisier [10] has constructed a Banach space
with many remarkable properties. His example solves a long outstanding
problem of Grothendieck.

Turorem. There is an infinite-dimensional, separable Banach space P such
that: ' .

(15)  the injective completion P®, P of PQP is isomorphic to the projective
completion P®, P; )

(16)  N(P) coincides with the (operator) norm closure of the finite rank
operators on P,

(17) P fails the approximation property;

(18)  there is a constant C such that if X, < P, dimX,=nand if g: P> X,
is a projection, then ||g|| = C/n;

(19) . both P and P* are of cotype 2.

Obviously, by applying the main theorem to P, (16) solves the problemns
of Saphar. Property (18) shows that in the construction for n-zeros
(Pelczynski’s problem) the operator norms of the constructed maps are
0(/n).

‘Concluding remarks. Knowing P exists, we obtain from the main

theorem, related operators, and Grothendieck factorization (6) that the
nuclear operators we desire with preassigned eigenvalues and zeros exist on
the “nice” spaces ¢, and I;. Since K, (or K,) in diagram (6) is compact and
thus factors through a reflexive space [7], again, using related operators,
these operators also exist on reflexive spaces.

Let us call a Pisier space any Banach space satisfying (15), (16) and (19).
((19) is crucial for the construction of P!) It is unknown if reflexive Pisier
spaces exist. Our results easily show that uniformly convex Pisier spaces
cannot exist,

Remark. If X has cotype 2 and is uniformly convex there is a p < 2 such
that the eigenvalue exponent for any nuclear operator on X is < p.

Proof. If X is uniformly convex, by yet another result ‘of Pisier there
is an r>1 such that X has type r [9]. By [5], p. 116, the eigenvalues
of any’ nuclear’ operator ‘on X 'are in thé Lorentz space I, ., where 1/s
=1—(1/r—3$)>1, so the eigenvalues of any nuclear operator on such an X

are in k., for any ¢ satisfying s+& < 2.
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