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Characterization of H"(R") in terms of generalized Littlewood-Paley
g-functions
by
AKIHITO UCHIYAMA (Sendai)

Abstract. We generalize Littlewood-Paley g-functions and show that these generalized y-
functions characterize H”(R") under certain conditions.

1. Introduction. In this note functions considered are complex-valued
and measurable. For fe (J L’(R") let

1€ps+w
(L.1) u(x, )= [ P,()f(x—y)dy,
Rn
where xeR", 1€(0, +o0) and
P,(x) = Cytf(x]2+ 1312,

that is, the Poisson kernel. With this notation, we define

+

g(NE) =( [ IDyulx, N> rde)'?,

0

where D, denotes d/0r. It is known that if pe(l, + o) and if f € I?(R", then

1.2) Cpllfllee < g Mer < Cpllfline,

where 0 <¢, and C, < . (See E. Stein [12], p. 82)
Following C. Fefferman and E. Stein [7] we define H?(R"). Let

ne F(R" be such that

(1.3) suppn < {xeR™ |x| <1} and fn(x)ydx = 1.

For fe %' (R" let
frx) = Suglf «m () and  [(fll,, = ([S* )P dx)"P,
1> } RN
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where

() (%) = ¢~ "n(x/t}.
It is known that I"ll;» is essentially independent of the choice of 7. Set
| HPR) = (€S (RY: |flly, < +o0}.

If p>1, then H” coincides with I by the Hardy-Littlewood maximal
theorem.
If fe H?(R"), then we define

(14) u(x, 1) = ﬁf? J(f () (x—y) P, () dy.

(It is known that f(n),eL[*(R" and that this limit exists. I Jelf(R"
and ¢ > 1, then the above two definitions (I.1) and (1.4) coincide. See
Lemmas 2B and 2.C in Section 2. It was shown by C. Fefferman and E.
Stein [7] that if pe(0, +o0) and if f e H?(R"), then
a3 ol Ny < g (Nl < Coll 1l o
where 0 <¢, and C, < +c0.

In this note we replace the Poisson kernel P,(x) by more general kernels
and show that g-functions defined from general kernels satisfy inequality (1.5)
under certain conditions. As far as the author knows, C. Fefferman-Stein’s
proof of the first inequality of (1.5) for the case p<1 crucially uses the
harmonicity and the semigroup property of the Poisson kernel. So, we have
to develop a method that does not appeal to harmonicity. Our idea is to
extend the method in Stein [12], Chapter 4, which uses vector-valued
singular integral operators.

Let E < (0, + o) be a measurable set. Let 4 be a positive measure on E
such that

1.6) 1= u((r, 20 NE)

for any 7 > 0. Let a, be a positive integer. Let ay > 0. Let {¢;(x, t)}., be
measurable functions defined on R" xE such that

wn D% @i (x, B < £~ KD (1 e[l )=~ 1= ko

for any multi-index y =(y,, ..., y,) with

) =Y v <d,

/=1

(1.8) ‘ IDEF @, (8, 0 S t]gr1n, g w0,
for any multi-index y with I(3) < n+ae+1 and such. that

i

N
(19) piteE: ¥ 1FouEn)| > o} > ay
i=1
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for any £eR"\ {0}, where D% denotes &"1"*™m/x)i...dx}» and Fo (&, 1)

"denotes the Fourier transform of ¢(x, t) with respect to the variable x.

If pe[nf(n+ao), +oo) and if fe H?(R"), then we define
Txoi(x, )= lilrgxf(f*(n)e)(x—y)fp,-(y, t)dy.

(It is known that this limit exists. See Lemmas 2.B and 2.C)
THeOREM. If pe(n/(n+ao), +o0) and if f € HP(R"™), then

N
llfllge < 2 AT (1 * @i (x, 0 dp()f?dx}? < Cllf |l yp
i=1 gn E

where ¢ and C are positive constants depending only on o4, o;, N, p and n.

Remark 1.1. Except the first inequality for the case pe(n/(n+a), 1],
our Theorem is essentially known.

ExampLe 1. The case N=1, E=(0, +0o0), du=dt/t and ¢(x,)
=1tD,P,(x) is the usual Littlewood—Paley g-function. Since (1.7) and (1.8)
hold for any ay, we get (1.5) as a result of our Theorem.

ExampLe 2. N=1, E={2* k=0, +1, +2, ...}, u(4) = the number of
elements in 4 and @(x, 29 = [tD, P, ()], ,x- As a result of our theorem we
get

+ a0
CP”f”HP < ”{k;_: 22k|D,q(x, 2k)|2}1/2“u' < CP“f“HP

for any pe(0, + o) and for any feHP”, where u is defined by (1.4).
ExampLE 3. N =n, E=(0, +), du=dtjt, ¢;(x,t)=1tD,P(x) for
ie{l,...,n}. As a result of our theorem we get

: n + .
(1.10) Sl e < Y § IDgulx, 012 2de} |, < Collfll 4o
i=1 0

for any pe(0, + o0) and any f € H?, where u is defined by (1.4). This is also
called the Littlewood—Paley g-function and inequality (1.10) is known.
ExampLE 4. Let ¢y, ..., pye S (R" be such that | ¢;(x)dx = 0 and such
RM

N .

that sup Y |Fo(tf) >0 for any £eR™{0}. (The author learned this
te(0, + o0} j=1

condition from Calder6n and Torchinsky [1]) Put ¢;(x, 1) =(¢),(x) for

i=1,...,N. Then {g;(x,)}%, satisfy (1.6~(19) with E =(0, +o0), du
= dtft, any a, and with appropriate «,. Thus as a result of our theorem we

get
N

&l < X I (f ol = 2 defe} ], < Collfl o

=1.

for any pe(0, + ) and any fe HP.
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In the following part of this paper, we give a proof of the Theorem. We
show this only for the case N = 1. The general case follows from a very easy
modification. We write ¢(x, 1) instead of o, (x, ).

In Section 2, we prepare several basic lemmas. In Section 3 we explain
vector-valued singular integral operators. In Section 4 we give the proof of
our theorem, where Lemma 4.1 is crucial. We prove this lemma in Section 5.

Notation. [«] denotes the integral part of a real number a. y,(x) denotes
the characteristic function of a set K. For a function S (%), f(x) denotes
J(—=x). For a function ¢ (x, t), ¥ (x, t) denotes Y(-x,1). For (x, t)e R!
= {(x, 1): xeR" t >0}, B(x, t) denotes the ball {yeR": |x~—y| <t}. 2B(x, 1)
denotes B(x, 21). Q(B(x, r)) denotes {(y, s)e R} !: yeB(x, 1) and s&(0, 1}
The letter C denotes various constants > 1. The letter ¢ denotes various
positive constants < 1.

2. Basic lemmas.

Derinirion 2.1, Let pe(0, 1]. A function a(x) is called a p-atom if there
exists B = B(x,, to) such that

21 suppa < B,

22 lall, o < 1B|7"7",

(23 fa(x)x’dx =0 for any multi-index y with Iy < n(l/p—1).
Lemma 2.A. Let pe(0, 1] and let fe % (R". Then

+.00
cfllyp < inf (3 1217)'7: there exists a sequence of p-atoms |a,(x))i,
24) =1

n
such that f = Fm Y Gy} < CIIfll,p
Ti=1

- opin /"

where C and ¢ are positive constants depending only on p and n and where we
define inf(Q) = +o0.

This was Shown by R. Coifman [3] and R. Latter [10]. (See also R.
Latter and A. Uchiyama [11])

Remark 2.1. If f e HP(R" ~ I?(R"), then in Lemma 2.A we can replace
the limit in (2.4) by

= lim Aa.
4 n-+ooinL2 1=Zl T
DerFiNiTion 2.2. Let > 0. For ge L (R") let

liglluipe = sup inf [B|*~" f|g(x)— P(x)} dx,
B PuegPSa B

where the supremum is taken over all balls B in R” and the infimum is taken

Characterization of H?(R") 139

over all polynomials P(x) of degree <a. Let
Lipe = {ge L (R"): llgllpe < +00}.
Remark 2.2. Let o' > a. Then it is known that
sup inf |B|“‘“°""£ig(x)—P(x)[dx

B PudegP<a’

gives an equivalent norm with |lg||;;. for any g with compact support.

LemMma 2B. Let O0<p<l1, a=n(l/p—1), feH?(R)NL*R") and
geLipan I} (R". Then

(11 0g(x)dx} < CIlf Nl yp l1gHLipas

where C is a constant depending only on p and n.

See R. Coifman and G. Weiss [4], C. Fefferman and E. Stein [7] or
P. Duren, B. Romberg and A. Schields [6]. The following is also well known.

Lemma 2.C. Let ne & (R" satisfy (1.3). Then
im || f=f* (), =0
el0

for any pe(0, +o0) and any feHP(R").
DeriNTiON 2.3. For fe L, (R, xeR" and ¢ > 0, let

M, (f)(x) =sup(B(x, )" | LfGNdp'e.
>0 B(x.,n)

Lemma 2.D. Let p> q and fe L (R"). Then
1M, (e < CllAll

where C is a constant depending only on p, q and n.
This is an easy consequence of the Hardy-Littlewood maximal theorem.
In the following part of this paper, we assume that @(x, f), 4, E, %,
a, and n(x) satisfy all the assumptions in Section 1.

LEmMma 2.1.
|Z (&, ] < Cmin(|tg], Jrg™Y),

where C is a constant depending only on n.
This is clear from (1.7)—(1.8).
LemMmA 2.2. For each te E there exist !g,;(X)}2o < Lipay such that

o(e = 3 27 @h)y, (9,
i=0
2.5) suppg,; < B(0, 1),

(2:6) IDkglle<C i 1) <ao,
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and
27 [9u4(x)dx =0,

where C is a constant depending only on «y and n.

Proof. We show this only for the case ¢ = 1. Put ¢(x) = ¢(x, 1). Let
he #(R" be a nonnegative function such that

(2.8) supph < B(0, 1\B(0, 1/4)

and that

(2.9) > h(27'x)=1 on B(0, 1),
=1

Set

o]

009 =(1- T 200l + 3. HC ()

= 0u()+ . 013

= 809+ T 0.0)dyhG/ThO)dy) +

on

+ T (009=] 3 0,00y h " /A1 )yt

I=1

o

1 T 60 dyh@ 0/[h@ ) dy)

k=i+

= go(x)+ _;il 2—';(91)2;-

(2.5) follows from-(2.8)-(29). (2.6) follows from (1.7). (2.7) for i =0 follows
from [@(x)dx =0 m

Lemma 2.3. There exists a measurable function V(x, t) defined on R"xE
such that

(2.10) £f¢(6, N FYE, Ndu() =1

Jor any ¢eR™\{0},
(2.11)
2.12)

supp FY (+,1) = B(0, Ct~'\B(0, et~ 1),
IDEFY(E, )] < CH' for any y with 1(y) € ntag-+1,
and such that
(2.13) DL (x, N} < Cr“_"“‘”k(l+|x|/r)""°‘°'1 Jor any y with 1(7) < a,,

where C and ¢ are positive constants depending only on a,, o, and n.

icm
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Proof. By (1.8), (1.9) and Lemma 2.1 for each £eR™\{0} there exists
E(¢) < E such that

(2.14) |Fol, lza, i teE(),

(215 E@Q) =(coll™, Colel™h,

(2.16) B(E(&) > ay,

@17 1Fe )=Fe(E, 0 <ay/2 if teE(&) and if |&'—¢| < colé],

where ¢, €(0, 1/2) and C, >1 are constants depending only on «, and 7.
Take a sequence {& )} ., = R" such that

(2.18) #lk:t<|gl <2} <C

for any ¢ >0 and such that
+ o

U B(&. 27 col &) = R™\{0}.

Let {u ()i w = S(R") be a partition of unity of R™{0} such that
+ o .
Y (=1 on R"\{0},

k==

(2.19) suppuy < B(&y, ¢o [ i),

(220) D" wll < C, 147" for any y.
Set

@ ={[ Fol 0/Folw )dud)} " u ().
E(&p)

Note that by (2.14), (2.17) and (2.19)
(221)  Re(Fo(&, /Fe (&, 1) > 1/2  if u(£) £ 0 and if reE(&).
Thus [v, (&) < 2/a; by (2.16). Set ¥ (x, t) so that

FYE,n= Y @/ FeE, 1
K:E(Eg) st
Then
[FoE, nFYE, Hdu@®
E
= 7

u (@) | Fol, 0/Fe, ndu():
E(§p)

k== o0

1] Fo /Fe &, ndu@)?
E($y)

=1 if ZeRM{0}.
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Condition (2.11) follows from (2.19) and (2.15). Condition (2.12) follows from
(1.8), (2.18), (2.20) and (2.21). Condition (2.13) follows easily from (2.11)-
212. =

3. Vector-valued functions. The author learned main ideas in this section
from Stein [12], Chapter 4.

Let s be the Hilbert space of measurable functions 0(t) defined on E
satisfying

ol = (f10 () dp(0)'? < + co.

E
For 6 and (e .# let

0,0y = gou)'f(“ritm(r).
For pe(1, + o0), IP(R", 5#) denotes the set of strongly measurable .#-valued
functions F(x) satisfying
1Pl ey, = (FILE GIIP ) < + 0.
For F, Ge?(R", #) and feI?(R" et
Faf(x) = [F(x~y) f(5)dy
and
FxG(x)= [<F(x—y), G()>dy,

where G denotes the element in I*(R" %) such that G(y, 1) = G(y, f).
Let ¢ >0. Let

0o (X, 1) = @ (X, 1) Ygp. 4 a (1)
By (1.7) for any xeR" ¢,(x, 1) belongs to J# as a function of r. We define
P, (x) = @, (x, °)
as an #-valued function defined on R". Similarly, let
Yo (X, 1) =Y (X, O Xge, + o (1)
and
Yo(x) =y.(x, ).
Lemma 3.1. If feI2(R"), then
¥ (@, ¢f)=f in B(R") as &— +0.
This is clear from (2.10).
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LemMa 3.2,

12, (Ml < € min(x| =", &~")
where C is a constant depending only on n.
This follows easily from (1.7).

Since &, € I?(R", #) by Lemma 3.2, we can define its Fourier transform.
Lemma 3.3,

>

ll-#e, @l < C,

where C is a constant depending only on n.
This follows easily from Lemma 2.1.
LemMa 34. If fe Z(R" and if FeI2(R", #), then

(3.) I8 %f 1 2m sy < CLS N 25
and
62 1.+ Fll 2 < ClIFll, 200 0

where &,(x) = 9D,(—x) and where C is a constant depending only on n.
This is clear from Lemma 3.3.

Lemma 35, Let s>0, I(y) <oy and xeR™\{0}. Let ne#(R") and
suppn < B(0, 1). Then

NID% (@, * (m)) ()| < C x| ==,

where C is a constant depending only on 0y, n and 1.

Proof. It is clear that &, *(n),(x) is an 3#-valued C®-function and that
Dy(®, x(n),)(x) assigns D3 ((m)s* @.(x, 1) to each reE.
If s < max(t, |x|/2), then by (1.7)

[DX ()% @ (x, D) =1(m)s * DL p(x, )
< [l o= 7"~ 1P (1 4 [yl /1)~ 1~100 gy,
S Crmm I (1 4 |xf/)= =110,
If s> max(t, |x|/2), then
D% ((ms % @ (x, )] = s~ VD ), ¢ p(x, 1)

=57 [ {D7 )y (x—y)—(D" )y (9} @ (v, t)dy

< Cs™"™' [min(lyl/s, D) t™"(1+|yl/)~" 1 dy

<

Cs™™ 1710 [ (plfye™"(+Iyl/)™ "t dy +

Iyl <s

2 - Studia Mathematica LXXX1.2
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+CsTTIO T (L |yl dy

vz

< Cs™"7 IO (t/s)log (s/t + 1)+ Cs ™" " (t/s)

S C(t+ )™ (14 |xl/t) ™ log (2+ [x|/1)

< Crm= 10 (1 x|/~ =0 og (2 + [xI/0).
By the above two estimates we have

DL ((m)s % @ (x, 1)) < Ct7" P (L [x|/1) ™" 11 log (2+ | x|/1).
Thus
1% @)l = {113 0 e, D)2 d0}2

< Clxl-n—l(w_ ™

Next we define the H?-norm of #-valued functions. Let 0 < p < oo Let
ne & (R" satisfy (1.3). For FeI?(R", #) let

T (33) F* () = sup[[IF (), -

Set

1l e ey = %11

We can show that [|*ll,;pzn , is essentially independent of the choice of n in
the same way as in the scalar-valued case. We define H”(R", .#) to be the
completion of

SFe2(R", #): (L] M-
with respect to the quasi-metric ”'”mx".m' If 1 <p<oo, this space co-
incides with I7(R", ). ,

Lemma 3.6. If pe(nfin-+ao), 1] and if feHP(R") ~ I2(R"), then

19 %1 1oz ey < ClA s
where C is a constant depending only on p, oy and n.

Proof By Lemma 2.A and Remark 2.1, it is enough to show this only
for the case where f equals a p-atom a(x) that satisfies (2.1)-(2.3); Let
B = B(xo, to) be as in (21)(23). Let ne £ (R" satisfy (1.3).

Let |x—xo| >2t5. Put &,,(x) =(n),*®,(x) and o = [n{l/p—1)]+1.
Note that ' < ag. Then i

() *(@, * @) (D)l = |I|B,,, % a (x|
LS tgne H”d”m(x".v)’“l '2 ()71 DY By, (x—x0) (xo— )| dy
B . y] <x’ .

< 40}

S Ctg"PH ™ |x x| """ by Lemma 3.5,

icm
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Thus
(34) (P, xa)* (x) < Crg"PHm+e 3 — xo| =n=¥,
On the other hand, by (3.1) -
(3.5) [ (P, * a)* (x)Pdx < |B[! “’/2( j (P, * a)* (x)? dx)"/2
Blxg,2tg) B(xq,2t0)

< CIBI' P2 |jallp, < C.
Combining (3.4) and (3.5), we get
(P *xa)*(xPPdx < C. m

R
Since the atomic decomposition of #-valued H? functions holds, by
an argument similar to that of Lemma 3.6 we get

Lemma 3.7. If pe(nfin+ao), 1] and if FeH?(R", #)nI2(R", ), then
18, % Fllyp < C1Fllypeqn
where C is a constant depending only on p, ay and n.
Interpolating the lemmas above, we get
Lemma 38. If pe(n/(n+uo), +c0) and if f e H?(R" A I2(R"), then
19, Wgpegn o, < C IS
where C is a constant depending only on P, do and n.

Proof. Case 1: n/(n+ay) < p < 2. This case follows from (3.1), Lemma
3.6 and interpolation theorems.

Case 2: 2<p < 4o0. Let 1/p+1/p’ =1. Interpolating the estimates in
Lemma 3.7 and (3.2), we get

(3.6) B, % Fll < ClUFl o gm0,
for any Fel?' (R" #) nI2(R", #). Therefore
P2 *f 1l o, = sup {|f <&, %1 (x), F(x)>dx]:
' FeIl (R, #)n (R", #),|Ffl, <1}
= sup {[[f (x) &, » F (x) dx|: ..}
<Clfl, by 3.6). m

By almost the same argument, we can show that if pe(n/(n+og), +o0)
and if Fe HP(R", ) I}(R", %), then k

Iléz*F”Hp < C”F“"pmn_m: B

where C is a constant depending only on p, ao and n.
Applying the same argument to ¥, instead of &,, we get
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Lemma 39. If pe(n/(n+ay), +o0) and if F e H?(R", #) A I2(R", #), then
1 * Fll,1p < ClIFl ygpipn s
where C is a constant depending only on p, ag, a; and n.

4. Proof of the Theorem. For f e U HP(R" let

pe(n/(n+a0) + o)

a(f)(x) = {flf*(l’(x N du(e)}'2.
By Lemma 3.8 we get that if pe(n/(n+ao), + o) and if f e H”(R") n I2 (R",
then

N8Nl < CllA Ml s

where C is a constant depending only on p, ao and n. Thus for the proof of
the Theorem it is enough to show that if pe(n/(n+ay), +o0) and if
feHP(R™ nZ(R"), then

. @ I llp < Clig (M p-

(The nonessential restriction f € I? will be removed at the end of this sectlon)
To show (4.1) we need the following Lemma 4.1, which we prove in Sec-
tion 5.

LemMa 4.1. Let fe(0, o),

qZnf(n+p) and s >0. Let felI?(R"). Let
xeLipf be such that .

4.2 supp x < B(0, 1),
4.3 1oellpipp < 1
and
4.4 foe(x)dx = 0.
Then
If.f (06 (x) dx| < CM, (a(N)(0),

where C is a constant depending only on B, o, o and n.
Now we begin the proof of (4.1).
Lemma 4.2, If pe(n/(n+ao), +) and if f e HP(R") A I2(R"), then

1l < Clminf 12, 8710,

where C is a constant depending only on p, ag, %y and n.
Proof,

]Jf“m,<liminf|l‘1’u*d)g*f[l”,, by Lemma 3.1
8l0

wowe, DY Lcmma 39. m

< Climinf||®, »f]]
&l0 .

icm®
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LemMma 4.3. Let Be(x,—1, %o), g = nf(n+pP) and feI?(R"). ‘Let ne #(R"
satisfy (1.3).
() If 0<t< 1, then
1%/ *(0, 1)] <
@) If t > 1, then

I«f*@(0, )~f x0.(0, 0] < C**° M, (5(1))(0),

Ct(1~log; 1) M, (3(/))(0).

where C is a constant depending only on B, a,, o, n and n.
Proof of (i). Using Lemma 2.2, put
@
(4.5 nxf*@(0, 1) =3 27'f #11%(g,1),;,(0) = Y.27'f *v,(0).
i=0
By (2.7)
fvi(x)dx = 0.

If 2t <1 (ie. i <[—log,t]), then by (1.3) and (2.5)-(2.7) we get that
suppv; cB(O 2) and that

D%Vl oo = DY 11 #(90) i ll oo < C, 2t
for any y. Thus by Lemma 4.1
(4.6 1/ v (0)] < C2'tM, (3(1))(0).

If 2 > 1 (ie. i > [~log;1]) and if /(y) < ao, then by (1.3) and (25)~(2.6)
we get that suppv; = B(0, 2-2'f) and that

IDZ vl o = 11 % DLGe ) il oo < C(2F0)~ "0,
Thus by Lemma 4.1
4.7 If *v,(0) < CM, (a(£))0).
By (4.6) and (4.7) we have
[~log l o
45l <cC Z 272 M (a(N)O+C Y 27 M, (s(N)(O

i=[~loggt]+1
< Cr(1—log; 1) M, (g (/)(0).
Proof of (ii). Put
@8)  nafx00, )= *@0, 1) = [f(=x) [n*p(x, )~ @(x, 1)} dx
= [f(=x)&(x)dx.
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Using Lemma 2.2 and [n(y)dy =1, put

0= 3 27 [10) gy (6= )~ (00, 09} dy
i=0
= i 27 () i(x, y)dy
i=0
=3 27'6,(x).
Then ‘
4.9) suppd; = B(0,2-2't) and  [6;,(x)dx = 0.

If I(y) = g—1, then by (2.6) and the mean value theorem we have
IDLLi(x, Y < C(2'1)7" "0y
If 1(y) = oy, then by (2.6) we have
IDLLi(x, p)l < C211)™"%.
Hence for any x and x,€R" we have

@10 Gy~ ¥ @) DL (e, px—x,)

¥l <ep~—1
S C20)7m 0y~ xy [0~
and
@10 |Gl n)— X @)7IDLL(xy, M) (x=x1)1| < CQRH)™" %0 x— x,[*0,
[yl <ag .

Take any ball B= B(x,, s). Since

min(y s, ) < YOS by we—1<f <o,

using (4.10) and (4.11) we get
il sup|f;(x, y)—P(x) < C(2 )~ " % Iylao“‘ﬁsﬂ,
B

PidegP < x
which means
I s Plluips < C (@100 0,
Hence
4.12) ”Q'"Lipﬂ < ”’70’)' ”L(':)’)“Lip/t dy
L < eI C@ "0y ay
SC@)™"" = cef 0 s,
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Thus by Lemma 4.1, (4.9) and (4.12),
@8) =Y 277 £ (-6, (x)dx]
i=0

<Y 2mic@f o M, (s()(0)
<CPTOM,(3(/))(0). m

LemMa 4.4. Let x4eR” q > nf(n+oao) and f € I2(R"). Let ne % (R") satisfy
(1.3). Then

(@, +f)* (x0) < CM, (g(/)) (xo),
where C is*a constant depending only on g, oy, &y, 1 and n.

Proof. (For the definition of (&, +f)* recall (3.3)) We have to show
{‘J;I(ﬂ)s *f % ¢ (%0, )2 du(9)}'” < CM,(9(f))(x0)

for any s>0 and Xo€R" We may assume g <nf(n+ag—1). Let B
=n(l/q—1). By translation and dilation we may assume X =0 and
s=1. By Lemma 4.3

Ui el *@0, 0=F *0 (0, )i, o (O dp(}2
<C{ [ (:(1-log, 9 du(®)}"'* M, (a(f))(0)+

En(0,1]
+Cc{ |

En(1,+ o)

177 dp ()72 M, (a()) (0)

< CM,(5())(0).
Thus

{JIn*f @0, 0 du(®}'” < CM,(3(/))(0)+8(/)(0) < CM, (3(/))(0). m
E

Proof of (4.1). Let p>n/(n+ay). Take q so that nfn+oe) <g <p.
Then by Lemmas 44 and 2D, .

IPe %S oz, oy = @ /Ml < CUIM(SU o < Clig(f)l .

Thus we get (4.1) from Lemma 4.2. m

Finally we remove the restriction feI?. Let pe(nf(n-+ay), +00) and
let feHP. Then there exists a sequence {f,}22, c H*nI? such that
]If,,-f||m,——>0. From the result obtained so far, we get

(4.13) il g S NG Ul e < CllLAI -
Since for every (x, t)e R" x E ‘we have :

. frot,n=lm fuxo(x,1),
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we have
(I *o(x, n—fxo(x, DI du()'*dx
R E

< f(liminf [| f# @ (x, ) —fi * @ (x, D> du(0)"* dx
< liminf [(f1 fou % @ (x, ) =fi x @ (x, D12 dp ()" dx

< Climinf|| fu~Adlf, »0  as k-0,
m=r ot

Therefore
e (e = lim lg(fl .-
ko0
Letting k — oc in (4.13), we get the desired result.

5. Proof of Lemma 4.1.
LemMa 5.1. For each teE there exist {v,;(x)}%o such that

Wi =3 2700 (0,0, (),
i=0

(5.1) i suppu,; < B(0, 1),

(5.2 ol e < C,

and

(5.3) [viG)x"dx =0 jor any y with I(y) < O,

where C is a constant depending only on w,, oy, and n.

Proof. The following argument is very similar to the proof of Lemma
2.2. We show this for the case t = 1 only. Put y (x) = ¥ (x, 1). Let he #(R")
be as in the proof of Lemma 2.2. Let {m;(x)}}=, be an orthonormal basis for
the Hilbert space of polynomials of degree < ay with norm

1Pl = {JIP(x)|* h(x)dx} 2,
Put

b =(1= £ 0+ B DY =0+ 5 00

i
and

L ]
L) = jzl jk ; lok()’) nj(2“y)dyn/(2"x) 2727 x),

Note that by (2.13) and by degn; < a, the above integrand is integrable and
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that
—i(n+ag+1)
(54) ill o < C2777507 0,
Put

W =0o+l0)+ Y Bi~limy+0) = np+ 3 27€0* Dy,
i=1 i=

i=1

Then, condition (5.1) is clear. Condition (5.2) follows from (213) and (5.4).
Condition (5.3) for i > 1 is easy. Since

W) xrdx =0

for any y with I(y) < &g by (2.11) and (2.13), condition (5.3) holds for the case
i=0, too. m

DeriNiTION 5.1. Let v be a complex measure defined on R%F!. Let [v|] be
its total variation. For a > 0 let

(¥l = SI;PIVI @ B)1B* =,

where the supremum is taken over all balls B in R".
DerINITION 5.2. For fe i, (R") let
G, x, ) =IB(x, ™" [ |f()dy.
B(x,n)
Lemma S5A. Let a>0 and |v|, < 1. Let felio(R™ and pe(l, +o0).
Then
[ Gy oyt dp o+ < c gy,
ri+1
where C is a constant depending only on p, o and n.
For the case a =0, this was shown by L. Carleson. (See Stein [12],
p. 236, Carleson [2] and Hérmander [9].) For the case a*> 0 this was shown
by P. Duren [5].
LemMma 5.2. Let 0 < f <a. Let g(x, t) be a measurable function defined on
R such that

(5.5) gx, =0 if |x>1¢,
and that
(56) Ht"g(t', r)”Lipa < L.

Let v be a complex measure on R such that
(5.7 g <1
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and that suppv is a bounded set. Let
f(x)

n{il gx—y, dv(y, 1).
Then
(58) I Mps < €,

where C is a constant depending only on a, § and n.
Proof. Take an arbitrary ball B = B(z, s). Put

Dy = {(y, 0: te(0, 5), ly~z| <t+s},
Dy={y, ) t2s, [y—z <t+s}.

Then, for xeB we have

Je) = [[g(x=y, Ddv(y, 0+ [[ g (x~y, v (y,1) = {(x)+ 0 (x).
D

Dy 2
Since [{g(x, t)}dx < C by (5.5)-(5.6), we get
(59) [Edx < C [[dI(y, o < C|BJ A
B Dy

by (5.7). Since

(1590 =2, 0av(y, e < ff

Dy Dy
< ffe=dpl(y, ) by (5.6)
by

llg (- =y, Muad¥ (v, D

< .Z (2's)7ne If divl(y, v
=0 D@2 1B)\Q(2iBy)
SCY Qs " (2 g"P by (5.7
<G by a> 4,
we get
(5.10) inf [|8(x)—P(x)|dx < Cs"osh~% o C|B| o,
degP<a p
Combining (5.9) and (5.10), we get
inf [1f(x)= P(x)|dx < C|B[1*#,
degP<a g

Then (5.8) follows from Remark 2.2, m

Now we begin the proof of Lemma 4.1. Let 3 satisfy (4.2)-(4.4). Let
Be(0, g). We may assume g = nf(n+ p).
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DeriNiTION 5.3. Let
Qo = Q(B(0, 1)),
0; =Q(BOYON\(BO2™Y), i=1,2,3,...,
20x, 1) = {(y, )eRY: yeB(x, t/2), t <s <2},
k(x,t) =% *f(x,1), L>1,
6=y, 9eRY: |f x@(y, 9 > LG(g(fI%, y, sfe},

where ¥ (x, ) denotes (—x, 1).
Lemma 5.3.

(5.11) lk(x, ) < Ct*  for any (x, t)e RV,
(512) k(e Ol S Cemm (1" i X > 2 0r if 1>,

where C is a constant depending only on a, ay, B and n.
Proof. By Lemma 5.1

o, 0 = | 270 ix=3) 5,5 00 ]

< —~ilag+1) inf —)—P vi i J
<22 dc;ps,,f'”(". V=P ONIE) )] dy

<Y 27NN < crf,
Thus we get (5.11). If [x] > 2 or if r > 1, then by (4.2)~(4.4) and (2.13) we get
e wdh (x, ) = [[(F (x—y, 0= (x, D)= () dy]
SO (xR
which means (5.12). »
LemMma 54.
%(x) = [[@(x—y, Dk(y, )dydu (D).
By Lemma 53 the above integrand ‘is integrable. Then this equality
follows from (2.10).
LeEmMMA 5.5.
Ik (v, 12, (v, D dydp(lly < C27HFETD
fori=0,1,2,..., where C is a constant depending only on aq, o, B and n.
Proof. The case i =0 is clear from (5.11). Let i> 1 and (y, HeQ;.
By (5.12) _
Ik(y, f)l < Czri(n+zo+1)[ao < C2itntB+1) 48

Thus we get the desired result. m
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LeMMa 5.6.

IS+ 00,0k, 02,60, 0 dydu(o] < CLM, (5()(0),
where C is a constant depending only on a,, oy, B and n.
Proof. The left-hand side

< [JLG(a(f)¥2, y, 1)*2]k(y, 0)) dydpu(t) by the definition of &
=L Z TG, v, 01k (y, 0l g, (v, 1) dydp(r)

= LZ ITG (U Ay pi0 1) ¥ )21k (v, 0] 2, (v, 1) dydpa(t)
SLEC2 D ([ (N) )2 1y 101, ) dy)
by Lemmas 5.5 and 5.A

=LCY27' 27" [ g(f) () dy)ts

B(O,ZH'I)
< LCM,(a())(0). m
Lemma 57. Let (x, s)e R%*L, Then
(5.13) [ dydutr) <
&A1)
where C is a constant depending only on n.
Proof. Note that if (y, t)e 2(x, s), then

YG(3(N)7%y, 1) = G(a(/)¥2 x, 5/2).
Thus if (y, Ned n 2(x, ), then

ff}* qj{y’ t)I”/Z/L‘”z G(g(f)"“,x, 5/2) >4-n

crazg,

Therefore,

; .” dydﬂ (t) < CL"q/zG'(g(f)q/Z, X, S/2)ml ”' lf* @ (y, t)"l/z dydﬂ (t)

£0.9(x,0)
SCLG(.)t q(f)( )72 dy
B(x,s/2;
SCL9s m
LEMMA 5.8.

1k (v, 1) 2018 (v, Ddydu (D), < CL- 91220t p+1)

" where C is a constant depending only on %o, &1, B and n.
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This follows from Lemmas 5.3, 5.7 and the same argument as in the
proof of Lemma 5.5.

LemMa 59. There exist [x,}2., < Lip B such that

(5.14)  x(x) = H(p(x—y, tk(y, D)X (v, Ddydu(t)+

+CL92 3 m27™ (%), (%),
m=1
(5.15) Pemlluing < 1,
" (5.16) suppx, < B(0, 1),
5.17) { e (x)dx = 0,

where C is a constant depending only on a,, oy, B and n.
Proof. Put
Z(x) = JJ@(x~y, 0k(y, 1) 2y, t)dydp(o).

By Lemma 54 it is enough to show that Z can be written in the form of the
second term on the right-hand side of (5.14). By Lemma 2.2 $(x, f) can be

decomposed into the sum }° 277(g, ) ,;(x) with (2.542.7). Put
j=0
50,00 (= )k (v, 1) 2,06 (s 1) dyd s (2)

= ...+I§ )

(p.na<2i=i) k=0 (yn2i=h=1 < g2i=h|

j-1
=%+ Y Zja(x).
h=0

Then
[ % n(x)dx =0, supp#,;, = B(0, 2: 2+ h
and
0 . ™ Jj
% (x) = Z 274 Z Z % (%)
i=0 (=0 h=0
Put
m o
Bt ()= Y 27 0 5em for m=0,1,2,...
i=0Qj=m—i
Then
o0
H(x) = Z H (%),
m=1
(5.18) [#n(x)dx=0 -and - supp#, = B(0, 2™).
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Applying Lemma 5.2 with g(x, 1) "(57,/21,,)1(—’6) and « = a,, we get
19 Wl =]l §f @)=k, 42)

{0:1<2)
“Xg;ne (Vs t/2%) dyd:u(r/zj)”l.ipﬂ
Ik, t/2) xg;ne (v, t/2)dydu(e/2)l, by Lemma 5.2

<
K CLr92 76+ D=l by Lemma 5.8.

C
C
If h <, then

(5200 1% jlluigs
< ” ’“ (J,J),zjllumﬂk(y’ ]| XQIM’(y’ tydydu(t)

2 h= 1< g2l =h

< [Je2)™ 7Pkl g dydu by (2.6)
fod

S(2i—-h+j)-n-—/]CL—q/22-«i(n+ﬂ+l)2{n+(i-h)ﬂ by Lemma 5.8
= CL—q/Z Q- intpt 1)+hn—J(n+/)).

Hence, by (5.19)-(5.20), we get

m o0 .
(5.21) HmeHLipﬂ < Z Z 2T CL a2 =it ot 1)+ o o mne jn+ )
i=0j=m-i

m
< CL——q/22~m(n+ﬂ+l) Z 1
i=0

< CL~q/2 2—m(n+ﬂ+ 1)m_
Thus %, can be writter in the form

CL 9 m2™"(x,).,,

with (5.15)~(5.17). Conditions (5.16)~(5.17) follow from (5.18). Condition (5.15)
follows from (5.21). m

Now, we conclude the proof of Lemma 4.1. By Lemmas 5.9 and 5.6 we
get

(522)  [[f (x)(x)dx]
< CLM,(g(/))(0)+ CL 2 }D’j 27| (x) () yo () ).
m= 1
For s >0 put
As = sup {|Jf () (), (x) dx|: xeLipf with (4.2-(4.9)}.
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For ¢ = 0 put
B, = sup A,.
s>g

By (5.22)
Ay < CLM,(s(N)(0)+CL 92 B,.
By the argument of dilation we get
A, < CLM, (a(/)(0)+CL ¥*B,.
Hence
B, < CLM, (a(/))(0)+ CL %2 B,.
Since B, < +o by fel?(R"), we get
B, < CLM,(g(f))(0)
by taking L large enough. Since & > 0 is arbitrary, we get
By < CLM,(a()(0),

which means the desired result.

Remark 5.1. We add the explanation of what we mean by “by dilation”
in the proof of Lemma 4.4 (and by “by the argument of dilation” at the final
stage of the proof of Lemma 4.1). Let s > 0 and fix it. Put

E={t/s: teE), [(d)=n(lts: ted)) for AcE
and
@(x, 1) =s"@(sx, st).
Then these satisfy (1.6)—(1.9). Put‘
§(N)x)? = ;lf*(ﬁ(x, B> d(e).

Then
[+ (0, 024 = [lnf 5°) + 50, 01 ()
and
M, (9(/))(0) = M, (5(f(s*))(0)-
Thus in order to compare { ; e % % (0, D> du(®)}? and M, (a(f)) (0) in

the proof of Lemma 4.4 we may assume s =1 by considering E, ji, § and
f(s+) instead of E, pu, ¢ and f, which we mean by “dilation”,
Remark 5.2. E and ¢; in (1.6)—(1.9) are “Borel” measurable,
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Banach spaces which are proper M-ideals
by
EHRHARD BEHRENDS and PETER HARMAND (Berlin)

Abstract. In the theory of Banach spaces certain subspaces J of Banach spaces X, the M-
ideals. have been investigated in great detail. M-summands, ie. subspaces J for which there exists
a subspace J* such that X =J@J* and [|j+jY| = max UG 74 for jed, j*eJ*, are special
examples of M-ideals, but there is an abundance of M-ideals which are not of this simple form.
They will be called proper M-ideals.

The more interesting examples of M-ideals are proper, and in the development of M-
structure theory it turned out that all these examples share some geometric properties. This
moltivated - the present investigations to give conditions concerning the geometry of a Banach
space J such that J can be a proper M-ideal in a suitable space X. The main results are the
following:

— if J can be a proper M-ideal, then J contains a copy of ¢q;

— il J satisfies a certain intersection property then J is never a proper M-ideal;

— J can be a proper M-ideal iff J contains a pseudoball which is not a ball (a pseudoball is a
closed convex subset B of diameter two such that for every finite collection x,, ..., x, of
elements with ||x| < | there is an xeB such that x+x,&B for every i).

1. Introduction. At first we recall some basic definitions from M-
structure theory. .

1.1. DeFmiTION, Let X be a (real or complex) Banach space, J a closed
subspace of X.

(iy J is called an L-summand (resp. M-summand) if there exists a sub-
space J* such that X =J@J* and [[j+j4 = [ljl+Ilj| (resp. [+
= max {||jli, I} for jeJ, jteJ*

(i) J is called an M-ideal if the annihilator J™ of J in X' is an
L-summand.

Note. It is easy to see that every M-summand is an M-ideal, M-ideals
which are not of this simple form will be called proper M-ideals in the sequel.

These notions play an important réle in the applications of M-structure
to approximation theory and the theory of I!-preduals (for references see [
or [9]).

If X is a given space it is often important to determine the collection of
M-ideals and M-summands of X. Here we are interested in the converse
problem: Given a Banach space J, can J be a proper M-ideal in a suitable

3 ~ Studia Mathematica LXXXI.2
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