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Existence of a multiplicative functional
and joint spectra

by
CHE-KAO FONG (Toronto) and ANDRZEJ SOLTYSIAK (Poznan)

P

Abstract. We show that, among other results, a unital Banach algebra has a nonzero
multiplicative linear functional if and only if the joint spectrum o(a,, ..., 4,) is non-empty for
every finite set of elements ay, ..., a, in the algebra.
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§ 1. Introduction. Let 4 be a unital, complex Banach algebra. The unit
of A will be denoted by 1, or simply by 1. The left joint spectrum of an n-
tuple (aj, ..., a,) of elements in A, denoted by of'(ay, ..., a,) or simply by
6y(ay, ..., a,) if there is no confusion, is defined to be the subset of C"
consisting of those (4y, ..., 4,) which safisfy

A(ay=A)+Alag—Ag)+ ... +A(ay—An) # A.

(Here, a;—A; stands for a;—4;1,.) The right joint spectrum o, (ay, ..., a,) is
defined in a similar manner. The joint spectrum o*(ay, ..., a,), or simply
written as o(ay, ..., a,), is defined to be their union:

o(ay, ..., a) = oy(ay, ..., a) W o,(a, ..., a,).

If the algebra A is commutative, then ¢ (ay, ..., a,) is always non-empty
(see [6], p. 47 and p. 77). However, easy examples show that, in general,
o(ay, ..., ay) may be void: see, for example, Harte [2], p. 93. We observe
that, if A has a (nonzero) multiplicative (linear) functional ¢, then
a(ay, ..., a,) is non-empty; in fact, in that case we have -

(¢(ar), ..., p(a)ealay, ..., an).
The main purpose of the present paper is to show the converse of this fact:
Tueorem. If o(ay, ..., a,) is non-empty for an arbitrary n-tuple
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(ay, ..., a,) of elements in the Banach algebra A with n=1, 2, ..., then A has
a myltiplicative functional.

§ 2. Main results. We introduce the following concept to facilitate our
argument.

DerintTiON. For an  n-tuple (ay, ..
¢4(ay, .. a,), or simply o,(ay, ..., a,) for the set of all those (4, ...

C" which safisfy
Alay—A)A+A(ay—A)A+ ... +A(a,—A,) A 5 A.

ProrosiTioN 1. A unital Banach algebra A has a multiplicative functional
if and only if 6d(ay, ..., a,) is non-empty for an arbitrary n-tuple (a,, ..., a,) of
elements in A with an arbitrary n.

Proof. The “only if” part is easy to show: if ¢ is a multiplicative
functional on A4, then (¢(ay), ..., ¢(a,) is in a,(ay, ..., a,) since

., a,) of elements in A, we write
» &) in

Y A(a;—(a)}A < kernel of ¢.
j=1

Now we prove the “if” part and henceforth assume that g,(ay, ..., a,) is
always non-empty. Let I be the commutator ideal of 4: the elements of I are
exactly those which can be expressed as finite sums of terms of the form ¢ (ab
—ba)d with a, b, ¢, de A. If I is proper, then, since {|I —x|| = 1 for all xel, its
closure T is also proper. In that case, 4/T is a nontrivial unital commutative
Banach algebra and each multiplicative functional on A/I composed with the
quotient map from A4 onto A/T gives'rise to a multiplicative functional on A.
Thus it suffices to show that I is proper.

Suppose to the contrary that I is not proper: we have

n

() Y clabi~bya)d, =1

k=1

for some % by, ¢, d in A. By the assumption, a,(ay, ..., a,, by, ..., b,) is

non-empty. Let

(**) . (6(1, ooy Uy, ﬁln Ty ﬁn)so'x(ah crey Gys bl’ LR bn)'

From (x) we have

2 selam—o)tet Y wy (by— P v =1
k=1 : k=1

where s, = ¢, t, = (by—B)dy, uy =c¢, and v, = —(a~a)dy k=1, ..., n).
This contradicts (x+). ®

Remarks. 1. If A is commutative then we have oy(ay, ..., a,)
=0(ay, ..., a) =0,(ay, ..., a,) for a,, ..., a, in 4.
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2. In the general sitvation, ¢,(ay, ..., a,) = oy(ay, ..., a,) "N o.(ay, ..., a,).

3. Even for n=1, o,(«,,...,a,) may be empty. For example, if
A = B(H) where H is a separable infinite-dimensional Hilbert space, then,
via polar decomposition, one can see that, for ae 4, o,(a) is empty if and
only if a is not of the form A+k where 1 is a scalar and k is a compact
operator on H.

4. In the case where o(a) =0, (u) for all @ in 4, we have g,(a) = a,(a)
= ¢ (a). For example, such is the case if 4 = K(X)+ CI, where K (X) is the
set of all compact operators on an infinite-dimensional Banach space X, in
view of Fredholm’s alternative.

5. o,(ay, ..., a,) has the following “similarity properties” which are
lacking in ¢ (ay, ..., a,).

@) Ifay,...,a,are similar to by, ..
e by=cyta,c, for some
=0a,(by,.... b,).

(b) If a and b are similar, then (1, wyea,(a, b) implies 1 = pu.

ProrosiTion 2. If the Banach algebra A is generated by finitely many
elements a, ..., a, and 2y, ..., \,& C then the following three conditions are
equivalent:

@) Ay, ..., A)ea(ay, ..., a);

(ii) there exists a multiplicative functional @ on the algebra A such that
ela)=4 (j=1,...n);

(i) p(Ay, ..., Aea(p(ay, ..., a,)) for all p(xy, ..., x)eP(xy, ..., x,),
where P(x,, ..., x,) is the algebra of all polynomials over C with “noncom-
mutative indeterminates” X, ..., X,, in other words, P(x,, ..., X,) is the free
associative algebra generated by the symbols x,, ..., x,.

Proof. That (i) implies (iii) follows immediately from the following
special case of the result of Harte [2]: If by, ..., b, are elements in a Banach
algebra B, (44, ..., A)ec®(by, ..., b,) and p(x,, ..., x)€P(x,, ..., x,), then
puli P An)EUB(P(bx, RN bn))-

It is obvious that (i) implies (i).

Now we assume (iii) and deduce (ii). The algebra generated - by
Ay, .o, ay is

Ao = {p(ay, ..
and hence 4, is dense in 4. We define a map ¢: 4,— C by putting
Q(p(ala ) an)) =Pp(A1scoes )

We have to show that ¢ is well defined. Once this is dene, by the way @
is defined we see that ¢ is linear, multiplicative, bounded, ¢(a;) = 4; and
¢(1) =1, and hence ¢ can be extended to a multiplicative functional on 4.
Thus it remains to show that ¢ is well defined. :

.» by, respectively (i€, b, =c{*a ¢y, ...
invertible «¢y,...,c,) then o,(ay, ..., a,)

vy an)EA: P(x11 Ty xn)el)(x,h vy xn)}s
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. a)=4g(ay, ..., a,). We have to show that

Suppose that p(ay, ..

PAgseens A =Ly, ooy o) Lot 7(xg, oy X)) = P0xg, oy X)—q(%y, ..., X,).
Then T(tll,...,a,.)‘—'o, and hence p(ila"wﬂ'n)'"q(}‘l,'--’ An)zr(lla---
AR An)ea(r(ala Ty an))= IO} Therefore p(/ll! AR ;Ln) =q(;['1: ey j'n) n

Remarks. 1. Recall that the joint numerical range of an n-tuple
(ay, ..., a,) of elements in A is

Vay, - @) = {(f(ar), ... f (@) e C": fe ', |Ifll =S (1) =1}.

The well-known fact that ¢ (ay, ..., a,) is contained in V(a,, ..., a,) (see [1];
p. 24) follows from Proposition 2 in a straightforward manner. Indeed, if
(A, ..., Ao (ay, ..., @), then (4, ..., L)ed®(ay, ..., a) where B is the
closed (unital) subalgebra generated by ay, ..., a,, and hence, by Proposition
2, there exists a multiplicative functional ¢ on B such that @(a) =4,
(=1, ..., n). By the Hahn-Banach extension theorem, ¢ can be extended to
a linear functional f on A such that ||f||=f()=1.

2. Harte’s result mentioned in the proof of Proposition 2 has the
following noteworthy consequence: if (4, ..., L)ea4(ay, ..., a,) and if
p(ay, ..., a,) = 0 for some p(xy, ..., X,)€ P(xq, ..., X,), then p(4;, ..., 4,) =0,
In fact, from the assumption p(ay,...,q,) =0 we obtain p(4,,...,4)e
ea(play, ..., a)) = {0}.

It is known that if A is a commutative Banach algebra, then the joint
spectrum of elements in A has the following so-called “projection property”:

P:+m0(a1’ veey Oy, bl, (KRS bm) = O"(Cll, (] an)
where Pn*™ is the canonical projection from C"™™ onto C" which sends
(Ags ooes iy Antrs oos Anam) 10 (A1, ooy 4,). (See [5]) From this result we see

that if A/Rad (4) is commutative (where Rad (4) stands for the radical of 4),

then the joint spectrum of elements in 4 also has the projection property,

because, in the general situation, we have

o(ay, ..., a) = c¥*@ (g, + Rad (4), ..., a,+Rad(4)),

a fact easy to verify.

Now we use Proposition 2 to prove the converse of this statement.

CoroLLARY. If the joint spectrum of elements in A has the projection
property, then A/Rad(A) is commutative.

Proof. We suppose to the contrary that there exist a, b in A such that
ab—ba¢ Rad (A). Then there exists an element ¢ in 4 such that (ab~ba)c is
not quasi-nilpotent and hence o ((ab—ba) ¢} contains a nonzero number A. By
the projection property of spestrum, (4,«, B, y)eo((ab—ba)c, a, b, c) for
some o, f, 7. Let B be the closed subalgebra generated by a, b, c. Then, a
fortiori, (4, &, B, y)ea®((ab—ba)c, a, b, c). By Proposition 2, there is a multi-
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plicative functional ¢ on B such that ¢((ab—ba)c)= 1. But ¢((ab—ba)c)
= (p(a) ¢ (b)— @ (b) @ (@) ¢(c) =0, contradicting the fact that 1 0. ®.

Proof of the Theorem. We assume that o (ay, ..., a,) is always non-
empty for finitely many elements a4y, ..., a, in A. To show that A has a
multiplicative functional, in view of Proposition 1, it suffices to show that
o,(ay, ..., a,) is non-empty for an arbitrary n-tuple (a,, ..., a,) which is fixed
from now on.

For each m-tuple (b,,
the set of n-tuples (44, ...

..+, by) Of elements in A, we write w(by, ..., b,,) for

, A, in C" such that
q

(Ags oevs Ams Hes ooy Um)EO(Ay, .., @y, by, ..o, by)

for some (u,, ..., #,) in C™. By our assumption, n(by, ..., b,) is a non-empty

compact subset of C". It is obvious that
(byy vy by €1y oe

Therefore {n(b,, ..., b,)}, where (b, ..., b,) runs through all m-tuples in 4™

and m runs through all positive integers, is a family of compact sets with the

finite intersection property, and hence its intersection is non-empty. Let

(@y, ..., ) be an n-tuple in this intersection. We claim (a4, ..., o,)€

ea,(d;, ..., a,). Suppose to the contrary that there exist uy, ..., t,, Uy, ..., U,
n

o) nlby, ..., by Nmley, ..., ).

in 4 such that Y w(a,—a)v, = 1. Since
k=1

(g ooy GYET(Uyy -eey Uy, Dy, ooy D)y

there exist fy, ..., ty, Ay, ..., 4, in-C such that

(ah weey Oy Hys ooy s A’ls AEAR) A’n)eo'(als vees Qyy Upy oony Uy, Uy eeesy Un)'

By Proposition 2, there exists a multiplicative functional ¢ on the algebra
generated by a,, ..., a,, Uy, ..., Uy, Uy, ..., U, Such that ¢(a,) = a4, ..., @(a,)
= q,. However, we then have

n

1=9¢()= qo(kZ1 ug (a4~ ) v) = 0,
which is absurd. Therefore (a4, ..., a,)e0,(ay, ..., a,). W

Remarks. 1. From the Theorem the following two facts follow which
are not a priori obvious.

@) If all o(ay, ..., a,) (a, ..
o,(ay, .0y ay).

{ii) If all ¢(ay, ..., a,) are non-empty, then there is a family {4,: ae A}
of complex numbers indexed by A such that (4,,, ..., 4,)€0(ay, ..., a,) for
all a;, ..., a, in A.

2. From the main theorem we can deduce the following stronger

., a,€ A) are non-empty, then so are all
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result :if A has a generating set S such that ¢4(a,, ..., a,) % @ for all n-
tuples (ay, ..., a,) of elements in § (n =1, 2, ..)), then A has a multiplicative
functional.

3. For an n-tuple (44, ..., a,) of elements in 4, we let of(ay, ..., a,) to
be the set of all (A4, ..., 4,) in C" such that whenever {b,, ..., by} is a finite
setin A, (Ay, .., dyy Mgy ooy M) €0(ay, ..., Gy, by, ..., b,,) for some His ooy fy
in C. It follows from the proof of the main theorem that if 4 has g
multiplicative functional then o, (ay, ..., a,) is always non-empty and has the
projection property. With a little extra effort, one can show that

oi(ay, ... @) = {(p(ay), ..., ©(a,)): @ is a multiplicative

functional on 4}.

Hence if we let C to be the closure of the commutator ideal of A, then

ol (ay, s @) = a¥C(a, +C, ..., a,+C).

§ 3. Examples. In this final section we consider the existence of multi-
plicative functionals in two examples of noncommutative Banach algebras.

ExampLE 1. Let H be a complex finite-dimensional Hilbert space and let
A be a unital subalgebra of B(H). A subspace N of H is said to be semi-
invariant for A if there are subspaces M, and M,, both invariant for all
operators in A, such that M, = M, and N = M,©M,. (See [4]) It is easy
to see that if A4 has a one-dimensional semi-invariant subspace, then A has a
multiplicative functional. Now we show that the converse is also true. We are
indebted to M.-D. Choi who supplied the following proof.

Assume that there exists a multiplicative functional @: A= C but A has
no one-dimensional semi-invariant subspace. Since A s B(H) the Burnside
theorem (see, e.g. [3], p. 142) tells us that A is intransitive : there exists a
nontrivial subspace M which is invariant for all operators in A. Let p be the
projection of H onto M. We get two algebras pAp and (1 —p) A(1 —p). Xf pdp
or (I—p)A(I—p) is not isomorphic to the algebra of full matrices then we
shall repeat the previous argument to produce further decompositions. After
a finite number of steps we obtain orthogonal projections =1 ..n

with p, + P2+ .. +py=1and p, # p, for k # I, such that each element a of
4 can be written in the upper triangular form

a

ay

(where a; = p, ap; forj=1,...,n and P; Ap; is isomorphic to the algebra of
all-m; x m; matrices. By our assumption that 4 has no one-dimensional semi-
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invariant subspace, we have rank p; =m; > 1 for j=1, ..., n. Fix an arbit-
rary j in {1, ..., n}. We can find in p; Ap; two linearly independen’t elements
b; and ¢;. Taking bj and ¢} in 4 such that b; = p; b}pj. and ¢; = p;cjp; we car}
choose scalars 4; and y; (not both equal to zero) with the property @(4;b;
+u;¢j) = 0. By the linear independence of bj.and' cpdj=4; bj+u,-.c,- # 0: Let
d; = A;bj-+p;c;. Since the algebra p;Ap; is simple, thf: . two-sided 1dce}l
generated by d; is trivial. Therefore I; =Y uyd;vy (a finite sum; here 1;

k . ,
stands for the unit of the algebra p; Ap;) for some uy and vy, in p; Ap;. Let uj
and v in A be such that uy = pjujp; and vy = p;vp; and let ¢
=1-Y uydjvj. Then pje;p;=0 and p(e) =1. The product e, e, ... e, is

&

strictly upper triangular, and hence nilpotent. Thus we have ¢(e; e, ... g,,) =0,
But on the other hand ¢(e e, ... e,) = @(e) ¢{es) ... @(e,) = 1. This con-
tradiction concludes the proof.

ExampLE 2. Let X be a compact metric space and B be a Banach
algebra. We write C(X, B) for the Banach algebra consisting of continuous
functions from X into B. Let A be a closed subalgebra of C (X, B) which
satisfies the following condition: .

(C) A contains all mappings of the form & o (&) 1y, where o is a scalar-
valued continuous function and 1y is the identity of B.

For each e X, we write A, for the closure of {f(&): feA}. If, for some
&oe X, Ay, has a multiplicative functional ¢, then @: A — C defined by @ (f)
= ¢(f(&p)) is a multiplicative functional on 4. Now we shov_v the converse:
that if A has a multiplicative functional &, then, for some &, in X, Ay, has a
multiplicative functional ¢ such that ®(f) = ¢(f (£o))- ‘

The algebra C(X) of all scalar-valued continuous functions on X can
be regarded as a subalgebra of A. Let Y be the restriction of @ to C(X).
Then y is a multiplicative functional, and hence there exists £, € X such that

o) = o for ae C(X).
v )Wc (fl‘z)\)im that, if f,geA and f(&) =g (&), then $(f) = P(g). Let ¢
be an arbitrary positive number. Then there is a neighbourh‘ood U of &,
such that ||f(&)—g@)ll <& for £eU. Let aeC(X) be a function such that
a(&e) =1, la(€) <1 for all éeX and a(&) =0 for {¢ U. Then |laf—agl| < 2
and hence | (of)— P (xg)l <e However, ®(af) = xﬁ(a)@(f}: &(f) and si-
milarly @ (ag) = ®(g). Thus |®(f)—~P(g)l <& for an arbitrary & >0 and

) = d(g).

ther?}g@ {fvglan d(eg‘[%ne a multiplicative functional ¢ onh{ f (Eo)': feA} b);
ttin = @(f). Using the argument similar to the previous one o
fr‘:lnza%;it?g(}r(lf}?))some (o{ )in C(X), we can show that ¢ is bounded, and hence

extend ¢ to Ay,.
" C;r[le remark q:hat asgamption (C) is essential. For example, if X = 61?, the
unit circle in C, if B = M,, the algebra of all 2 x 2 matrices and if 4 is the
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algebra of those functions f in C(X, M,) which have analytic extensions f'to
the unit disc D such that f(0) are scalar multiples of the identity matrix
then 4 has a multiplicative functional; but, for each éeX, As= M, and’
hence there is no multiplicative functional on 4. ’
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Sur les espaces stables universels

par
SYLVIE GUERRE (Paris)

Abstract. We consider the class & of Banach spaces X such that the set of types on X is
separable for the topology of uniform convergence on bounded sets of X. This class contains the
class 4 of separable stable spaces. We construct an ordinal index for .o and we prove that there
is no element Y of .o/, 1-universal for 4 in the sense that every element of 4 is at Banach—
Mazur distance 1 of subspaces of Y.

Introduction. L'existence d’espace universel ou isométriquement universel
pour une classe d’espaces .o/ a été étudiée dans de nombreux cadres.
Notamment dans [1], il est prouvé que espace des fonctions continues
réelles sur Pintervalle [0, 1] est isométriquement universel pour les espaces de
Banach séparables. Dans [6], il apparait un résultat négatif: il w’a y pas
d’espace de Banach & dual séparable, universel pour les espaces de Banach
réflexifs et séparables. Ce dernier résultat a été étendu a la classe des espaces
4 duaux séparables dans [7].

Nous nous inspirons ici des méthodes de [6] pour prouver un résultat
analogue pour les espaces de Banach dont espace des types est séparable
pour la topologie uniforme. (Ces espaces sont nécessairement séparables).
Cette classe d’espaces contient les espaces de Banach stables et séparables.
Dans toute la suite nous utiliserons les techniques de stabilité qui figurent
dans [4]. Nous définissons une notion intermédiaire entre espace universel et
espace jsométriquement universel, adaptée 4 ce probléme:

Soient X et Y deux espaces de Banach. On notera d(X, Y) la distance
de Banach-Mazur de X & Y. Rappelons que d(X, Y) =1 si et seulement si
pour tout > 0 il existe un isomorphisme T de X sur Y tel que:

VxeX, |l <ITxl<@+m)lixl.

On dira qu'un espace de Banach X est 1-universel pour une classe d’espaces
de Banach ./ si et seulement si tout espace Z de .o/ est & distance 1 des
sous-espaces de X, clest-d-dire: Inf{d(Z, Y)] Y= X} =1.

Dans la premidre partie, nous construisons un indice pour les espaces
ayant un espace de types séparable pour la topologie uniforme en suivant les
méthodes de [6] et nous examinons ses. propriétés.
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