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Integral equations of the third kind
by

EBERHARD SCHOCK (Kaiserslautern)

Abstract. Integral equations of the third kind were introduced by D. Hilbert and studied by
E. Picard in some very special cases. Here it is shown that in general these equations are ill-posed
problems. New and very simple proofs of the convergence properties of the Tikhonov regularization
of ill-posed problems and the Landweber iteration are given.

1. History. In his fundamental papers on integral equations D. Hilbert
[6] introduced the notion of integral equations of the first, second, and of the
third kind. A linear integral equation

¢y rMx(O)+[k(t, ) x(@)dc = y (1)

is said to be of the first kind if r = 0, of the second kind if r is a non-zero
complex constant, and of the third kind if r is a function with zeros in its
domain, otherwise the equation is equivalent to an equation of the second
kind. Hilbert himself considered the case where r is piecewise constant with
values 1 and —1 and with a finite number of jumps and k induces a positive
definite operator (polar integral equation). He showed that these equations
with some slight modifications have the same properties as the equations of
the second kind. In 1910 E. Picard [12] considered the case where the
function r is continuous and has a finite number of simple zeros, then with

z(t)=r()x(®)

the equation (1) is equivalent to

o 0+ | See e =y

He showed that with additional assumptions on the kernel function k
(analyticity in some disc) solutions of (2) exist and depend on the value

y = lim logg

where the integral in a neighbourhood of a zero t, is split into integrals over
(to—n, to+¢) and the complement. Using sli hily different methods,
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G. Fubini [2] (1912) considered the same equation as E. Picard. C. Platrier
([147, chapt. V, 27) (1913) considered the case where r has a finite number of
zeros of arbitrary order and the kernel is analytic in some disc, and he showed
the existence of solutions of (2) again depending on 7.

Referring these topics, E. Hellinger and O. Toeplitz [5] classified in-
tegral equations of.the third kind as proper singular equations. In my
opinion this classification is not adequate if singular integral equations are
equations where the kernel function has singularities. If » is e.g. a characteris-
tic function of a proper subset of positive measure, then (1) is in no sense
equivalent to (2). Integral equations of the first and of the third kind are
equations of the type :

Tx =y

where the operator T in general does not have a closed range, therefore they are
ill-posed equations.

2. Ill-posedness of integral equations of the third kind. Let X, ¥ be normed
spaces, T: X — Y a linear operator. Following J. Hadamard, the problem of
solving the equation

3
is said to be well-posed if T meets the conditions

(@) T is surjective,

(b) T is injective,

(c) T™! is continuous.

Otherwise, this problem is ill-posed. If X and Y are complete and if

Range T is not closed, then the problem of solving equation (3) is always an
ill-posed problem. Then there occur two difficulties: Also if T is injective,
T~ is not continuous, and since Range T is of first category in Range T, in
each neighbourhood of yeRange T there are ys¢Range T Both properties
lead to serious computational difficulties. To avoid these problems one
replaces the operator T by an operator T, where o is a small numerical
parameter and studies the solution x,; of the perturbed equation

@

One method which leads to a well-posed problem is the regularization
method of Tikhonov: to compute the minimizer of ||Tx~ y4l in some set W
with the constraint that ||x|| is minimal. If X and Y are Hilbert spaces, this is
equivalent to computing the minimizer Xy,5 Of

Qu (%, ya) = | Tx— yll*>+||x||%,

‘Tx=y

I:rxa,é = Ys.

a >0,
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Then
Xp5 = (T* T+al)"t T*y,

is the solution of a well-posed problem, since T* T is positive definite.

In general an integral equation of the third kind can be written in the
following form: Let (2, X, p) be a finite measure space and L, = L, (R, Z, 1)
the complex Hilbert space. For re L, the operator of multiplication

M,: L,~L, with Myx=r-x

is a bounded linear 0pérator with ||[M,]] = |||, Let k: £ x 2 — C be such that
L: Ly~ L, (hx)(®) = [k, D) x(x)de
is a compact integral operator. Then (1) is equivalent to

©) M+ T)x=y.

with

The essential spectrum a,(T) in the sense of M. Schechter [16] is the part of
the spectrum o (T) of T which remains invariant under all perturbations of T
by compact operators,

oe(T)= N o(T+K).

K compact

The essential range R, (r) of an L -function r is the set of all e C such that for
each neighbourhood V of A the inverse r~1(¥) of V has positive measure. J. 1.
Nieto [11] has shown that the essential spectrum o, (M,) of the operator of
multiplication by r is the same as the essential range of r. Therefore

If 0Oeo,(M,)= R,(r), then (5) is an ill-posed problem. .
(Actually, Nieto has shown more: one can replace M, by an operator
M, +r,S, where S is a certain operator as a Hilbert transform or a singular
integral operator, then a similar result holds. Our following considerations
are also valid in this more general case) If T is a compact integral operator
with the polar decomposition

T=3 4u,®v;,
then E. Picard [13] characterized the range of T as the set of all xe L, such
that .

x=Y¢v and Y A7) < 0.

Similarly in the case of integral equations of the third kind, the range of T
= M,+T; can be characterized by means of the spectral decomposition of

T =(T* T2
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and the polar decomposition

T=U-|T|
with a partial isometry U. Since the non-uniqueness of the solution of
equation (3) is a minor problem (it can be solved by using the techniques

of generalized inverses, see C. Groetsch [4]) I will always assume that the
operator

©) T=M,+T
is injective.

3. Tikhonov regularization. It is well known that the regularized so-
lutions converge to the solution £ of (3) (see e.g. A. N. Tikhonov, V. Y.

Arsenin [19] or V. K. Ivanov, V. V. Vasin, V. P. Tanana [7] for the proof
and further references) Here I will give a very simple proof of this fact.

Tueorem 1. Let T: H, — H, be an injective linear operator between
Hilbert spaces Hy and H,. Let yeRange T. Then for « > 0 the minimizers x,
of

Qa(x’ J’) = ||Tx—y”12-12 +oc|]x”,2,1
converge to the solution % of (1).
Proof. Since x, is given by
Xy = (T*T+al)™* T*y,
it follows that
X=X, = (I—(T*T+al)~* T*T)%, S—x,=a(T*T+al)"!%.
For each %eRange T*T for an appropriate e H,
Y XX, =o(T*T+al)"* T*Ti.
Since ‘
loe(T*T+al)™* T*T|| < a,

pointwise convergence for each % in the dense set Range T*T follows,

therefore by the principle of uniform boundedness for each yeRange T one
has

limx,=%. m
‘ a0
If.@: [0, 11— R is a monotone increasing function with ¢(0) =0, then the
operators

0@ a(T*T+al)™Y, >0

icm
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are not uniformly bounded, therefore the set of all e H, with
1€ = x|l = lla(T* T+al) ™! 2| =.0(e(w)

is of first category in H,. This shows that in general the convergence is
arbitrarily slow. With additional assumptions on the solution % which can be
understood as smoothness conditions in the case of integral operators, the
proof of the above theorem leads to a simple proof of a theorem of V. A.
Morozov [10].

CoroLLARY 2. If XeRange T*T, then ||X—x,|| = O(x).

If XeRange T* then ||X—x,)| =0 (\/;).

Proof. The first part is a consequence of (7). To prove the second part one
observes that

X=X, = o(T*T+al)" ! T*v = aT*(TT*+al) v.
With a unitary operator ¥V we have
T* = V(TT*'?

therefore
8=l = /2@ TT*(TT* + 1)~ of.
Since
Jad 1
TTY"2(TT*+al) Y| = sup Yo <3,
T T (TT* +al)™!| = sup 2= <3

also the second part is proven. m
This corollary can be generalized in the following way.
TheoreM 3 [17]. If XeRange(T*T), 0 < p < 1, then

1X=x,]l = o(x?).
Proof. With an appropriate iie H,
X—x, = a(T*T+al)~ Y (T*T) i
Since for a >0

(Afe)?
Moa+1 @

llo' =P (T* T+al)™ (T*T)"|| = sup

the property ‘
, lI£=x,]l = 0 (@)
follows. On the other hand, since

I(T* T+a)™* T*T|| < 1,


GUEST


6 E. Schock

for each e Range(T*T)*~7
ot~ P(T* T4al) " T*Tg)| = O (@' ™).
The density of Range(T*T)' "7 in H; implies then
IX—xl = o(x’). m
If Range T is not closed then in each d-neighbourhood of yeRange T there
is a y;¢Range T with
lly—ydll <.

So the convergence of the minimizers Xy5 Of

0, (x, ya) = | T~ y,||* +ot ||}

depends both on the convergence of « — 0 and § — 0. V. A. Morozov [10] has
given a relation between a and J in order to obtain convergence. We will give
here a simple proof of this fact.

TueorReM 4. Let T be an injective linear operator between Hilbert spaces.
Let yeRange T, {y;eH, § > 0} be a set of elements with ||y—y,|| < 6. If a > 0
and x, s is the minimizer of Q,(", ys), then

2
lim é— =0 implies lim ||[£—x,4]| = 0.

a,d-0 % 4,00
Proof. With a unitary operator V one has T* = V(TT*)"/2, therefore
Xpp = (T*T+al)™ ' T*y, = V(TT**(TT*+al)" ! y,
and
1%, = X oll = (TT*>(TT*+al)™ ! (y=y))ll-
Since @ TT*2(TT*+al)" Y| <3,
I = Xeall <3
(] o, d \2\/;
and

im [|% = Xl < Tirm || — x| +1im ||, — . ]

é
<lmfX—x,||+lim—==0. w
%= x| 2/
Cororrary 5. If T is injective and for the solution % of (1) we have
ReRange(T*T)" for some 0 < p < 1, then the optimal rate of convergence is
given for o = y-62*N) 5 5 0 by

8=, ll = 0 (320 ),
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Proof. By Theorem 3 and Theorem 4

Ie=eall =0 (o) +0 (%) =0 s2riGren)
o

if o is chosen as y-§2/(2p+1) 4
This result is due to C. W. Groetsch [3] in the case p =1 and to myself
[17] in the case p <1 for compact operators T,

4. Tikhonov regularization for self-adjoint operators. Since self-adjoint
operators have real spectrum, for purely imaginary parameters t one has

I(T+D)™ | < 1/l

This leads to the following convergence result:

THEOREM 6. Let T be an injective self-adjoint operator, v purely im-
aginary. Let yeRange T; then for the solution x, of

Tx,+1x, =y
we have
Im||X—x] = 0.
-0
Proof.

f=x; =(I~(T+z) "' T)% = t(T+l) ' %.

The operators

©(T+<)™!, iteR\{0}

are uniformly bounded, and for each XeRange T

e (T+eD)~* %)) = fz(T+21)" Tal) = O (),

therefore since Range T is dense in H, by the principle of uniform boundedness
the convergence is proven. m

The following theorem again requires the dependence of the choice of 4 and
T to obtain convergence.

THEOREM 7. Let Tbe injective self-adjoint; e Range |T|?,0 < p < 1, y,e H,
lly=yil <0 and x,, the solution of

Tx s+ T%5=Y; iteR\{0}.

Then
T =iy 6Py 50,

implies  ||X—x, || = O(67®+Y),
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Proof. If £eRange|T|” = Range(T%"?, then
£—x, = (T+t)™ ! T,

- [A/P
i-p 11717 = <%
i =r (e 1Tl = sup 7y <
therefore
[1X=x]| = O(ll").
From
- é
o=l = IT+D ™ =l <
follows

(1% = X all < %= xll+ lxe — % 6l
0
=0(t7"+0 (TI) = Q (5Pt 1)

T

if [z] =y-8§1P*D), o
5. Finite-dimensional approximations. The finite-dimensional approxi-

mation of the solution % of (3) needs a further assumption on the choice of the
parameter « to obtain convergence. Let (X,) be a sequence of subspaces of H
with dim X, = n, {J X, dense in H,, P,: H, — X, the orthonormal projection.
Let x,, be the minimizer of

Qu (%) = || Tx— yl|* +a1x]|*
in X,. Then
xﬂ,'l = (Pll T* TP"+“P")—1 P" T*y'

THEOREM 8. Let T: H, — H, be an injective linear operator, y e Range T,
Let « =o(n) be chosen such that

ty) 1P, T*T(I = P,) %|| = o(2)

where £ = T~y is the solution of (3). Then
lim x, , = X.
an

Proof.
Xgu = (P T*TP,+aP) ' P, T*T%
=(P,T*TP,+aP,) ' P, T*TP, %+
+(P, T*TP,+aP) ' P, T*T(I—-P,) %.

icm
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From (8) it follows that the second term x{? tends to zero. For the first term x{!)
we have

P,2—x{}) =a(P, T*TP,+aP,) ' P,%.
The operators
a(P, T*TP,+aP,)"' P,
are uniformly bounded; for all £cRange T*T we have
lle(P, T* TP, +aP) " P, T*TP,ii+a(P, T*TP,+aP,) ! x
X P, T*T(I-P)dll <o ||@l[+|T*TI| - |}I— P, |l - 0;

therefore, since Range T* T is dense, by the principle of uniform boundedness
for all £eH,

neN,a >0,

lim(X—x, ,) = lim(£— P, %) +1im(P,2—x{)+1mxZ = 0. =
If y; does not belong to Range 7, then from
J’é'-xat.n,é = i_xzz,n'l"(Pn T* TP,,+[XP,,)“1 Pn T(J"‘J’a)

it follows as in the proof of Theorem 4 that

(15— X mall < 115% = X | + 872t

which implies convergence if the approximation of y by y; is chosen such that
lly—ydl < é(m and

o 0200 _
— ()

CoROLLARY 9. Let T: H, — H, be aninjective linear operator, {y;, 6 >0} a
set of approximations of y e Range Twithlim y; = y. Ifa = a(n) is chosen such that
60
[P, T*T(I—P,) T yll.= o(a)

and 6 = 8(n) is chosen such that

5(n) = o(Ja(m),
then the sequence X, s of minimizers of

1T~ yall® + oIl

in X, converges to the solution X of Tx=y.

6. Landweber iteration. In 1951 L. Landweber [8] proposed an iterative
method for solving integral equations of the first kind. Here I will give a very
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simple proof of this result, which can also be used to simplify the proofs of
the related results of O. N. Strand [18].

TueoreM 10. Let T be an injective linear operator in a Hilbert space H.
Then for yeRange T the Landweber iteration

(9) Xpty = xn+ﬂT* (y'— TX,,), Xo = Oy

converges to the solution % of (1) if B is chosen with 0 <|1—fA] <1 for
lea(T*T)\ {0}
Proof. From (9) follows by induction
= [I~(I—BT*T)7]%

since
Xpp1 = [I=(I=BT*TY Y%+ BT*T[£—(I—(I—BT*T)") ]
=[I-(I—-pT*T)"]X+BT*T(I-BT*T)"%
=[I-(I-pT*Ty"*1]%,
therefore

X—x, = ~BT*T)%.
The operators
(I-pT*T), neN,

are uniformly bounded. For ¢ > 0let o, be the set of all spectral values A of Ti" T
with [A| < ¢ and ¢, = 6(T*T)\0,. Let P(o,) and P(c,) be the corresponding
spectral projections. Then for each XeRange T*T, X = T*Ti
NI —BT*T)" T* TP(a,)dl| < sup|l—pA"Al[lll < &lldl|
Aegoy

-

and
I(1~BT*TY T*TP(o3)] < supl1 ~BA" |5
Ty

Since sup|l—pA| <1, there is an nye N such that for all n > n,
Agay

sup[1—BA|IS| <.

€09
This implies
1%~ xall NI =BT*T)" T*TP (o)t || +|I(I— BT*T)" T* TP (a,) | (12| +1)-e.

Since T*T is injective, Range T* T is dense in H, and the principle of uniform
boundedness implies
limx, = £

for each XeH. w
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7. Concluding remarks. In the theorems stated in the previous sections the
self-adjointness of T*T resp. T plays an important role. They can be
generalized to operators in Banach spaces which admit a similar spectral theory
as self-adjoint operators. A class of such operators is the class of scalar type
operators, see H. R. Dowson [1]. Theorem 6 is also true for H-operators in the
sense of A.S. Markus [9] with dense range or for operators with a real
numerical range.
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