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Invariant states for positive operator semigroups
by
KLAUS E. THOMSEN (Aarhus)

Abstract. A characterization is given of the semigroups of normal positive contractive
operators on a von Neumann algebra- that admit a faithful family of normal states invariant
under the action of the semigroup. It is shown that the family (when it exists) may be chosen to
consist of one single state if the algebra is o-finite.

Introduction. In the study of *-automorphism groups on C*-algebras,
invariant states play an important role. Especially the existence of a faithful
invariant state or set of states has been a useful tool in the investigation of
such groups. In more recent years the existence of a faithful invariant state
has been assumed also in connection with positive operator semigroups (see
e.g. [6], [7], [15]). Therefore the question arises as to which positive
semigroups of operators actually admit a single invariant faithful state, or at
least a faithful family of invariant states. In 1972 Stgrmer [16] characterized
the automorphism groups with a faithful family of invariant normal states on
a von Neumann algebra. In this paper we will do the same for positive
operator semigroups.

In fact we shall give three conditions which are equivalent to the
existence of a faithful family of normal invariant states. Since we prove that
such a family. (if it exists) can be chosen orthogonal, it follows that we may
assume that the family consists of one state only if the algebra is o-finite. If
the algebra is not c-finite, no faithful normal state can exist. Our results
generalize and improve results in [11], [12] and [16].

For the readers not especially interested in semigroups, we remark that
our results apply to normal positive contractive operators as well. If namely
m is such an operator, {z"| ne N} is a semigroup of the form considered in
this paper.

We first recall some definitions and fix the notation.

(1) Let .# be a von Neumann algebra acting on the Hilbert space #°
and & a semigroup of positive normal contractive operators on . By
(M) we denote the space of bounded operators on .4 and by £, (.#) the
subspace of % (.#) consisting of normal operators. A bar ~ will denote the
closure in the point-weak topology of % (.#). By [10] the unit ball % (.4),
is compact in this topology.
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(2) & is called ultraweakly almost periodic if it satisfies - the followmg
equivalent conditions:

@) {woS8| Se &} is relatively compact in the weak topology of .#, for
each we A,,

(i) F < £y (),

(ii) & is equicontinuous in the Mackey topology t(.4#, .4,)
(see [117 and [12]). By [3, V.6.4] the convex hull co & of & is ultraweakly
almost periodic if & is.

(3) & is called weak* mean ergodic if co co & contains a normal projection’

P such that
SP=PS=P forall Se&.

P is uniquely determined by these conditions and is a projection onto the
fixpoint space £, of &.

(4) & is called amenable if the space B(%) of bounded complex functions
on % admits an invariant mean (see [8]).

(5) An operator Ae £ (.#) is faithful if the conditions a > 0 and 4a =0
imply a = 0. Correspondingly, a set of normal functionals Q is a faithful
Jamily if a> 0 and w(a) =0 for all weQ imply a =0,

(6) A JW*-subalgebra ¢ of M is an ultraweakly closed subspace
containing the unit such that a, be ¢ implies ab+bac #. The selfadjoint
part of # is a JW-algebra as studied by Topping in [18].

(7) A weight ¢ on # will be called S-invariant (&-subinvariant) if ¢ 0§
=¢ (poS < ¢)for all S &. As each state is a finite weight, we can use the
same terms for states. For a weight ¢ on .# we let .4} denote the set
{ac M*| @(a) <o0}. If £ < M is a JW*subalgebra of ./I{ we say ¢ acts
semi-finitely on ¢ 1f My N g is ultraweakly dense in the positive cone of F.
For further facts on welghts we refer the reader to [9] and [14].

(8) Finally, the letter N will denote the set of normal states of .#, and
for weN we let g, denote the support projection of .

Lemma ‘1. Let we N be P-invariant. Then

(@) S(e.) =0, for all Se .

If & admits a faithful S-invariant semi- ~finite normal welght o, then

(ii) S(bab) =bS(a)b for all Se F, ac M, be M} " M.

If & admits a faithful family of normal y—lnvarlant states, then

(i) S(o,) =g, for all Se .

Proof. (i) Clearly, 0<5(g,) <I. But w(I——S(Qw)) =0, so I-S(g,)
< I—g, which is (i).

(i) We may assume a = a*. Since S(bz) S(b)? = b® by the generalized
Schwarz inequality and ¢(S(b?) = ¢(b?) < oo, it follows that S(b%) = b2
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For peN we define a positive bilinedr form on .#** by
(c, d) = u(S(cod)—S(c)oS(d),

where cod =4%(cd+dc) for ¢, de #*. By using the Cauchy-Schwarz

inequality for each such form, it follows that
S(cob) =S(c)ob for all ce M.

Since bab = 2bo(aob)—aob? the proof of (ii) is complete.

(iii) follows easily from (i) since u(S(g,)) = pt(g,) for each $-invariant
ueN.

The next.lemma is only a slight improvement of [12, Lemma 4.1].

LeMMA 2. Assume & admits a faithful family 2 of normal states satisfying
o(S(@S@) <@, Se¥, aecM*, weQ.

Then & is ultraweakly almost periodic.

Proof. The proof of [11, Proposition 3.2] can be taken over word by
word.’

PRrOPOSITION 3. Assume Q< N is a faithful family such that
(%) o(S@S@)<w(@® when e, Se¥ and ac M.

Then there exists a real Hilbert space # and an affine injective semigroup
homomorphism J: co & — B(H),. J(co P) is strongly closed and if co & has
the point-strong topology, J is a homeomorphism from co & to J(co &) with
the strong topology.

Proof. Note first that the Cauchy-Schwarz inequality implies that ()
holds on co & as well as on &. Since co & agrees with the point-strong

closure of co %, we have (*) on all of co &.
Let 57, weQ, be the real Hilbert space obtained by completing .#** g,
relative to the inner product (-, '), defined by

<ags, bow) = Rew (ab).

To each Seco¥ we can associate an 6perator S, on #, by S,(ag,)

= S(a)¢,. By (*), S, is well-defined and extends to a contractive operator

on #,. Now put :
H=Y @F, and J(S)= Y ®S,. .

we we

'By construction J defines an affine sexm"group homomorphism into %(f), -

Since lu.b.g, =1, J is injective. It follows from the definition of J that

we

{J(S5) a9, bos> =Recz;(S(a)b) for a, be M, 0eQ.
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From this it follows that J is point-weak/weak continuous. Since co % is
point-weakly compact, J(co %) is weakly hence ‘strongly closed. The
homeomorphic nature of J follows from [11, (2.2) Lemmal].

THeoreM 4. The following conditions on & are equivalent:

(1) & admits a faithful family of &-invariant normal states.

(2) & is weak* mean ergodic and the corresponding ergodic projection P
is faithful.

(3) (a) & is ultraweakly almost periodic,

(b) co & is amenable,
(©) S(I)=1 for all Se &,
(d) S(0.) = 0, for each Se . and each Y -invariant normal state .

(4) A admits a faithful, normal semi-finite S-invariant weight ¢ acting
semi-finitely on M .

If the conditions are satisfied, we can choose an orthogonal faithful Jamily
of S-invariant normal states. P is a positive unital normal projection onto the
. fixpoint space of & which is a JW*-subalgebra of M. Furthermore, P satisfies
P(ab+ba) = P(a)b+bP(a) whenever ac 4 and b = P(b)e M.

Proof. (1) = (2). By Proposition 3 and the Alaoglu-Birkhoff mean
ergodic theorem, co & contains a projection P satisfying SP = PS = P for all
Se . By Lemma 2, Pe %, (#), so & is weak* mean ergodic.

If a>0 and Pa=0, then w(a)=w(Pa)=0 for each -invariant
normal state . Therefore a =0 and we see that P is faithful.

(2) = (1). {ooP| weN} is a faithful family of positive functionals, so
after normalization we get (1).

(1) = (3). (a) follows from Lemma 2.

By (2), & is weak* mean ergodic, so evaluation at Peco % defines an
invariant mean on B(co ). Thus (b) holds. If x and w are F-invariant
normal states, we have o (I —S(I)) = 0 and u(S (¢,)—o,) = 0. Thus (c) follows
since S(I) < I; and (d) follows since S(g,) = 0, by Lemma 1.

(3) = (4). Let weN. By (a), K = {woS| Seco &} is a weak compact
convex subset of .#,. By (c) it contains only states. ‘

Let A(K) (respectively A(co %)) denote the weakly continuous affine

functions on K (respectively point-weak continuous affine functions on co &),

Define i: A(K)— A4(co %) by
f(D =f(Thw), Tecod.

If I is an invariant mean on A(co &), then loi is a W-invariant state on
A(K). As is well-known, loi arises as evaluation at a point ue K. This ue N
is #-invariant and agrees with  on the fixpoint space of <.

Now let 2 be a maximal set of orthogonal normal .%-invariant states.
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Assume ) ¢, <Iand putg=I— Y g,. By(d), S(q) = q for all Se &, ie. q

weNR wef

is in the fixpoint space of &. Choose we N such that w(q) = 1. As above we
can find pe N such that p is F-invariant and p(g) = w(g) = 1. Then <9,
contradicting the maximality of £. Thus Y, 0, =1 and therefore Q is a

we

faithful family.

Put ¢(-)= Y w(-). Then ¢ is clearly a faithful normal -invariant
weR
weight. If {w,, ..., w,} SQ is a finite set and ae .#*, then

n

w([é1 Quy] “[él to)) = T oi(@ <nllal.

i=

Since Y. 04,6 My and Y g, =1, it follows that ¢ is semi-finite on .4 and
i=1 weR
on M.

(4) = (1). Since Ie A4, we can find a net {q;} = M, A such that
a;— I strongly. Define states w; on .# by w;(-) = ¢(g;" a)). The normality of
¢ implies the normality of w;, for all j (see [9]). From Lemma 1 (ii) it follows
that each w; is -invariant.

If b>0 and w;(b) =0 for all j, a;ba;=0 for all j and thus b=0.
Normalizing each w;, we obtain a faithful family of %-invariant normal
states.

To complete the proof we only need to show that P(ab+ba) = P(a) x
‘'x b+bP(a) whenever ae # and b = P(b)e 4. But this follows by the
argument that proved Lemma 1 (ii).

Remarks. (i) If & is a group of *-automorphisms, (c) and (d) are
trivially satisfied. Furthermore, in this case (b) follows from (a) (see [13]).
Thus the theorem generalizes a result of Stgrmer in [16].

Simple examples show that neither (c) nor (d) follows from the other
conditions. In case & is amenable and thus especially if & is abelian, (b) is
automatic. To see this, consider 4 (co &) and let m be an invariant mean on

B(%). Define /i on A(co &) by
Ai(f) =m(fly), fed(co D).

Then #i is an -invariant state on A(co.%). Since co ¥ < Z(.4#), is
compact in the point-weak topology, i arises as evaluation at a point
Peco &#. This P is an ergodic projection for & and therefore evaluation at P
is an invariant mean on B(co ). Thus (b) is satisfied.

However, (b) is not redundant in general. To see this, put .# = C@HC,
and put &% ={S,,S,} where S,(a,b)=(a,a) and S,(a,b)=(b,D),

(3, )eC®C. Then & is a semigroup because $?=S5,§, =S, and
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§2 =8,8,=S5,. Moreover, §; and S, are positive and unit-preserving.
However, % admits no invariant states. Thus & satisfies (a), (c) and (d) but
not (b). The author thanks the referee for this example.

(i) In case & ={S}»o is a C§-semigroup, we are only left with
conditions (a), (c) and (d) of the theorem. Condition (a) simply says that
{S;hzo must be an equicontinuous family in the Mackey topology
t(M, M,). Ci-semigroups with this extra continuity condition have been
extensively studied earlier (see e.g. [1, Chapter 3]). In this case we can give
the following explicit formulas for the ergodic projection. In fact

o0 A .
Pa = strong-lim A [ e™*8,(a)dt = strong-lim A~ {Si(a)dt  for ae .
A=0 0 A=roo 0

This follows by combihing [2, Theorem 5.1] with Proposition 3.

(iii) In applications it is often assumed that & consists of strongly positive
operators, i.e. that

S(a)*S(a) < S(a*a) for Se &, ac A.

One pleasant consequence of this is that 4, is a *-subalgebra if & admits a
faithful family of normal (-invariant states. This was observed first by
Frigerio [6]. Combining the arguments from [6] and a result from [17], it is
seen that .4, is a *-subalgebra if and only if P is strongly positive, In this
case P is actually completely positive (see [4]).

’ It was shown in [5] that the range of a faithful positive projection in a
C*-algebra is always a Jordan subalgebra. Hence the Jordan structure of
M 4 follows from the fact alone that it is the range of such a projection.

COROLLARY 5. & admits a faithful S-invariant normal state if and only if
M is o-finite and & satisfies one of the equivalent conditions of the theorem.

Proof. The necessity is clear since a W*-algebra admits a faithful
normal state if and only if it is o-finite. If .# is o-finite and & admits a
faithful family 2 of normal %-invariant states, we may assume, by the
theorem, that Q is countable. A suitable convex combination of the elements
of 0 gives a normal faithful &-invariant state.
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