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Commuting C, groups and the Fuglede-Putnam theorem
by
KHRISTO N. BOYADZHIEV (Sofia)

Abstract. The following generalization of the Fuglede~Putnam theorem is known (see [5]):
If 4, B are commuting Hermitian operators on a Banach space X and if (4 +iB)? x = 0 for some
xeX, then Ax=Bx=0. We generalize this result further, proving that if 4, (k=1,..
..., m,n 2 2) are commuting Hermitian operators on X and if P(ty,...,t,) is a complex
polynomial with at most one real zero at the origin, then P(4, ..., 4,)x =0 for some xe X
implies 4, x =0 (k =1, ..., n). This result holds also when i4, are (unbounded) generators of
certain one-parameter groups of operators on X. Our considerations are based on a
generalization of the classical Liouville theorem for harmonic functions.

Preliminaries. Let H be a complex Hilbert space and B(H) the Banach
space of bounded linear operators on H. Let a4, b, ¢, de B(H) be self-adjoint
operators such that [a, b] =0, [c, d] =0. The Fuglede-Putnam theorem
says that if xe B(H) and x(a+ib) = (c+id)x, then x(a—ib) = (c—id)x (see
[11], § 1.6; [12], Theorem 12.16). One way to generalize this theorem is to
relax the conditions [a, b] =0, [¢, d] =0 (see [2], [10] and the references
there). Another — to relax the condition x(a+ib) = (c+id)x (see [1], [9]
and the references there). We give here a generalization relaxing this
condition and passing to a larger class of operators.

The above theorem can be reformulated as follows: Let 4, B be the
bounded linear cperators on B(H) defined by Ax = xa—cx, Bx = xb—dx,
xe B(H). Then [4, B] =0 and A, B are Hermitian operators in the sense of
Vidav (see [3]), because the one-parameter groups €4, ¢'®(te R) are groups
of isometries on B(H) (as e x = e~ xe', P x = e~ " xe" xeB(H), teR
— see for instance [9], p. 186). The Fuglede-Putnam theorem states that if
xeB(H) and (A+iB)x =0, then Ax=Bx=0. In this form it can be
generalized to arbitrary Banach spaces, as has been done by a number of
authors ([7], [8]):

(1) Let A, B be commuting Hermitian operators on a complex Banach
space X. If xe X and (A+iB)x =0, then Ax = Bx =0,

Another theorem about commutation properties of Hilbert space
operators is the following: If ¢, d are normal operators on a Hilbert space H
and T, ;x = xc—dx, xeB(H) is the generalized commutator operator on
B(H), then T2 x = 0 for some xe B(H) implies T, ;x = 0 (see [7], Corollary
6, and [17). This result can be generalized for operators on a Banach space X
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in the same way as the Fuglede-Putnam theorem. Note that a bounded
linear operator N on X is called normal if N = 4+iB with 4, B commuting
Hermitian operators on X. It is easy to see ([7], Corollary 6) that the
operator T, defined above is a normal operator on B(H). The following
theorem, which is obviously a generalization of (1), was proved in [5]:

(2) If N = A+iB (A, B commuting Hermitian) is a normal operator on a
Banach space X and if N*x =0 for some xe X, then Ax = Bx = 0.

The aim of this short paper is to give a generalization of (2) which holds
for a larger class of unbounded operators. Our considerations are based on
the theory of one-parameter groups of operators on Banach spaces and on a
generalization of the classical Liouville theorem for harmonic functions.

Let ¢, ¢ (t, seR) be two commuting and bounded Co groups of
operators on a Banach space X with generators A, B. In [4] it was shown
that if xeD(4)nD(B) and (A+iB)x =0, then Ax = Bx = 0. The idea of
proof is as follows: We consider the complex function of two real variables
F(t,s) =f(e“e”x) (t, se R) for some arbitrary fe X’ (the dual of X). The
above condition implies (3/dt+id/ds) F (t, s) = 0 on R®. Hence the Cauchy-
Riemann equations hold for F and F is a holomorphic function of z = t+is
on the whole plane. As F is bounded, it is a constant and therefore F 10, 0)
=f(A4x) = F;(0, 0) = f (Bx) = 0.

In the same way, if xe D (4% ~ D(B? is such that Ax, BxeD(A)nD(B),
‘and (4%+B*x =0, we obtain Ax = Bx =0. For the function F defined
above we have AF =0 and the Liouville theorem for harmonic functions
implies that F is a constant. Combining this result with the above one, we
can easily obtain a generalization of (2). However, we are now going to show
that these considerations can be made in a more general setting to obtain a
stronger result.

Notation and results. Let P(t,, ..., t,) be a polynomial of degree m (m
2 1) on R" (n > 2) with complex coefficients and with at most one real zero

n
" at the origin, ie. P(ty, ..., 1) # 0 when t,eR (k=1, ..., n) and Y >0

=1
We consider the differential operator P(Dy, ..., D,) obtained by rgplacing t
with D, = i(8/0t,). The following result from the theory of distributions is a
generalization of the classical Liouville theorem:

LeMMA. Let the distribution F(t,, ..., t,) be a solution of the differential
equation P(Dy, ..., D) F =0 on R" and let F be of at most polynomial growth
at infinity. Then F is a polynomial.

(See [13], Ch. III, § 16, problem 5, p. 168) The idea of proof is as
follows: by taking the Fourier transform of the above differential equation,
it is easy to see that the Fourier transform £ of F has its support in at most
one point — the origin. According to a well-known theorem in the distri-
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bution theory, F is a linear combination of the Dirac §-function and its
derivatives (see for instance [13], Ch. II, § 10.6). Hence F is a polynomial.
- Let now X be a complex Banach space and let ¢ (n,cR k
=1,...,n,n>2) be n mutually commuting C, groups on X with
generators id, (see [6], Ch. VIII). We can as well take X to be a sequentially
complete locally convex topological linear space and €™ to be commuting
equicontinuous C, groups on X in the sense of [14], Ch. IX. By X’ we
denote the dual of X.

n
For a fixed element xe () D(A}) (recall that m is the degree of the
k=1 .
polynomial P introduced above) and for the groups ¢"** (k = 1, <o ) WE
assume that the following conditions hold:
(3) The operator P(4,, ..., A,) is defined for x. For every feX', the
complex function of n real variables
F(ty, ... t) =f( "4, ¢ Mty
has on R* partial derivatives of mth ofder, so that:
P(Dy, ..., DYF(ty, ..., t) =f(e" " . e " p(y,, ...
(ie, the element x must be “sufficiently smooth”).
(4) For every feX', the function F defined in (3) satisfies:

n n
(X)) 50 as Y o,
k=1 k=1

,A,)x) on R°

Fty, ...

Under these assumptions we have the following

THEOREM. Let P(Ay, ..., A)x=0. Then 4,x=0 (k=1, ..., n).

Proof. For every feX' we consider on R* the continuous complex
function F(zy, ..., t,) defined in (3). We have P(D,, ..., D,)F =0 on R* and
applying the lemma we conclude that F is a polynomial. According to
condition (4), F is a constant: Therefore D, F(0,..., 0)=f(4,x) =0
(k=1,...,n). As f is arbitrary, the proof is complete.

Remark. When 4, are (bounded) Hermitian operators in the sense of
Vidav, the groups e Mk (te R) comsist of isometries, so that (4) is
automatically satisfied; and (3) follows from the power series expansion. So
we obtain in particular the result (2) mentioned at the beginning.

COROLLARY. Let a4, k=1, ..., n, n = 2, be commuting Hermitian elements
in a unital Banach algebra U (see [3]) and let P be a polynomial as above. If
P(ay, ..., a)x =0 (or xP(ay, ..., a,) = 0) for some xe U, then a,x = 0 (resp.
x4 =0, k=1,...,n

Here we use the fact that the left- and right multiplication -operators
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Ay=L,, B,= R,,k, k=1,...,n are Hermitian operators on U (as for
every aeU, e Lay = eitex and &®ax = xe" teR) and P(Ay, ..., A)x
=P(ay, ..., a) %, P(By, ..., B)x =xP(ay, ..., a,).

Acknowledgement. The author would like to thank professor T. G.
Genchev of Sofia University for a valuable consultation.
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Bemerkung zu einem Satz von Akcoglu und Krengel
von
WOLFGANG STADIJE (Osnabriick)

Abstract, For measurable f: R— R let ||f]., be the total variation and
I Nessv = 67 {1 Gook-)=1 () dx.
. t=0+0

I |1 s, < 0

g(x):= lim I‘lx},f(u)du

1=0+0

-is well-defined, continuous from the right, /' = g a.e., ||gll,y, = [|/lless v 2nd for every 7 satisfying

f=7 iae and |[fll.y, = lfllesssv. F(x) les between g(x) and g(x—0) for all xeR. This result
sharpens a theorem of Akcoghi and Krengel.

Fiir eine mefbare Funktion f: R — R bezeichne || f|},,, die Totalvariation
und

(1) 1f s i = T £ 4 I f (-0)—=f (%)) dx
t-0+0

die essentielle Totalvariation von f. (Der Grenzwert in (1) ‘existiert, was wir
aber nicht verwenden werden.) 4 sei das Lebesguemaf auf R. Akcoglu und
Krengel beweisen in [1] den folgenden interessanten

Satz. Fiir jede mefibare Funktion f- R— R und jedes f: R— R mit f=F
Afii. gilt || fNlessss. < WMl Es gibt ein fmit f=F Ak und || fllgsss, = | Flles -

Ziel dieser Note ist der Beweis der folgenden Verschiarfung des obigen
Satzes:

Sei || fllusiv, < 0. Dann existiert fiir jedes xe R

x+t
(2) g(x):= lim ™' | f()du.
! 1=0+0 x

g ist rechtsstetig, f =g A, lgllv. = Ifllusey, und fiir jedes f: R—R mit
f=F 2 it und ||Jlliy, = 1 lessv, gibt es ein a: R—[0, 1] mit

&) Fx)= a(x)g () +(1 —a(x))g (x—0).
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