

(1958)

References

- [1] G. D. Birkhoff, Dynamical Systems, New York 1927.
- [2] Z. Nitecki, Differentiable Dynamics, MIT Press, 1971.
- [3] I. P. Kornfeld, Ya. G. Sinai and S. V. Fomin, Ergodic Theory, Springer-Verlag, 1983,

INSTYTUT MATEMATYKI UNIWERSYTETU WARSZAWSKIEGO INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY PKIN IX p., 00-901 Warszawa, Poland

Received March 2, 1984
Revised version June 5, 1984

Commuting C_0 groups and the Fuglede-Putnam theorem

b

KHRISTO N. BOYADZHIEV (Solia)

Abstract. The following generalization of the Fuglede-Putnam theorem is known (see [5]): If A, B are commuting Hermitian operators on a Banach space X and if $(A+iB)^2 x=0$ for some $x \in X$, then Ax = Bx = 0. We generalize this result further, proving that if A_k $(k = 1, ..., n, n \ge 2)$ are commuting Hermitian operators on X and if $P(t_1, ..., t_n)$ is a complex polynomial with at most one real zero at the origin, then $P(A_1, ..., A_n)x=0$ for some $x \in X$ implies $A_k x = 0$ (k = 1, ..., n). This result holds also when iA_k are (unbounded) generators of certain one-parameter groups of operators on X. Our considerations are based on a generalization of the classical Liouville theorem for harmonic functions.

Preliminaries. Let H be a complex Hilbert space and B(H) the Banach space of bounded linear operators on H. Let $a, b, c, d \in B(H)$ be self-adjoint operators such that [a, b] = 0, [c, d] = 0. The Fuglede-Putnam theorem says that if $x \in B(H)$ and x(a+ib) = (c+id)x, then x(a-ib) = (c-id)x (see [11], § 1.6; [12], Theorem 12.16). One way to generalize this theorem is to relax the conditions [a, b] = 0, [c, d] = 0 (see [2], [10] and the references there). Another — to relax the condition x(a+ib) = (c+id)x (see [1], [9] and the references there). We give here a generalization relaxing this condition and passing to a larger class of operators.

The above theorem can be reformulated as follows: Let A, B be the bounded linear operators on B(H) defined by Ax = xa - cx, Bx = xb - dx, $x \in B(H)$. Then [A, B] = 0 and A, B are Hermitian operators in the sense of Vidav (see [3]), because the one-parameter groups e^{itA} , $e^{itB}(t \in R)$ are groups of isometries on B(H) (as $e^{itA}x = e^{-itc}xe^{ita}$, $e^{itB}x = e^{-itd}xe^{itb}$, $x \in B(H)$, $t \in R$ — see for instance [9], p. 186). The Fuglede-Putnam theorem states that if $x \in B(H)$ and (A+iB)x = 0, then Ax = Bx = 0. In this form it can be generalized to arbitrary Banach spaces, as has been done by a number of authors ([7], [8]):

(1) Let A, B be commuting Hermitian operators on a complex Banach space X. If $x \in X$ and (A+iB)x = 0, then Ax = Bx = 0.

Another theorem about commutation properties of Hilbert space operators is the following: If c, d are normal operators on a Hilbert space H and $T_{c,d}x = xc - dx$, $x \in B(H)$ is the generalized commutator operator on B(H), then $T_{c,d}^2x = 0$ for some $x \in B(H)$ implies $T_{c,d}x = 0$ (see [7], Corollary 6, and [1]). This result can be generalized for operators on a Banach space X

in the same way as the Fuglede-Putnam theorem. Note that a bounded linear operator N on X is called normal if N=A+iB with A, B commuting Hermitian operators on X. It is easy to see ([7], Corollary 6) that the operator $T_{c,d}$ defined above is a normal operator on B(H). The following theorem, which is obviously a generalization of (1), was proved in [5]:

(2) If N = A + iB (A, B commuting Hermitian) is a normal operator on a Banach space X and if $N^2 x = 0$ for some $x \in X$, then Ax = Bx = 0.

The aim of this short paper is to give a generalization of (2) which holds for a larger class of unbounded operators. Our considerations are based on the theory of one-parameter groups of operators on Banach spaces and on a generalization of the classical Liouville theorem for harmonic functions.

Let e^{tA} , e^{sB} $(t, s \in \mathbb{R})$ be two commuting and bounded C_0 groups of operators on a Banach space X with generators A, B. In [4] it was shown that if $x \in D(A) \cap D(B)$ and (A+iB)x = 0, then Ax = Bx = 0. The idea of proof is as follows: We consider the complex function of two real variables $F(t,s) = f(e^{tA}e^{sB}x)$ $(t,s \in \mathbb{R})$ for some arbitrary $f \in X'$ (the dual of X). The above condition implies $(\partial/\partial t + i\partial/\partial s)F(t,s) = 0$ on \mathbb{R}^2 . Hence the Cauchy-Riemann equations hold for F and F is a holomorphic function of z = t + is on the whole plane. As F is bounded, it is a constant and therefore $F'_t(0,0) = f(Ax) = F'_s(0,0) = f(Bx) = 0$.

In the same way, if $x \in D(A^2) \cap D(B^2)$ is such that Ax, $Bx \in D(A) \cap D(B)$, and $(A^2 + B^2)x = 0$, we obtain Ax = Bx = 0. For the function F defined above we have $\Delta F = 0$ and the Liouville theorem for harmonic functions implies that F is a constant. Combining this result with the above one, we can easily obtain a generalization of (2). However, we are now going to show that these considerations can be made in a more general setting to obtain a stronger result.

Notation and results. Let $P(t_1, \ldots, t_n)$ be a polynomial of degree m ($m \ge 1$) on \mathbb{R}^n ($n \ge 2$) with complex coefficients and with at most one real zero at the origin, i.e. $P(t_1, \ldots, t_n) \ne 0$ when $t_k \in \mathbb{R}$ ($k = 1, \ldots, n$) and $\sum_{k=1}^n t_k^2 > 0$. We consider the differential operator $P(D_1, \ldots, D_n)$ obtained by replacing t_k with $D_k = i(\partial/\partial t_k)$. The following result from the theory of distributions is a generalization of the classical Liouville theorem:

LEMMA. Let the distribution $F(t_1, ..., t_n)$ be a solution of the differential equation $P(D_1, ..., D_n)$ F = 0 on \mathbb{R}^n and let F be of at most polynomial growth at infinity. Then F is a polynomial.

(See [13], Ch. III, § 16, problem 5, p. 168.) The idea of proof is as follows: by taking the Fourier transform of the above differential equation, it is easy to see that the Fourier transform \hat{F} of F has its support in at most one point — the origin. According to a well-known theorem in the distri-

bution theory, \hat{F} is a linear combination of the Dirac δ -function and its derivatives (see for instance [13], Ch. II, § 10.6). Hence F is a polynomial.

Let now X be a complex Banach space and let $e^{ik_A k}$ ($t_k \in \mathbb{R}$, $k = 1, ..., n, n \ge 2$) be n mutually commuting C_0 groups on X with generators iA_k (see [6], Ch. VIII). We can as well take X to be a sequentially complete locally convex topological linear space and $e^{ik_A k}$ to be commuting equicontinuous C_0 groups on X in the sense of [14], Ch. IX. By X' we denote the dual of X.

For a fixed element $x \in \bigcap_{k=1}^{n} D(A_k^m)$ (recall that m is the degree of the polynomial P introduced above) and for the groups $e^{it_k A_k}$ (k = 1, ..., n) we assume that the following conditions hold:

(3) The operator $P(A_1, ..., A_n)$ is defined for x. For every $f \in X'$, the complex function of n real variables

$$F(t_1, ..., t_n) = f(e^{-it_1A_1}...e^{-it_nA_n}x)$$

has on R^n partial derivatives of mth order, so that:

 $P(D_1, ..., D_n) F(t_1, ..., t_n) = f(e^{-it_1 A_1} ... e^{-it_n A_n} P(A_1, ..., A_n) x)$ on \mathbb{R}^n (i.e., the element x must be "sufficiently smooth").

(4) For every $f \in X'$, the function F defined in (3) satisfies:

$$F(t_1, \ldots, t_n) \left(\sum_{k=1}^n t_k^2 \right)^{-1/2} \to 0$$
 as $\sum_{k=1}^n t_k^2 \to \infty$.

Under these assumptions we have the following

THEOREM. Let $P(A_1, \ldots, A_n)x = 0$. Then $A_k x = 0$ $(k = 1, \ldots, n)$.

Proof. For every $f \in X'$ we consider on \mathbb{R}^n the continuous complex function $F(t_1, \ldots, t_n)$ defined in (3). We have $P(D_1, \ldots, D_n)F = 0$ on \mathbb{R}^n and applying the lemma we conclude that F is a polynomial. According to condition (4), F is a constant. Therefore $D_k F(0, \ldots, 0) = f(A_k x) = 0$ $(k = 1, \ldots, n)$. As f is arbitrary, the proof is complete.

Remark. When A_k are (bounded) Hermitian operators in the sense of Vidav, the groups e^{-itA_k} $(t \in \mathbb{R})$ consist of isometries, so that (4) is automatically satisfied; and (3) follows from the power series expansion. So we obtain in particular the result (2) mentioned at the beginning.

COROLLARY. Let a_k , $k=1,\ldots,n$, $n \ge 2$, be commuting Hermitian elements in a unital Banach algebra U (see [3]) and let P be a polynomial as above. If $P(a_1,\ldots,a_n)x=0$ (or $xP(a_1,\ldots,a_n)=0$) for some $x\in U$, then $a_kx=0$ (resp. $xa_k=0$), $k=1,\ldots,n$.

Here we use the fact that the left and right multiplication operators

 $A_k = L_{a_k}$, $B_k = R_{a_k}$, k = 1, ..., n are Hermitian operators on U (as for every $a \in U$, $e^{itL_a}x = e^{ita}x$ and $e^{itR_a}x = xe^{ita}$, $t \in \mathbb{R}$) and $P(A_1, ..., A_n)x = P(a_1, ..., a_n)x$, $P(B_1, ..., B_n)x = xP(a_1, ..., a_n)$.

Acknowledgement. The author would like to thank professor T. G. Genchev of Sofia University for a valuable consultation.

References

- S. T. M. Ackermans, S. J. L. van Eijndhoven and F. J. L. Martens, On almost commuting operators, Indag. Math. 45 (4) (1983), 385-391.
- [2] S. K. Berberian, Extensions of a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc. 71 (1) (1978), 113-114.
- [3] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge 1971.
- [4] Hr. N. Boyadzhiev, A generalization of the Fuglede-Putnam theorem, C. R. Acad. Bulgare Sci. 36 (12) (1983), 1503-1505.
- [5] M. J. Crabb and P. G. Spain, Commutators and normal operators, Glasgow Math. J. 18 (1977), 197-198.
- [6] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience Publ., N. Y. 1958.
- [7] Che-Kao Fong, Normal operators on Banach spaces, Glasgow Math. J. 20 (1979), 163-168.
- [8] E. A. Gorin, Referat. Zh. Mat. 12B911, 1977 (in Russian).
- [9] and M. I. Karakhanyan, An asymptotic version of the Fuglede-Putnam theorem about commutators of elements of Banach algebras, Mat. Zametki (Math. Notes) 22 (2) (1977), 179-188 (in Russian).
- [10] F. Kittaneh, On generalized Fuglede-Putnam theorems of Hilbert-Schmidt type, Proc. Amer. Math. Soc. 88 (2) (1983), 293-298.
- [11] C. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Springer, Berlin 1967.
- [12] W. Rudin, Functional Analysis, McGraw-Hill, N. Y. 1973.
- [13] G. E. Shilov, Mathematical Analysis. Second Special Course, Nauka, Moscow 1965 (in Russian).
- [14] K. Yosida, Functional Analysis, Springer, Berlin 1965.

FACULTY OF MATHEMATICS UNIVERSITY OF SOFIA SOFIA, BULGARIA

> Received March 5, 1984 (1959) Revised version April 11, 1984

Bemerkung zu einem Satz von Akcoglu und Krengel

VOI

WOLFGANG STADJE (Osnabrück)

Abstract. For measurable $f: R \to R$ let $||f||_{L_{V_{i}}}$ be the total variation and

$$||f||_{\text{ess,t.v.}} := \overline{\lim_{t\to 0+0} t^{-1}} \int |f(x+t)-f(x)| dx.$$

If $||f||_{\text{ess.t.v.}} < \infty$,

$$g(x) := \lim_{t \to 0+0} t^{-1} \int_{0}^{x+t} f(u) du$$

is well-defined, continuous from the right, f = g a.e., $||g||_{t,v} = ||f||_{\text{ess.t.v.}}$, and for every \overline{f} satisfying $f = \overline{f} \lambda$ -a.e. and $||\overline{f}||_{t,v} = ||f||_{\text{ess.t.v.}}$, $\overline{f}(x)$ lies between g(x) and g(x-0) for all $x \in \mathbb{R}$. This result sharpens a theorem of Akcoglu and Krengel.

Für eine meßbare Funktion $f: \mathbf{R} \to \mathbf{R}$ bezeichne $||f||_{t,v}$ die Totalvariation und

(1)
$$||f||_{\text{ess.t.v.}} := \overline{\lim_{t \to 0+0}} t^{-1} \int |f(x+t) - f(x)| \, dx$$

die essentielle Totalvariation von f. (Der Grenzwert in (1) existiert, was wir aber nicht verwenden werden.) λ sei das Lebesguemaß auf R. Akcoglu und Krengel beweisen in [1] den folgenden interessanten

SATZ. Für jede meßbare Funktion $f: \mathbb{R} \to \mathbb{R}$ und jedes $\hat{f}: \mathbb{R} \to \mathbb{R}$ mit $f = \hat{f}$ $\lambda - f.\ddot{u}$. gilt $||f||_{\text{css.t.v.}} \leq ||\tilde{f}||_{\text{t.v.}}$. Es gibt ein \tilde{f} mit $f = \tilde{f} \lambda - f.\ddot{u}$. und $||f||_{\text{ess.t.v.}} = ||\tilde{f}||_{\text{t.v.}}$.

Ziel dieser Note ist der Beweis der folgenden Verschärfung des obigen Satzes:

Sei $||f||_{css.t.v.} < \infty$. Dann existiert für jedes $x \in R$

(2)
$$g(x) := \lim_{t \to 0+0} t^{-1} \int_{0}^{x+t} f(u) du.$$

g ist rechtsstetig, $f = g \lambda f.\ddot{u}$, $||g||_{l.v.} = ||f||_{\text{ess.l.v.}}$, und für jedes \vec{f} : $\mathbf{R} \to \mathbf{R}$ mit $f = \vec{f} \lambda f.\ddot{u}$. und $||\vec{f}||_{l.v.} = ||f||_{\text{ess.l.v.}}$ gibt es ein α : $\mathbf{R} \to [0, 1]$ mit

(3)
$$f(x) = \alpha(x) g(x) + (1 - \alpha(x)) g(x - 0).$$

AMS (1970) Subject Classification: 26A45.