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A proof of the theorem of supports
by
THOMAS K. BOEHME (Santa Barbara)

Dedicated to Professor Jan Mikusifski
on the occasion of his seventieth birthday

Abstract. A proof of Lions’ Theorem of Supports is obtained by reducing the theorem to
an analogue of the Titchmarsh theorem, and then applying the Titchmarsh theorem in a form
due to Mikusifiski. An advantage of the proof is that analytic functions of several complex
variables enter only at the end and in a particularly simple way.

§ 0. Preface. The one-dimensional version of Lions’ theorem of supports
for distributions with compact support (Theorem I below) follows easily from
the Titchmarsh theorem on convolution products. In more than one
dimension the proof of the theorem of supports is more sophisticated. It is
the case of more than one dimension that we shall consider. In the present
proof we show first that Lions’ theorem in several variables is equivalent to
the formulation given below in Theorem I”, which looks very much like the
one-dimensional Titchmarsh theorem. Finally, in the last section, Theorem I”
is shown to follow from Mikusinski’s proof of the one-dimensional
Titchmarsh theorem. | ;

An advantage of this proof of Lions’ theorem is that the theory of
analytic functions of several complex variables appears only at the very end
of the proof an in a particularly simple form. Only two properties of analytic
functions of several complex variables are used; the first is the property that
the product of two entire functions of several complex variables vanishes
identically only if one of the two factors vanishes identically. The second
property is the uniqueness of the Laplace transform of a function of several
variables. '

In reducing Lions’ theorem to the equivalent form given in Theorem I”
two properties of convex sets are assumed. The first property is that in a
finite-dimensional space the convex hull of a compact set is compact. The
second property (also used only in a finite-dimensional space, but true more
broadly) is that a convex compact set is equal to the intersection of the
closed half-spaces which contain the set.

Besides the properties mentioned above we use only elementary
properties of distributions.
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§ 1. Introduction. Let & (R") be the space of distributions with compact
support, and 2(R") the space of infinitely differentiable functions with
compact support. The theorem we shall prove is due to Lions [1].

We shall denote the convex hull of K= RY by [K]. If K< R" is
compact then [K] is compact. We shall denote convolution by *. -

Tueorem 1 (Lions). If S and T are in &' (R") then
[Supp § * T] = [Supp S]+[Supp T].

This theorem is closely related to a theorem of Titchmarsh.
Tueorem II (Titchmarsh). If f and g are continuous on [0, T] and

t

(f*9)(t) = [f(t—uw)g(w)du=0 for all te[0, T] then there exist T and T,
o

such that

r@=0,
g@®) =0,

te[0, Ti],
te[0, T,],

and T+L>T

Indeed, in one dimension Theorem I follows from II. It might be hoped
that once Theorem I is reduced to a standard form (Theorem I” below), it
would follow from the theorem of Titchmarsh by taking partial Laplace
transforms. This does not seem to be the case; however, in"his proof of the
Titchmarsh Theorem [2] Mikusifski proves more than is stated in the
Titchmarsh Theorem, namely Theorem III. We point out that the theorem of
supports (in the standard form) follows directly from the theorem of
Mikusinski by taking partial Laplace transforms. We first show that
Theorem I is equivalent to Theorem I’ below.

§ 2. Regularization. The closed ball with center at x and radius ¢ > 0 is
the set B,(x)={)| yeR", |ly—x|| <e}. For B,(0) we simply write B,. An
approximate identity is a set of functions {¢/| ¢ > 0} with the properties

() @.€ 2(By,) where g()—> 0 as ¢— 0,
(ii) ¢,(x) >0 for all xeR", & >0,
(i) [ @,(x)dx=1 for all £> 0.
»NY
If ¢, is an approximate identity then @,(x) = ¢,(—x) is also an approximate
identity.
We state the following two well-known lemmas but omit the proofs.
Lemma 1. If ¢ and 6 are in B(R™) then
Supp ¢ x6 < Supp ¢ +Suppb.

LeMMA«2. If @, is an approximate identity and e 9 then ¢, %0 — 0 with
convergence in @ as ¢— 0.
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Lemma 2 justifies the name “approximate identity”.

A regularization of Te %' is a set of functions {T, = T+ ¢,| & > 0} where
@, is an approximate identity. For any Te 9'(R"), T, lies in C*(R") and the
support of T; is close to the support of T in a sense made precise by the
following lemma.

LemmA 3. Let T, be a regularization of Te&'. For ¢ >0
(1) Supp Tn < Supp T+Bq(s)’

(2) Supp T < Supp 7;+B6(c)3
where g(¢) is given by (i) above and o(c) and 6(¢) tend to zero as ¢ tends
to zero.

Proof. (1). We shall show that if distance(x, Supp T) > ¢(¢) then
x¢Supp T;. Suppose the distance from x to Supp T is ¢(e)+a where a > 0.
Then for Oe % (B, (x)) we have

(%, 05 =<T*p,, 0> = (T, $,%0)

and since Supp @, x 0 < B,I(a).,.,,,; (x), which is disjoint from Supp T, T=0 on
a neighborhood of x. Thus x¢Supp T

(2). If (2) does not hold, there is a 6> 0, and two Sequences, &0,
and x,eSupp T, such that .

distance(x,, Supp ;) > &  for all n.
By compactness there is a subsequence of x, convergent to some xeSupp T,
and for an infinite number of g, > 0, distance(x, Supp T, ) > 6/2.
If O P (Bya(x)) then, since @, is an approximate identity,
(T, 0 = lim (T, §, »0) = lim <T;,, 6.

=+ o

But since Suppd is disjoint from Supp T, for an infinite number of n it
follows that (T, ) = 0. Thus T =0 on a neighborhood of x contradicting
the fact that xeSupp T.

Inclusions (1) and (2) imply that it is sufficient to prove the theorem of
supports for T = @, S = 0, with ¢ and 0 in 2. In fact,

TueoreM. The inclusions '

{1 {Supp$ » T] = [Supp T]+ [SuppS],
(2) [Supp$xT] = [Supp T]+[SuppS]

hold for all T and S in & (R) if they hold for all regularizations T, and S, of
such distributions.
Proof. (1'). For each &> 0 it follows from (2) that

[Supp S * T] < [Supp S, * T.1+ By
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Applying (1) to S, =T, and using the inclusion (1) gives
[Supp S * T] < [Supp S]+ [Supp T+ Bzoe)+ ste)

for all ¢ > 0. Taking the intersection of the sets on the right yields the results.
(2). A similar application of (1) and (2) gives (2).

§ 3. Reduction to standard form. Since the inclusion one way follows
from Lemma 1 we need only prove the following.

TueoreM I'. If ¢ and O are in Z(R") then
3 [Supp ¢ 6] = [Supp ¢]+[Suppb].

Suppose (eRY, |{|=1, TeR. A closed half-space is a set H (T)
=1x (x,{>>=T}). If K< R" is compact then [K] is also compact and

Kl= N H(D.

H;(T) >K

Lemma 3. To prove the inclusion (3) it is sufficient to show that
4 H(T) > Suppp*0
implies there exist T, and T, with T+ T, > T and

&) H,(T}) = Suppo,
(6) H,(T;) = Supp¥.

Proof. If a closed half-space contains K it also contains [K]. Thus for '

xe[Supp ¢] and ye[Suppf]

G4y, O =& 0+0,02T+L 2T
Therefore H,(T) > [Supp @1+ [Supp #]. Since [Supp ¢ 6] is the intersection
of such half-spaces the assumption of the lemma gives [Suppe 0]

S [Supp @]+ [Supp@]. Thus the proof is complete.
For @@, ocR" define ¢, by the equation

@,() = @(t—0), teR".

1t then follows that for ¢, fe %, o, Te RV
(7) (pd*gr =(‘p*0)a+r-

For any pe @ the linear function ¢x, {> has a minimum, say T;, on Supp ¢.

Thus for any ¢, 0e & and (e RY, |{| = 1 there exist three numbers T, T}, and

T, satisfying (4), (5) and (6). It is only necessary to check that T+ T, > T,
Since for any aeR

al+Hy(T) = Hy(T+a)
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and
ol +8upp ¢ = Supp ¢,
in view of (7) it is sufficient to verify Lemma 3 Jor T T, T, > 0.

For ¢e %, # a rotation about the origin in RN define ¢, by the
equation

Pa) =@(# '), teR".
It then follows that for ¢, Oe % (RY),
. Oar Oy = (05 0)g.
Since
RH(T) = Hy (T)
and
ASupp ¢ = Supp @y, Qe 2,

it is* sufficient to verify Lemma 3 for T, T;, T, = 0 and {=(1,0,...,0).
Thus we need only prove

Tueorem 1. If ¢ and 0 are in %(R"), and Suppe and Supp b are
contained in {t| t; > O}, then

(p+)(®)=0 for 0K, T
implies there exist T, and T, such that
e)=0for 0<t; KT, 0(5)=0for 0<t,;<T,
where T+ T, 2 T. »

§ 4. Proof of the Theorem. The proof of Theorem 1" will use partial
Laplace transforms. Denote a point in RY™! by t'=(t,, ts, .. ., ty), thus
t=(t;, Ve RY. For z =(z,, ..., 2y_1)e C¥" ! let

(z, 'y =2y ty+ ... +zy Ly,
The partial Laplace transform of @& & (RY) is

Pty)= [ e~ = o(nar.
RN=-1

In [2, Appendix] Mikusifiski proves the Titchmarsh theorem in the
following form.

Turorem 111 (Mikusifiski). If f and geC[0, T and (f *g)(t) =0 for
0<t< T, then we have

f(@)g(x)=0 forallc>0,v20, 6+1<T
The Titchmarsh Theorem follows immediately by letting T, be the
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largest value such that f vanishes identically on [0, 7;]. Then g must vanish
on [0, T—T{].

Theorem I” also follows from Mikusifski’s Theorem. Indeed, taking
partial Laplace transforms we have that, for each ze C¥™!, the functions
@,(t;) and 9, (t,) satisfy the assumption (¢, *8,)(t;) =0 for 0 < t; < T Thus
for each ze C¥~!, by Mikusinski’s Theorem,

¢,(0)0,(t)=0 .for all 620,720, o+7<T.

Let T; be the largest value such that ¢, (o) is zero for all ¢ < T; and all
zeC¥ L If T, < T there is a oy larger than T, and arbitrarily close to- T,
and a z’e CV~! such that ¢, (0;) # 0. For all 1, < T—0,; we have

@, (0)0,(t;) =0 for all z.

Since the product of two entire functions of z is zero only if one of them is
zero, it follows that 6_(r;)=0 for all z. Since o, > T, can be taken
arbitrarily close to T, = T—T,, ’

¢.(t) =0, 0<t<T, zeCV Y,
6,(t)=0, 0<t T, zeC* Y,

and T;+ T, = T. By the uniqueness of the Laplace transform we have the
result of Theorem I”. ’
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For a Banach space isomorphic to its square the Radon-Nikodjm
property and the Krein-Milman property are equivalent

by
WALTER SCHACHERMAYER (Linz)

Abstract, We prove the result announced in the title.

0. Introduction. For the definition of the Radon-Nikodym property and
the Krein-Milman property (abbreviated RNP and KMP) we refer to [5]. In
the past ten years some effort has been made to prove or disprove the
conjecture that these two notions are equivalent. For some classes of Banach
spaces it has been shown that they are equivalent (see [7] and [3]).

There is an intermediate notion between RNP and KMP. namely the

H

“Integral Representation Property” (abbr. IRP) [13]: A Banach space X

(which we suppose to be separable to avoid measure-theoretic complications,
in which we are not interested here) has IRP if for every bounded, closed,
convex set C & X and every xeC there is a probability measure u on the
extreme points of C such that x is the barycenter of .

A theorem due to Edgar shows that RNP = IRP ([5], p. 145) and it is
easy to see that IRP = KMP. The converse implications are open.

E. Thomas [13] has shown that a Fréchet space X has RNP iff X" has
IRP. In the context of Banach spaces this may be formulated as follows:
A Banach space X has RNP iff I(X) (or any other appropriate space of
sequences in X) has IRP. ;

It was observed in [11] that if X is isomorphic to its square then 1*(X) -
bas IRP iff X has IRP, ie. in this case IRP and RNP are equivalent,

In the present paper we obtain — inspired by the argument of
E. Thomas but using quite a different reasoning and an observation due
to H. P. Rosenthal — analogous results for KMP in place of IRP.

The aim of the introductory Section 1 is to establish Corollary 1.3; this
result — or at least some variant of it — seems to be known to people
working in the field and its content can be derived from a construction of
J. Bourgain [1]. However, we have preferred to use an approach due to
C. Stegall [12]. This approach seems at the same time elementary and
powerful; it also shows that the pathologies arising in the absence of RNP
need not to be “constructed” but are already contained in any
nonrepresentable operator from L![0, 1] to X. :
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