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Note on differentiation of integrals and the halo conjecture
by

FERNANDO SORIA (Chicago, Illinois)

Abstract. In this paper several results on differentiation of integrals are obtained from
restricted weak type estimates of the maximal operator associated to certain differentiation bases in
R". The only tool used is a simple lemma in measure theory due to E. Stein and N. Weiss which
explains how functions add up in weak-L! (Lemma 5). In the process, we construct for each index m
2 0 a quasi-Banach function space which plays with respect to L(log* L)™ the same role as the
Lorentz class L{p, 1) does with respect to I, 1 < p < oo (see Theorems 2 and 3). We follow here
some ideas originated in Taibleson-Weiss [7).

The same methods are used to exhibit a weak type estimate for the maximal operator on the
partial sums of Fourier series and, as a consequence, ae. convergence a little bit beyond
Llog* Llog™ log™ L.

1. Introduction and statement of results. Let 7 be a differentiation basis in
R" and @ (u) its halo function; that is, @) =u if 0 <u<1 and, if u>1,

() = sup ‘|4 ! x: (My)(x) > l/u)]: A a msble. subset, |4| >0},

where M = M, denotes the maximal operator associated to 2, |A4| the
Lebesgue measure of the subset 4 and y, its characteristic function.

In the present work we give partial answers to the following question:
Assumning certain knowledge on the growth of &(u) at infinity, what can be
said about differentiation properties of the basis 4?. (For an introduction to the
subject, including some basic definitions, the reader is referred to de Guzmén
[1]) We will state now a first result in this direction.

TueoreM 1. Suppose that ®u) < cou(l+log* wy™ for some non-negative
constants m and co. Then # differentiates any function which is locally in
L(log™ L)"log™ log™ L.

L(log* L)"log™* log™* L is not, however, the appropriate class to fully
exploit the information given by such a behavior of the halo function and our
next step will be to introduce more adequate classes to deal with this kind of
problem, We will also show that, at least in one case, our results are best
possible (see Theorem 3).
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Notation. Let ¢, (s) denote the function s(1+log™ 1/s)" s = 0. Given a
function f(x), we set

111l = :fcpm (4, (0)de,

where A,(f) stands for the distribution function of f; that is,
Ap(t) = |{xe R" |f (%) > t}].

We define B,, as the collection of all measurable functions f(x) for which

0

11, = ! P (A (0) [1+10g (11l /10m (A, ()] dt

is finite.
Theorem 1 will be obtained as an easy consequence of the following

THEOREM 2. If ®(u) < cou(l+log™ w)™, there exists a constant C such
thar Jor any measurable subset E and for any function f in the class B,, we have

[xeB: (N0 > 1] < < maxo, [E) 1,

Remarks..(a): For' each m> 0, B,, has a structure of quasi-Banach
space, the quasi-norm given by IIlls,,- Homogeneity and completeness can
easily be proved. To show the inequality

(L1 I./+4lls,, < K(Iflls,, +lglls,)

for some absolute constant K, it suffices to point out that from the definition of
|5, and the monotonicity of ¢, we have

) 5 2ol @)
(1.2) ~ ok k f=re

IIf1ls, kgj i PmlAs(29) [1 +log *onlir () ]
= N({2* ou (2, 29)}),

where, given a numerical sequence ¢ = {e], we write

N(o)= g ledl [1 +§ leifled)]- (1)

(*) “4 ~ B” means as usual that there are constants 0 < ¢, C < oo such that cB <A<LCB,
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Now, (1.1) follows from the facts that Ay, ,(25) < ,(s)+4,(s), that ¢,(s) is
subadditive and that for two sequences ¢ = {¢,}, d = {d,} we have

N({cy+di}) < (1+1og 2) [N (c)+ N (d)]
(seé Taibleson-Weiss [7], p. 102).
" (b): For the case m = 0, Theorem 2 has the following refinement:
, TueoreM 3. The following two statements are equivalent:
(i) @) <cou (ie, M is of restricted weak type (1, 1));
(i) there exists a constant C such that

o

R ) > 1 < Flag =& [ 2,0 141082

The class By has been studied in [5] in a different context. It is shown
there that B, is the rearrangement-invariant hull of certain “block spaces”
introduced by M. Taibleson and G. Weiss in [7] in connection with almost
everywhere convergence of Fourier series. As it was pointed out in [5], B is
close to I} and contains some elements whose Fourier series do not converge
dlmost everywhere, In Section 3, however, we prove that this property about
a.e. convergence holds for functions in the slightly smaller class B .

(c): The “halo conjecture” states that if the basis 4 is invariant by
homotheties then # differentiates the class L, of functions h such that
J(lh) < oo (see de Guzmén [1], Chapter VIII). The halo conjecture has
been positively solved only for the case ®(u) ~ u. In fact, it is known that
@ (1) ~u if and only if M is of weak type (1, ).

Let us see how close our results are from the halo conjecture. Theorem
2 and the fact that any function in B,, can be approximated (in the topology
of B,) by continuous functions show that # differentiates the class B,,.

If the conjecture were true we would have, for @(u) ~ u(1 +log* u)" and
# invariant under homotheties, that & differentiates L(log™ L)™. One can
easily prove that any function which is locally in B,, lies then locally in
L(log* L)". As a matter of fact, on a subset X of finite measure (say |X] < 1),
Il llp, represents an equivalent norm in L(log* L)”"(X) and, since
[l llg, <l lls,,, we see that B,,(X) is continuously imbedded in L(log* nm(X).
However, the former class is not far from the latter since it contains any function
in the class L(log* L)"log™ log* L(X). Thus, any function which is locally in
L(log* L"log* log* L(R") lies (locally) in B, (R") (see Section 4).

Observe that our results hold for a general basis without further
assumptions.

2. Proof of Theorems 2 -and 3. For u >0 set &o(u) =u(l+log® u)"
Thus. ¢(u) < Co (po (u).
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LemMma 4. (iii) @q is submultiplicative; i.e., ®o(u; u;) < &, (uy) Dy (uy).
(V) Bo(1/@uls) < 15
Proof. (iii) is trivial. For (iv) we notice that ¢,,(s) > s and, therefore,

1 i m
Do (1/pm(s) = ?p_(:]( 1+log* (Pld(;)

1 ' Iy 1
e —— L P
s(l-l-log'*(l/.«r))"’(I—HOg S) s "

Now, for any set 4 we have from the definition of ¢ and Lemma 4

. . l o
e (ot oo > ]

< O (UYrpn(AD)IAL < co @ (1/0) Do (10 (| AD) A S ¢o Py (1/1).
Fix the set E. We may assume that |E| < . Then,

) 1 co®o(1/t)y =co(l/t) if t21
xeE: (M— 0 %o 0 21,
{xe ( mllA]) X“>(x)>t} SglEl < |Elt it <1,

" Therefore,

o
{er. (MW%(IAI) xA)(x) > r}

We will need the following known result (see [6] and [7], p. 97).
Lemma 5 (E. Stein-N. Weiss). Let g, be a sequence of functions satisfy-

ing [{xeE: |gi(x) > t}| < K/t, for some constant K independent of the i
’ : G
and let ¢ ={c,). Then, p of the index k,

=[ixeR" (My)(x) > @, (|A])t!]

1)

Lt
<&
t

,  where &= max(¢cq, |E|).

f,‘er: 2 cigi (x)] > t}’ s-G-t{SN(c).

Let f be an eclement of B,. For k=0, +1, +2
= {x: 2 < |f (9 < 2*1). Thus, T

SIS § 2 = 5 g g —b
Z s 5 2 et ()

he operator M, we obtain from (2.1), Lemma

. we define 4,

Using this and the sublinearity of t
5 -and (1.2)

[xeE: (M0 > i < SN (241 gy a)

128 g
TN ({2 0n (D) <11 fly,

N
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The proof of (i) =>(ii) in Theorem 3 is similar, with the only difference
that the estimate (2.1) holds for ¢ =c¢, and E = R".
In order to prove that (ii) implies (i) we pick an arbitrary subset 4 and
we let f=x,4. Then, assuming (ii) is true, we have
1
. (o (o 1 o
[xe R (MNG) > e < Ifllsg =7 jw (1+log;>dr =Tl
5 ‘
and (i) holds with ¢q = 2C.
3. An application to a.e. convergence of Fourier series. The setting in this

section could be any meaguré space, (X, ), of finite measure but, for
simplicity, we will asume that X is a subset of R" u=|-| (the Lebesgue

measure) and |X| = 1.

A measurable function s(x) is said to be special if it is of the form s(x)
= i(x) xz (%) for some subset E of X, and with i(x) satisfying 1/2 < [i(x)] < 1.

Tueorem 6. Let T be a sublinear operator mapping functions in, say, I (X)
into measurable functions. Assume that, for 1 <p <2, T satisfies

3 i) [xeX: [(Ts)(x) > t}|" <-—-g——*l*llsll
. i . > ! = (p__ 1)m t p?

where m = 0 and C is independent of p and the special function s. Then, for
any function fe B, (X) we have

(3.2) lixeX: (TNHEI >3] < %Ilﬂlam

(C' independent of f) and, therefore, T is bounded from B,, into weak-L'.

An example of an operator T satisfying (3.1) with m = 1 is given by the
maximal operator on the partial sums of Fourier series. For the ring of
integers in a local field (which includes the Walsh-Paley or dyadic group) the
proof can be seen in Hunt-Taibleson [3]. For the torus one can adapt
Hunt's basic result in [2] about characteristic functions of sets, = xe
observing that the only property of such functions he uses 1:s |El = I fl5, for
1 € p < 0. One can realize that the weaker assumption || fll; ~ (Ihe, 1<p
< o0, i3 enough and that this is clearly true for special functions.

CoroLLARY 7. Let X be the one-dimensional torus or the ring of integers
in a local field. Then the Fourier series of any function in By (X) converges
almost everywhere.

This represents a double improvement with respect to the_ well-k.nown
results in [3] and [4]. If y(t) = tiog™ tlog*log™t, t >0, we w11! see in the
next section that the Orlicz class Ly is properly included in Bl‘ . So,
convergence holds for a larger class. On the other side, it was shown in [3]

3 « Sindia Mathematica 81,1
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that if J(f) = [y (f]) and J(f) < 1/2, then there exist two absolute constants
¢y, ¢, for which

Hxe X: (TNE) > ey J (NN < e J (N5,
while here we have the better estimate (3.2). The reader may compare this
Theorem with Theorem (4.41) in [8], Vol. II, p. 119, and Theorem (3.1) in
[1], p. 184.
Proof of the theorem. Let s=iy; be a special function. Take
p=1+[1+log(1/|E)]" L. Then 1 <p<2 and, by (3.1) and the fact that
1Xi =1,

[{(xeX: [(Ts)(x)| > t}| < |E|/P

Cc 1
t(p* r
1 eC
IEJ <1+1°g|E[> |E|~¢ =40 —~ @n(IED;

the last inequality follows since |E| <1 and

it 1>mo-§~xnr|<(_1_)m%m_
= (IEI <\m) -
Thus, .

33 :

G3) %" ‘(T% (&) ) HI

for every special function.

Now, let feB,. For k=0, +1, +2,... we set E, = {xeX: 2
<If () <2**'} and f; = fyg,. Then
a0 o 1
- =¥ 21 o (E) s fo.
J= L A= L F enBD e, Tk

Since each s, = 27**1f, s a special function supported on E,, we obtain
from (3.3) and Lemma 5

e X: (TN > 8] < XN (121 0, (ED)

12¢C c”
<N ({2 0mlE (29)}) <1111l =
4. Final remark. In this section we show that if f(x) is locally in Y

= L(log™* Ly*log* log™ L then it is locally in B,,. For that we may assume that
feY, and f has compact support, 4. Observe that fe Y, implies

4.1) [ As(£)(log ™ loglog tdt < co.
e2

icm
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We may also assume ||f] llo,, < 1. Thus,

Wl < (] +EJ" + I ) om(Ar (O)[1+108* (1/t@m(A ()] dt = I, + 1, +1,
1 2

where E; =[0, ¢?], E
~E,. Clearly,
e2

Iy < bf @m(AD[1+log(1/tp,(1AD)] dt < 2¢* @ (jA]) < 0

2= {t>e% A,(t) <1/t(logty"*?} and E; =(e? o0)—

Also
1
1 < » l—l 1 t—(m+2) 1 +
2 f‘ﬂ ( (logt) )[l+ 4 tqom(t_l(logt)"(’”z))]dt
o2
loglogt
<C, J flog 1 dt < oo,
B 82
and
< [ 4 (0 [1+log(t(log &y 2™ [1 +log (log £)"* 2] dt
82
< Cp | A ()1 +logt)"(1+loglogt) < o,  (by (4.1)).
o2
Therefore, fe B,,.

Now, if we consider a sequence ‘Ik} of disjoint subintervals of A [0, 1]
and a numerical sequence c¢={¢} it is not hard to see that the function .
=Y cle.(n)l™! 1, belongs to B, (4) provided that N(c) < co.Givene > 0,
set G%(u) = u(log® uy"(log™ log™* u)z for k=1,2,..., let ¢, =k™4* and
choose I, so that |I,] = ¢, 2"™2°2* Then

IG" (/G dx = 3 T Ga(ce [m(T)] ™)
“‘Zk (1+g) g- mkz—Zsz 22") Zk 1.
This example shows that B, is not contained in any of the spaces

L(log™* L)"(log™ log™ LY, e>0 and, in particular, that Y,(4) is a proper
subclass of B,,(4) as mentioned in Section 3.
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On the capacity of a continunm with a non-dense orbit under a hyperbolic toral
automor phism

by

MARIUSZ URBANSKI (Torur)

Abstract. In this paper we compute an upper and lower estimation for the capacity of a
continuum (connected compact set) lying in the torus 7" = R"/Z" whose orbit under a hyperbo-
lic toral automorphism is not dense in T". Also estimations of capacity in Pesin’s sense are
considered. :

Introduction. The main results.

1. First we define capacity. Let (X, o) be a compact metric space and let
A be any subset in X. Cover it with finitely many balls {B(x;, r;)}k; with
centres in A4 of radii ; <& By I(A, ¢) denote the minimal possible k. The
number '

. logI{4, &)
C, =limsuyp———
4 50 P —loge
is called the capacity of the set A. Observe that dimy A < C,, where dimy is
the Hausdorff dimension and that

(1) if & ~0, limsup(e;/e; () < +00, then
i~ra0

. logI(4, &)
Ca= S g,

2. Denote by n: R"— RY/Z" the standard covering projection. A hy-
perbolic toral automorphism is a map f: T"— T" which has a linear lift
/* R"— R" without eigenvalues of modulus 1. It is clear that there exists a
minimal number » > 1 such that either the cigenvalues of f* are real and
positive or they'are not roots of real numbers. By f we denote f*. We define

Ei= [ G-4070)
if an eigenvalue A of f is real and
£ = (0 (-~ U J (7~Tid©)n R,

Jj
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