

Solution to a problem of S. Rolewicz

b:

V. MONTESINOS (Valencia)

Abstract. The strong dual of a Banach space containing an isomorphic copy of $l^1(\Gamma)$ has a non-empty convex closed and bounded subset such that every point is a support point.

Introduction. In [8], S. Rolewicz asks if there exists in a non-separable Banach space a non-empty convex closed and bounded subset such that every point is a support point. In particular, he is interested in the space M([0,1]) of Lebesgue-measurable functions on [0,1]. In this note we give an answer to this case, proving that if E is a Banach space containing an isomorphic copy of $l^1(I)$, there exists in the strong dual a non-empty convex closed and bounded subset such that every point is a support point. We do not know an answer to the first question.

Let E be a Banach space over the field R of the real numbers. Let E^* be the topological dual of E. We denote by $\|\cdot\|$ the norm in E, as well as the strong norm in E^* . Let A be a convex and closed subset of E. A point $x_0 \in A$ is a support point of A if there exists a $\varphi \in E^*$ such that

- (1) $\varphi(x) \leq \varphi(x_0)$, $\forall x \in A$ and
- (2) $\exists x \in A$ such that $\varphi(x) < \varphi(x_0)$.

This is the definition which appears in [8]. It coincides with what in [2], p. 21, is called a *proper support point*. We shall say that a subset A of a Banach space E has *property* (*) if A is a non-empty convex closed and bounded set such that every $a \in A$ is a support point of A.

Those problems arose in connection with the result of S. Rolewicz in [8] which asserts that every non-empty separable convex and closed subset of a Banach space has a point which is not a support point.

I. The case C([0, 1]). Let C([0, 1]) be the Banach space of real continuous functions defined on [0, 1]. If $x \in [0, 1]$, we denote by δ_x the element of $C([0, 1])^*$ defined by $\delta_x(f) = f(x)$, $\forall f \in C([0, 1])$. $C([0, 1])^*$ is a non-separable Banach space which can be identified with the space of Radon measures on [0, 1]. Let B be the closed unit ball of C([0, 1]) and B° that of

 $C([0, 1])^*$. The set of extreme points of B° is $\operatorname{Ext}(B^\circ) = \{\delta_x, -\delta_x, x \in [0, 1]\}$. A measure $\mu \in C([0, 1])^*$ is *atomic* when it is concentrated on a countable subset of [0, 1], that is, there exists a countable set $D \subset [0, 1]$ such that $\mu([0, 1] \setminus D) = 0$.

PROPOSITION 1. There exists in $C([0, 1])^*$ a subset with property (*).

Proof. Let $A = \{\mu: \ \mu \in C([0, 1])^*, \ \|\mu\| = 1, \ \mu \geqslant 0, \ \mu \ \text{atomic}\}$ $\subset C([0, 1])^*$. Obviously, A is a convex set. We shall prove that it is closed: Let $\{\mu_n\}_{n=1}^\infty$ be a sequence in A which converges to $\mu \in C([0, 1])^*$. Then $\|\mu\| = 1$ and $\mu \geqslant 0$. There exists a countable set $D_n \subset [0, 1]$ such that $\mu_n([0, 1] \setminus D_n) = 0$, $n = 1, 2, \ldots$ For every $\varepsilon > 0$, there exists $n_0 \in N$ such that $\|\mu - \mu_n\| < \varepsilon$, $n = n_0$, $n_0 + 1$, $n_0 + 2$, ... We have $\|\mu - \mu_n\| = \sup \left\{ \sum_{i=1}^\infty |(\mu - \mu_n)(A_i)| : \{A_i\}_{i=1}^\infty \text{ partition of } [0, 1] \text{ in a countable number of pairwise disjoint Borel subsets} \right\}$. In particular,

$$\{\bigcup_{n=1}^{\infty} D_n, \bigcap_{n=1}^{\infty} CD_n\}$$

is one of these partitions. Therefore

$$\left|(\mu-\mu_n)\left(\bigcup_{m=1}^{\infty}D_m\right)\right|+\left|(\mu-\mu_n)\left(\bigcap_{m=1}^{\infty}CD_m\right)\right|<\varepsilon, \quad n=n_0, n_0+1, n_0+2, \dots$$

Hence

$$|(\mu-\mu_n)(\bigcap_{m=1}^{\infty} CD_m)| < \varepsilon, \quad n=n_0, n_0+1, n_0+2, \dots$$

but

$$\mu_n (\bigcap_{m=1}^{\infty} CD_m) = 0, \quad n = 1, 2, 3, ...$$

Therefore

$$|\mu(\bigcap_{m=1}^{\infty} CD_m)| < \varepsilon, \quad \forall \varepsilon > 0.$$

It follows that

$$\mu(\bigcap_{m=1}^{\infty} CD_m) = 0.$$

Observe that the closed convex hull of $\operatorname{Ext}(B^\circ)$ is different from B° . Incidentally, it follows from (10) that C([0, 1]) contains an isomorphic copy of l^1 and C([0, 1]) is not sequentially dense in $C([0, 1])^{**}$.

Let us now prove that every point of A is a support point. Let $\mu_0 \in A$. Therefore, there exists a countable subset D of [0, 1] such that $\mu_0([0, 1] \setminus D) = 0$. We define a continuous linear functional L on $C([0, 1])^*$ by the formula

 $L(\mu)=\mu(D), \ \forall \mu\in C([0,\ 1])^*.$ Obviously, $\|L\|=1=\mu_0([0,\ 1]).$ $L(\mu_0)=\mu_0(D)=1.$ Moreover, if μ belongs to A, $L(\mu)=\mu(D)\leqslant 1=\mu([0,\ 1]).$ Obviously, inf $\{L(\mu):\ \mu\in A\}<1.$ Therefore, L is a support functional of A and μ_0 is a support point of A.

Note. If a Banach space E has a subset with property (*), it is evident that every isomorphic Banach space has also a subset with property (*). In view of Milyutin's theorem [5], if C(S) is the Banach space of continuous real functions over an uncountable compact metric space S, $C(S)^*$ has a subset with property (*).

II. The case $l^{\infty}(\Gamma)$.

PROPOSITION 2. Let Γ be an infinite set. There exists in $l^{\infty}(\Gamma)$ a subset with property (*).

Proof. Let us first assume that Γ is countable. C([0, 1]) is a separable Banach space and therefore it is isometric to a suitable quotient space of l^1 . Thus, l^{∞} has a closed subspace which is isometric to $C([0, 1])^*$. By Proposition 1, there exists in $C([0, 1])^*$ a subset A with property (*). Obviously, A can be identified with a subset of l^{∞} with property (*).

If Γ is uncountable, l^∞ is isometric to a closed subspace of $l^\infty(\Gamma)$. The result now follows from the first part. \blacksquare

Now, let μ be a sigma-finite measure. $L^1(\mu)$ is separable if and only if $L^{\infty}(\overline{\mu})$ is isomorphic to $l^{\infty}(\Gamma)$ ([6], [7] and [9]). Therefore, Proposition 2 gives an answer to the question raised by S. Rolewicz about M([0, 1]) mentioned at the beginning.

III. A general situation. The following lemma is rather obvious. Let us prove it for the sake of completeness:

LEMMA. Let E and F be two Banach spaces. Let $T: E \to F$ be a continuous linear mapping from E into F. Let us suppose that there exists a non-empty convex closed subset A of F such that every point of A is a support point and $A \subset T(E)$. Then $T^{-1}(A)$ is a subset of E with the same properties as A.

Proof. Let $x_0 \in T^{-1}(A)$. Therefore $T(x_0) = y_0 \in A$, and hence there exists a continuous linear functional $\varphi \in F^*$ such that

- (1) $\varphi(y_0) \geqslant \varphi(y)$, $\forall y \in A$ and
- (2) $\exists y_1 \in A$ such that $\varphi(y_0) > \varphi(y_1)$.

Let $\psi = \varphi \circ T \in E^*$. Let $x_1 \in A$ be a point such that $T(x_1) = y_1$. Then

- (1) $\psi(x_0) \geqslant \psi(x)$, $\forall x \in A$ and
- (2) $\psi(x_0) > \psi(x_1)$.

Hence x_0 is a support point of $T^{-1}(A)$.

Theorem. Let E be a Banach space containing an isomorphic copy of $\ell^1(\Gamma)$. Then there exists in E^* a subset with property (*).

Proof. E^* has a quotient space isomorphic to $l^\infty(\Gamma)$. Let q be the canonical mapping from E^* onto this quotient. Using Proposition 2, we can find a subset A_1 of this quotient space with property (*). By the Lemma, it easily follows that $A=q^{-1}(A_1)\cap (M+\varepsilon)B^\circ$ is a subset of E^* with property (*), where ε is an arbitrary positive number, B° is the closed unit ball of E^* , and $||x|| \leq M$, $\forall x \in A_1$.

Corollary 1. In $l^{\infty}(\Gamma)^*$ there exists a subset with property (*).

Proof. $l^{\infty}(\Gamma)$ contains an isomorphic copy of l^{1} .

Corollary 2. Let E be a Banach space with a quotient space which is isomorphic to $l^{\infty}(\Gamma)$. Then, there exists in E^* a subset with property (*).

Proof. E^* contains a closed subspace which is isomorphic to $l^{\infty}(\Gamma)^*$.

Note 2. Let E be a Banach space which does not contain an isomorphic copy of $l^1(\Gamma)$. It is not always true that every convex closed and bounded subset of E^* has a point which is not a support point. For example, take $E = l^2(\Gamma)$, Γ a non-countable set. In $l^2(\Gamma)$ there exists a subset with property (*) [8]. $l^2(\Gamma)$ is not a separable space. The following question arises immediately:

PROBLEM. Let E be a separable Banach space which does not contain an isomorphic copy of l^1 . Is it true that every convex closed and bounded subset of E^* has a point which is not a support point?

If the answer is negative, the example must be a separable Banach space which does not contain an isomorphic copy of l^1 and such that E^* is not a separable space. There exists some examples of this situation ([1], [3] and [4]).

Acknowledgement. I want to thank Professor S. Rolewicz for his helpful remarks.

References

- J. Hagler, A counterexample to several questions about Banach spaces, Studia Math. 60 (1977), 289–308.
- [2] R. B. Holmes, Geometric Functional Analysis and its Applications, GTM 24, Springer, New York, Heidelberg, Berlin 1975.
- [3] R. C. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743.
- [4] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain l¹ and whose duals are non-separable, Studia Math. 54 (1975), 81-105.
- [5] A. A. Milyutin, Isomorphism of spaces of continuous functions over compacta of the power of the continuum, Teor. Funktsii Funktsional. Anal. i Prilozhen. 2 (1966), 150-156.
- [6] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
- [7] -, On the isomorphism of the spaces m and M, Bull. Acad. Polon. Sci. 6 (1958), 695-696.
- [8] S. Rolewicz, On convex sets containing only points of support, Comment. Math., Tomus specialis in honorem Ladislai Orlicz, I, Warszawa 1978, 279-281.

- [9] H. P. Rosenthal, On injective Banach spaces and the space L^x (μ) for finite measures μ, Acta Math. 124 (1970), 205-248.
- [10] -, Some recents discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803-831.

DEPARTAMENTO DE MATEMÁTICAS ET.S.I. INDUSTRIALES UNIVERSIDAD POLITÉCNICA DE VALENCIA C/Vera, s/n. Valencia, Spain

Received December 13, 1983

(1943)