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Some incorrigible functions
by

D. J. H. GARLING (Cambridge)

Abstract. We say that a function f on the unit circle Tis p-incorrigible if whenever g is a
function whose Fourier coefficients satisfy ). |4,/ < co then p{r: f(t) = (1)} = 0. We consider

[
random Fourier series ¢f the form X =Y ¢,D,e*™™, where D, are independent random

variables, each uniformly distributed on the unit disc, and show that if ¢,=n"*?(1<p<2)
then X is almost surely p-incorrigible while if ¢, = n~*(log n)~7, with y > 2, then X is almost
surely p-incorrigible for all 1 <p<2.

1. Introduction. The celebrated theorem of Men’shov states that if fis a
measurable function on the unit circle then f can be changed on a set of
arbitrarily small measure so that the “corrected” function has a uniformly
convergent Fourier series (see [1]). On the other hand, Katznelson [5]
showed that there exists a continuous function on the unit circle which is
“incorrigible” — that is, it cannot be represented by an absolutely convergent
trigonometric series on any set of positive measure. This result was extended
by Olevskii [6], who showed that there is a continuous function f on the unit
circle T which is “p-incorrigible” for all p <2 — that is, if g is an integrable
function on the unit circle which agrees with f on a set of positive measure
then the Fourier coefficients §, satisfy Z]g‘,,[" = o0 for all p <2 He also
showed that for each 1 < p <2 there exists a function f in Lip(1/p—1/2)
which is “p-incorrigible”.

More recently, Hrushchev, Kahane and Katznelson [3] have shown that
almost every Brownian path on the unit circle is incorrigible. This gives
slightly weaker information about the Lipschitz condition than the result of
Olevskii, but on the other hand it shows that there are incorrigible
functions f whose Fourier coefficients satisfy f, = O((log [nf)*/*/|n]). This raises
the question: are there incorrigible functions f whose Fourier coefficients
satisfy £, = 0(1/|n))?

We shall show, using an argument similar to that of Hrushchev, Kahane
and Katznelson, thet in a natural sense almost every function f whose
Fourier coefficients satisfy f, = 0(1/|n]) is incorrigible. More generally, we
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shall show that if 1 <p <2 almost every function f whose Fourier
coefficients satisfy f, = O(1/|n|?) is p-incorrigible, and that almost every
function f whose Fourier coefficients satisfy f, = O(1/|n'/*(log|n|")) (Where
y > 2)-is p-incorrigible for 1 <p < 2.

I do not know if there is an incorrigible continuous function f whose
Fourier coefficients satisfy f,, =0(1/|]n]) nor if for 1 <p <2 there is a p-
1ncorr1g1ble continuous function f whose Fourier coefficients satisly

= o(1/|n]").

This work was begun in Poland in April and May 1983, when I
participated in the Semester on “Geometry of Banach spaces and its
application to classical analysis” at the Stefan Banach Internmational
Mathematical Center in Warsaw, and also visited the Mathematics
Department at Wroctaw University: I would like to thank all concerned for
their hospitality. I would particularly like to thank Piotr Mankiewicz and
Andrzej Hulanicki for helpful discussions. I would also like to thank David
Fremlin for pointing out an elementary but fundamental error in an earlier
version of this work.

2. Statement of the results. Let (D, (w)) be a sequence of independent
random variables, each uniformly distributed on the unit disc.{z: |z < 1}.
We set
, Dk((/.)) eznikz

PEG for‘1<p<2

X)) = Ek:
(where Y is the sum over all nonzero k), and we set
k

W Dk ((D) eZm'kt

———  for y>1,
K7 logi T

X3, (@) () = Xk:

(where Z” is the sum over all k with |k| > 1).

k
Recall that for almost w the series for X, and X, , converge uniformly
(cf. [4], Chapter VII, Theorem 1) and that the moduli of continuity satisfy

wx, (1) = O (7 log2(1/h)
wx,, (B = O (log! 7 (1/h)

([4], Chapter VII, Theorem 2).
We shall prove the following theorems:

THEOREM 1. Suppose that 1 < p < 2. Then for almost all w, X p(w) is
p-incorrigible.

THEOREM 2. Suppose that y > 2 and that 1 <
X, (w) is, p-incorrigible.

for 1<p<2,

for y>1

p < 2. Then for almost all o,
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3. Some linear operators. Before giving the proofs of Theorems 1 and 2,
let us introduce some linear operators which we shall need. Suppose that n is
a positive integer. Let F, denote the subgroup-of T of order n:

Fn = 2mk/n 1 < k }

If fis a function on T and te T we set

@)y =n""! Z flt+k/mye 2"k for 1<j<n
k=1

so that Q,(f) is an element of C".
Suppose now that f is integrable and that (f)e I, where 1

f([) — Zf; eZnilt
1

< p<2 Then

for almost all t. Thus for almost all ¢

(Qz(f))_, = Z f‘eznm (n" 1 Zn: eZW(kz/ne—;kijk/n) — Zf;‘+vn Q2mili+ynt
13 v

k=1

In the case where p =1, this implies that

1Q: (N, < XTI
I

for almost all t

so that

iIIQ,(f)Hz1 ar < Y \fl;

while in the case where p =2

Q. (NE, dt =
T

I
1
so that, by interpolation,

[1Q.(NE, de < X1/
T

1
for 1<p<2
Note also that if w,(h) <

Q. (f)—

Ch'? log'?(1/h) and |t—s| < h then

(Q:(N));] < Ch¥7 log 112 (1/h)
so that
10: ()= Qs(Nly, < C(mh)*'* log!* (1/h).

Thus
10:(N)=Qs(Nlly, < e

if Jt—sf < 1/n?
for sufficiently large n. ’
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Similarly if @, (h) < C log" " (1/h) (where y >2), | < p<2and |[t—s| <h
then
10, ()= Qs (NI, < Cn*/7 log =7 (1/h)
In particular,
12 (/)= QM <& if |t—sf <277

for sufficiently large n.

4. Proof of Theorem 1. The proof is rather similar to those of Olevskii
and of Hrushchev, Kahane and Katznelson. If 1 <p <2, let

A, = A1) = {fe L*(D: [1flla, =TI/ < o0}

If E is a measurable subset of T of positive measure, let 4,(E) denote the
restriction of A4, to E; we give 4,(E) the quotient norm || || 4,8 )

Suppose that the result is false. Let pu denote the normalized Haar
measure on T Then there exist 4> 0.and 1> 0 such that

P*{w: there exists a measurable E with u(E)> 4
such that ||X, (@)ll4m < o} > 1.

In the proofs that follow: K (where j is an integer) will denote a positive
constant that depends only on A and p (and in Theorem 2 on y), and L;
(where j is an integer) will denote a positive absolute constant.

Let & > 0; we shall choose ¢ later on. Let J, denote the space of
trigonometric polynomials of degree at most m, and let Q. denote those
functions f for which w; (k) < Ch'/? log'/?(1/h). Let U, denote the set of o
for which

@ (X, (w))e*™ converges uniformly to X,(w),
k

(i) X ,(w)ef,
(iii) there exists a measurable E with u(E) > 4 and T in .7, such that
[1X p () — T”AP(E) <e.

Then there exist m and C such that
P*(Upc) > 1.

Suppose that weU,c. Let E be a measurable subset of T with
U(E)> A and T an element of 7, such that

|1 X (w)— T”AP(E) < 2/A.

Let f be a function such that f|p =0 and
11X, (@)~ Tl < 2/2.
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We consider translates of the group F,. If te T, let
n(t) =|{s: seF,, s+teE}].
Then
J!"(1‘) dp() =3} [1e(s+1)du(t) = nu(E) > n,

seF, T
Let G,= {te T: n(t) > nA/2}. Then
npu(G,)+nd/2 = [n(t)du(t) > na,
T

so that u(G,) > A/2.
Since

(Jl1Q: (X, (@)= T=f)IF, de)*'® < || X, (c0) — T—fla, < 2¢/2,

T .
it follows that there exiéts t in G, such that

10: (%, (@)~ T=1 )y, <&
There exists u in F, such that [t—~u| < 1/n®. Thus if n is sufficiently large,
”Qu(Xp(w))_Qt(T)_Qt(f)“Ip <2s.
Now Q,(T)eU,, =span{ey, ..., &, €pum, ..., &,), While
‘ 0.(NeVs,

where J = {seF,: s+teE} and

V, = span {Z e—Zm‘jk/nej: kgﬁ]}.

j=1
Consequently
Um,C = U U Au,.h
ueF , JE{1,..,n
ne \J&Bnl

where 4,; = {0 0,(X,(w))e U, +V;+2¢B,} (and where B, is the unit ball
in (C"]] ”z,,))- Note that there are not more than n®2" events A, .

We now estimate the probability of A4,,. We do this by combining
density estimates and volume estimates.

Before doing this, we discard some of the coordinates. Provided that » is
large enough, we can choose an integer s so that s > nl/6 and t =n—2s
=zn—nl3. Let II be the orthogonal projection of C" onto
span(eg,, ..., €,-5). Then i

P(A4,) < P {0: 1Q,(X,(®))e W+2¢I1(B,)},

2 — Studia Mathematica §2.3
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where W= II(U,+V). Let dim W=r;
r < n—ni/2 < t—nl/6.

We begin with the density estimates.
almost all o,

note that for large enough n,

(Q.(x

For

Let Sj((l)) = p(w))).i'

J+vn

S;(w) = Z (j+vn)

eZni(j+ vn)t.

The random variables S; are independent, and

Ly 2 2 K, Y
K, il SE(S)) (=vj say) <. 75

for s+1<j<n—s Let us set T; = S;/v;, so that E(|T?) = 1.

The density of S; is clearly less than or equal to n*/%, and so the density
of T; is less than or equal to K2, for s+1<j<n—s. Further, an easy
calculation shows that each of the random variables Re(D;) is subnormal,
and so each random variable Re(T}) is subnormal; since the distribution of T;
is rotationally invariant, this means that

CP(T) > @) < 4o
pp. 54-57). We can write the density f; of T, as
£i(x, ) = g5 (> +yH).
It is easy to see that g; is a decreasing function; this means that

g} )<4a-2 —«z2/16

(cf. [4],

‘and so
g;(0) < Ky e™*e.
Now suppose that k> 1 and that
[Ss41lP+ ...
by Holder’s inequality,

AT

+18n-4l7 2 WP KY;

+|8u-o|* = K KT
and so
ITaslP+ o+ T 2 Pt

Thus the joint density of (T, 4, ...,
and the joint density of (S44, ..

T,_,) is less than or equal to K, e~ /16
., Sy—s) 18" less than or equal to

(K, n1/p)2t e—hztll 6

Note that the joint density of (Sy44, ..

., Sy—g) is always less than or equal
to (K, n'/Py?,
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We now turn to the volume estimates. Let C, denote the unit ball in W.

If his a positive integer, then a standard argument [2] shows that (hK,

+2¢) C, can be covered by not more than (7hK, /e)*" balls of radius ¢, and

so (hK;+2¢) C,+2eIl1(B,) can be covered by not more than (7hK,/e)* balls

of radius 3e; the volume of each such ball is not greater than (L, g/t'/?)*,
Let us set

Ey = {o: HQ,(X,(w))e(W+2:11 (B,)) N kK IT(B,)}.

As
(W+2¢I1(B,)) " hKy IT1(B,) < (hK, +2¢) C,+2¢I1 (B,),

it follows by combining the volume and density estimates that

TK 2r L 2t R
P(E;) < ( 1) <t11/:> (K, nl/p)Zl <K} g3,
£

and

7(h > (Lye |
P(EM\E,,)<<————( +1)K’> (%,f) ¢S < K (ht 1) e HHIL0 g2 2,
&

Now it is easily verified that

S (h1)eHS < I8 for u 1

K=1
and so

P(Au J) 2! 2r < (K 81/3)'1

This means that y < n? (2K, 31’3)"; but we can choose & small enough and n
large enough so that this is not so.

5. Proof of Theorem 2. Theorem 2 is proved by making fairly-
straightforward modifications to the proof of Theorem 1, which we now
describe. Let us set ¢ =1/p—1/2.

We let Q¢ denote those functions f for which w, (h)

Um,C - U U Au,J -

ugh, J 1}
B Ik

< log'~?(1/h). Then

In this case there are not more than 4" events A4, ;.
Easy calculations show that if s+1 <j < n—s then

! <v? < K3
Kin(log >~ = = n(log m»~ 1"

For such j, the density of S, is less than or equal to n(log m)*” and the
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density of T; is less than or equal to K,log n. Arguing as in Theorem 1,
g;(@) < Kg (log ne™*/te.
If 1S 4P+ ... +|S,—s/” = W K¥ then
[Sse1/2+ o +S-dl® 2 WP K172
and so i
ITsl?+ ..+ T |? > B n(log m» 1172,
Thus the joint density of (T4 4, ..., T~ is less than or equal to
(K log n) exp(—h*n(log n)*' ! ™ 2¢/16)
and the joint density of (Sy4,, ..., S,—,) is less than or equal to

(Ko n(log n)*" exp(—h*n(log n)>*~* £~ 2/16).

r 2t
P(E,) < <7K; n.>2 (%?—) (n(log n)>}

P 2t—2r
< Ko (ﬁ) (log m)>" < Ko 8¥™

Consequently

for large enough n, and
TK (h+1)n\* (L, g \*
P(E(h+1)ne\Ehno) < (“'1-8_"_> }lll—p (K9”(108 ")Zy) x

xexp(—h*n®n(log n)>*~ 1t~ 2/16)
e 2t—2r 2
<Ky (h+ 1) (—Q> (log )" g="16
n

S K“ (h+ 1)2r82r~2re—h2t/16
for sufficiently large n (independent of h). Thus
P(4,) < Kz o™ ¥ < (K e2),

so that n < (4K 5 ¢*?)". Once again, a suitable choice of ¢ and n shows that
this is not so.
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