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The sequence entropy for Morse shifts
and some counterexamples
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Abstract. We develop methods of computing sequence entropies (topological and measure-
theoretic) for Morse shifts. A number of counterexamples are given.

(1) The sequence entropy HPP(T) need mot be monotonical in A.

(2) The formulas h,(T*) = kh,(T), KSP(T* = kKSP(T), k> 2, are false in general (a
solution to Saleski’s question [17]).

(3) The formula K{P(TxS) = HEP(T)+H{P(S) is not true in general (a solution to
Goodman’s question [3]).

(4) The formula h,(TxS) = hy(T)+h,(S) need not hold (contrary to what is obtained in
Kushnirenko [9]).

Topological sequence entropy can distinguish between two strictly ergodic and measure-
theoretically isomorphic dynamical systems.

It is studied when sequence entropy is an invariant of spectral isomorphism in the class of
Morse shifts.

Introduction. A new metric invariant called the sequence entropy (or A-
entropy) was introduced in [9]. Kushnirenko proved that T has discrete
spectrum if and only if h,(T)=0 for every sequence A. He used the
sequence entropy to distinguish between two spectrally isomorphic and zero
entropy transformations. '

From [8] it follows that if h(T) > 0 then h,(T) = K(4)h(T), where
K(A) does not depend on T That is why the sequence entropy is
uninteresting as a new metric invariant in the class of automorphisms with
positive entropy.

Dekking in [2] considered the {I"}2,-entropy for continuous
substitutions. It is easy to see that the continuous substitution Ot ) in
normal form (ie. when the block b starts with zero) is just the Morse
sequence X =bxbx...

Many authors ([2], [3], [9], [16]) were interested in the following
problem. Which of the well-known properties of entropy are valid for
sequence entropy?

In the present paper we give a list of properties of entropy that do not
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hold for sequence entropy. The required examples arise from the class of
Morse shifts. The way of computing the sequence entropy for the sequence
{n)& o is an easy adaptation of Dekking’s considerations in [2]. However,
calculating the {n,}2-entropy for Morse shifts is important for two reasons.
First, the class of Morse shifts is larger than the class of continuous
substitutions, and we get automorphisms with {n}%2 o-entropy equal to zero.
Secondly, we get a possibility of controlling the size of the {n,k}f":o—entropy
for any subsequence {nyJizo of {n}2.

In the first section we recall some properties of Morse shifts needed in
the sequel.

In the second section we provide formulas for the {n,} o-entropy and
{n} 2 o-topological entropy.

In the third section we give a condition equivalent to the {n)%o-
entropy being zero. For a given Morse sequence x = b°x b! x ... we mean
by M(x) the class of all Morse sequences y = f°x ' x ... with |] = [,
i20. The {n}2,-entropy gives a natural equivalence relation SE(x) on
M (x) such that yeSE(x) provided h{,,tk,(y) = h(,,tk,(x) for ‘every subsequence
{n 2o of {n}2,. We compare this relation with the relation on M (x)
introduced in [10] and show that usually SE(x) consists of a continuum of
spectrally nonisomorphic Morse sequences.

In the fourth section we present a list of examples.

We show that the formulas h,(T% = khy(T), HSP(TY) = khSP(T), k = 2,
need not hold. Moreover, the examples presented give a negative answer to
Saleski’s question in [17]. In [2] Dekking showed that the A-entropy does
not depend monotonically on 4, ie. it is possible to have h,(T) < hy(T)
when 4 is a subsequence of B. We give an analogous example for topological
entropy. Goodman in [3] showed that for every sequence A and for every
homeomorphism t of a Lebesgue space X (X has finite dimension)

HEP (1) = sup B (7).
neM
Here M denotes the collection of all r-invariant Borel probability measures.
Equality holds in the case h'°P(1) > 0. Goodman gave an example with AigP(r)
=log 2 and sup k% (z) =0, where 1 had discrete spectrum. We prove that
M

He.
this is possible even for = having a continuous part in its spectrum. Since the
variational principle need not be valid we ask the following question: Does
the equality h,(T) = h, () imply MW" (T) = hP(z) and vice versa? Here, by
(X, T, w), (Y, 7, v) we mean strictly ergodic systems. It turns out that in
both cases the answer is negative. It can even happen that topological
sequence entropy can distinguish between two strictly ergodic and measure-
theoretically isomorphic dynamical systems. For topological sequence
entropy we have h$P(Tx 1) < h§P(T)+ 1P (7). Goodman in [3] showed Hee(T
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xT)=2KP(T) and he asked whether AP (Tx1) = h§P(T)+H5P(1). We
provide an example for which the above formula fails. In Example 6 we
compute the {2'}2 o-entropy for Kakutani sequences (see [5]). We can reduce
this problem to considering some continuous transformation on the unit
interval and its time averages. In particular, for almost all Kakutani
sequences this entropy is constant and the supremum of values of the
{2} o-entropy is obtained for the Morse sequence xo = 01 x01 x ... In the
above class of sequences we find (Example 7) two automorphisms Tand t for
which the formula h,(Tx 1) = h(T)+h,(7) is false. This shows that Lemma
4 in [9] is not valid. The counterexamples in Examples 5 and 7 work due to
the simple fact that the sequence entropies calculated in them are upper
limits, and not limits, of suitable sequences. We also consider Abramov’s
formula for the skew product ([1]) and show that a generalization to
sequence entropy is impossible. Finally, we prove that no Morse
automorphisms have weakly mixing factors.

1. Notations. Let (X, B, ) be a compact metric space with a Borel
measure u and let T' X — X be a homeomorphism preserving .

Let A = {n}2, be an infinite sequence of natural numbers.

Denote by & the collection of measurable partitions of X with finite
entropy and by % the collection of all open covers of X.

The sequence entropy (or A-entropy) of T with respect to A is defined by

1 -n —ny . :
h(T. &) = lim sup~H(T "¢ v ... v T"""1¢),  ¢ez,

teN t

hy(T) = sup hy(T, &).
ted

Let % and denote by N(«) the minimal cardinality of any subcover of
o. Then the ropological sequence entropy of T with respect to 4 is given by

1 -n —'bn—
H$P(T, o) = lim sup =log N(T av...v T *"la), ae%,

teN t
ha' (T) = sup Wy (T, o).
aeb
It is well known that if {n,}i2, is a sequence of open partitions of X
and n, ~ ¢ then
1) kg (T) = lim k" (T, ny),

koo

ha(T) = lim by (T, o).

koo

Let & be a partition of X. Denote
Ee=Ev T Ve . v TTkFLE
Fr=T""0¢y . v T ™1¢

=) km=zl
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A sequence B =(bg, ..., by_;) of zeros and unities is called a block.
We put [B| =k and call it the length of B. Denote B[i, ] —(b s by,
Bli,i]=B[i, B=(by, ..., by_1), where b;=1—b;, i=0,..., k— 1 If
C =(Coy.us Cpyy) 18 another block then we define

BxC=BB
where B® = B, B = B.
Assume |B| <|C|. Then fr(B, C) denotes the frequency of B:in C, ie.

fr (B, €)= card {0 <j < |C|~|BJ: C[j,j+|B—1]=B).

B(Cm—l)

Let b°, bl, ... be finite blocks with length at least two starting with zero,
and let
()] x=b"xb! x
Next, let

= min{% fr (0, b, % fr(1, bf)}, i20, 4 =b.

Derinirion 1 ([6]). The sequence x defined by (2) is called a generalized
Morse sequence (or shortly a Morse sequence) if

(i) infinitely many of the b"s are different from 0...0,
(i) infinitely many of the b”s are different from 01...010,

o0
{iii) Y r¥ = oo.
i=0
Obviously (i) follows from (iii).
If x is a Morse sequence then each block B has the average relative

frequency m,(B) = lim n~* fr(B, x[0, n—1]) in x and m(B) = m,(B) ([6]).
Let X = H {0, 1} and let Tbe the shift transformation on X. We then

obtain an ergodlc dynamical system @(x) = (X, T, m,) called a Morse shift. In
the sequel all properties of 6(x) will be called properties of x.

We denote c,~b° xbTL om=lel=Ay . dey, 121, np=1,
X, =bxbttx ... We observe that X 1s also a Morse sequence and put
m, = m,.
‘ Let
(3) po = m (00)+m,(11), pi = mz(01)+'m, 10).

The block representation {b'}2, of a Morse sequence x is called
regular provided there exists g > 0 such that

@ 0<pypi<l—g, 120
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(see [11]). If no confusion arises we will say that x = b% x b* x ... is a regular
Morse sequence.
Let X (x) denote the set described in [11, § 3] such that (X (%), T, mx) is

strictly ergodic and isomorphic to @(x), and let
(0={ly}, t21,0<k<
Co = {yeX(x): y[—k+sn, n—k—1+sn]=corg,s=0, +1,..]

n—1,

be the partition described there.

Let & =(&,, £,) be the zero time partition of X (x). The partition £ is a
generator of (X (x), T, m,) and we call it the natural generator for x.

Remark 1. If x =b%xb' x ... is a Morse sequence then for any te N
we put ¢, = b xb o xbT =1, vy =4 ... Aymo1, m>0, and
A, = {n)®_,. We denote by () the natural generator for x,.

Any nonempty atom of £ (m, k > 1) is said to be a general cylinder (for

" short gc). Note that any atom of & has the form

n+k=1]=B, j=0,...,m—1}
= T "(B%A...AT "™ (B}

where B’ is a block with length k, and we denote such an atom by

{yeX(%): y[n;,

It is easy to see that a &P-block [B®:..:B"" '] is a gc. iff there exists a

natural p such that

%) x[p+n, p+nj+k—1] = B,

We also have

m,([B®:...:B™~ 1])—-hm fr([B° ..... :B™~ 1] c,).

=00 1

Moreover, if [B%...:B™" 1] is a gc. then [B°:..
have the same measure m,

Remark 2. For te N we denote by [B°:...:B™ '], the atoms for x,.
Now, we recall a result of Kwiatkowski’s paper [10]. Let B, C be blocks

.B"~17is a gc. and they

with [B =|C| =n > 1, and let
s(k, By =card {i: 0<i<n—k—1, B[i]#Bli+Kkl}, k=1,...,n—1.
We write B= C iff s(k, B)=s(k,C), k=1,..., n—1
Tueorem 1 ([10]). Let x =b% xb' x ... and y = B° xp* x ... be regular

Morse sequences such that |b'| = Iﬁ"i'= J;and J; < r,i> 0. Then 0(x) and 0(y)
are spectrally isomorphic iff b = B for j large enough.
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Note that the “if” part of Theorem 1 is valid without the assumption of
the regularity of x and y.

2. {n}-entropy for Morse shifts. In this section we give formulas for the
{n,)-topological entropy and the {n}-entropy for a Morse sequence x = b°
x bt x

We start with formulating the following

THEOREM 2. H{P(x) = H$P(x, &),  ha(x) = h,(x, &).

The proof of the theorem can be obtained as in Dekking’s paper [2].
We use the following properties:

6) x[smy, sny+n—1]=¢, or &, s21;

x[sni] =xy [s],
(7 iffaq:...:a,] is a gc. then [ay:...:a,]; isa gc, ,=0,1, 0 i< m;
(8) 2N(E™(1))= N(E™Y = N(E"(1);
9 ZNE @)= NEM = NETO),

(10) N3 <4mN(@E™™'), meN;

(1) NEY <42 m—t+1)N(E),

The properties (6)-(11) are obtained as in [2]. Instead of Lemma 3 in

[2], needed to proving h,(x)= h,(x, &), we use

Remark 3. Let MeN. If ye{,,. t = 1, k=0, 1,..., n,—1, then there is

a natural p such that y[0, M] = x[p, p+M] and p = k(mod n,)..

Indeed, if ye(,, then y[0, M] = (c, xB)[k, M—k] for some block B.

The block ¢, x B appears in x. Thus it is not difficult to verify that it appears
in x at a place which is a multiple of n,. Hence there is j, j = sn, for some
natural s, such that x[j, j+|B|n—1] = ¢, xB.

Now, we are in a position to give formulas for the {n}-topological
entropy.

Take ie N. We define by induction a finite sequence of natural numbers
{m™i _, as follows:

0° m? = m8’+m§”;

P00 =1, k=0,1;

2° If m<i then

0<t<m—1, meN;

teN, n,>k, k, meN.

m® if H=tt D £ 01,01, 01...010,
(m+1)f = {m‘f’ if i~ = 01...01
12 m® if pimtD = 01,..010,
. O if piTetD 200
1o =" . ’
(m-+1); {m({) if B 0,0,
and proceeding as Dekking in [2] we get

Io g (l)
Tueorem 3. K$P(x) = lim sup

ieN
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At present, we will deal with the measure-theoretic entropy. First we
introduce some notations. For a given Morse sequence x = b® xb' x ... we
denote

b, (00, 11) = fr (00, bY)+fr (11,5, (01, 10) = fr (01, bY)+fr (10, bY),

1
R 11
Iy = P h (00, 11),
=L h, (01, 10),
1 Ar
1
(13) Ity = I(fr(OO b*0)+fr (11, b*0)),
to = z—(fr(OO, b 1) +fr (11, b'1)),
t
I, =1-I,, k=0,1,t>0.

In this way we have defined a sequence of matrices
o [Hao b J
Ty, ITyy
Let us observe that, for every t > 0,
1
—ptt  if P [4—1]=0

(14) po =T+
ng+1 if B'[A,—1]=1.

This gives the following useful formula:

t+1

1
(15) po = /hpl

Going back to (14), let us put there the factor 1 = p4"1+py*! before IT%.
We then obtain

1
( ‘0+A) I pitt i B[A—1]=0,
t

Po = 1
Iy pet + ( 5‘}'/1)17!1“

This, by the deﬁmt10n of II};, proves the following

if b —1]=1.

PROPOSITION 1. Z Pyt =pi for every teN and i=0, 1.
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By consecutive substitutions of (14) into itself for t =0, 1, ..., one can
obtain the following formulas of Kwiatkowski [10]:
hy (00, 11) h;— (00, 11) k- (01, 10)
= + !
bo Lo j;z n * ) i;z ; ’
(16) i~ 1lel i~ 1ell
hy(01, 10) h;~,(01, 10) h;-, (00, 11)
Py = + + i s L
! Ao i§2 n i:'/:‘z i '
i—1el i~ lell
where

I={iz1l: ¢n—11=0}, U={izl: ¢[n-1]=1}.

These formulas will be uised in our study of Kakutani sequences in Exam-
ple 6.

Now, applying Proposition 1 and proceeding in the same way as
Dekking in [2], we get

t—-1
TrEOREM 4. hy(x) =limsup {~t7* (¥ pi*t 1T log 1Y)}
teN r=0 0%i,j<1 Y g

3. Zc_ero {n,}-entropy and properties of SE(x). In this section we answer
the question when h,,,(x) = 0. Next, we introduce an equivalence relation on
M (x) (see the Introduction) and compare it with the relation introduced in
[10].

Let x =b°xb'x ... be a Morse sequence and put
Z pf+1n§j log ng,

0sijs1

17 re=— t>0.

For every x we will consider the following sequence of numbers:

min (py, p}) if b*#£0...0,01...01, 01...010,
w, = {min (i, 1/4)

if b =0...0,01...01,
min(pit?, 1/4) i b* =01...010.

LemMa 1. For every 8 > 0 there exists an ¢ > 0 such that
(*)  ifr, <& then w, <34;
(%) if w, <e then r, <& for every teN.

Proof. Let 6 >0 and & >0. We observe that if b*s0...0, 01...01
01...010 then ’

r,z min (~II}; log II};) > 0.
0<i,js1
Therefore 0 < —II}; log ITj; <¢ for some i,j=0,1. This means that

Q < {'IEJ- < 5/2t or 1‘> IIiy > 1~06/2 for suitable ¢ > 0. The last inequality
tmplies 0 < IT;.;, < §/2 for some ', j = 0, 1, so we may assume 0 < Iy < 6/2.
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It is easy to see that this implies py <& or py <J. Indeed, from (14) it
follows that

2
po < —h(00,11), p} <3h,(01, 10),
A Ay
and
. (1 1
IT}; = min Zh,(OO, 11),}1— h,(01, 10) ).
Now we consider the case b' =0...0, 01...01. Then
1 1 A-1 A—1
gt all t t
(18) r,= —Di (lrl()gl,—*— ) log 7 >

If r, <& then AR <\/E or
11 A-1 ;1,—1)
—(=—log—++ log—— ) < E.
(zz s )<V

But the last inequality implies A, >1/6 for a suitable &> 0. The same
reasoning for b' = 01...010 makes the proof of () complete.

Now let 6 >0and e > 0. If 4 0...0, 01...01, 01...010 then IT% < 2p},
i,j=0,1 so r, <& whenever min(pt, pt) < ¢ for a suitable & > 0.

Let b'=0...0. Then r, is as in (18). If 4, > 1/¢ then r, <4, and if pi**
< ¢ then also r, <& for a suitable ¢ > 0.

Proceeding in the same way in the remaining cases, we obtain the
required result.

CorOLLARY 1. Let x =b®xb' x ... be a Morse sequence. Then hy,;(x)

=0 iff im w, = 0 for some sequence B < N of density 1.
teB

t—1
Proof. It is sufficient to see that h(x)=0 iff im ™* ) r;=0. It is
t-+o0 i=0
known that the last equality is equivalent to lim r, = O for some sequence
1eB
3 = N of density 1. Now, we apply Lemma L.
CoroLLarY 2. Let x =b%xb'x ... be a Morse sequence. Then x is

regular iff for every subsequence {n,k}, h(,,:k,(x) > 0.

Proof. Let us observe thet the process of grouping the b”s gives a new
representation of x: x = #°x ' x ... Moreover, the products of the lengths
of successive s form a subsequence {n,} of {m}. Observe that the
corresponding sequence defined in (3) is a subsequence (p&, p¥) of (Ph; PY)-

This means that the process of grouping the b"s gives a regular
representation of x whenever so is the representation {b'}. Thus, by Corollary
1 and.(4), h‘,,[k)(x) > 0.

.


GUEST


icm

If x is not regular then there is a subsequence | t} such that
min {p&, p'l"}—; 0. We group the b”s into a new product x = 8% x ! x ... such

230 M. Lemanczyk

that pi* = pt, k>0, i=0, 1 (p* are the numbers defined in (3) for {f}).

Grouping again if necessary, we may assume f'=£0...0, 01...01,
01...010. This forces {w,} to converge to zero on a set of density 1, and so
the corresponding sequence entropy is equal to 0.

At present, we shall examine the relation SE(x) for a given x = b0 x
xblx ...

PropoSITION 2. Let x=b"xb'x ... be a regular Morse sequence and
yeM(x), y = p°xB* x ... be spectrally isomorphic to x. Then yeSE(x).

Proof. Let us use for x the symbols p}, IT};, r, and for y the symbols i
ITjj, r{ to denote the numbers defined in (3), (13), (17).

According to the proof of Theorem 2 in [10], if x and y are spectrally
isomorphic then
(19) Pi—pifl <&, t20,i=0,1 and limg =0,

t=ron

and the following formula can be obtained:

(200 [s@, b)=s(g, PILL=(Y" =6 )] = A6, 8,0, 0<g<i-1,

We do not assume that {4} is bounded, so we cannot make use of
Theorem 1.
To compare ITj; with IT}; recall ((15)) that

1 7] /] 1 /]

@ . Moo =pox+pi"" Mo =pix—pi™t.
& o

It is sufficient to show that

(22 lim |r,—r| = 0.

[Sad--]

Suppose that (22) fails. Hence there is ¢ > 0 and a sequence {t,} such

that lim #, = 00 and
k-0

(23) =1l =¢, k=0,1,...
By (19)3 (le and (23), {4, } is a bounded sequence. In view of (20) and by the
regularity of x, 5(A,—1, bY) = (A, —~1, ) for k large enough, so if
|
I 3‘0 = P:)k‘*lhk
Aoy
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then
1 g+ 1
Hg'(‘) = P;J'k ——p*
A,k

and consequently lim [y ~7i,| = 0: a contradiction to (23).
k-+o0

From Proposition 2 and Corollary 2 (or directly from (19)) follows

CoroLLary 3. If x=5b"xb*x... is a regular Morse sequence and
ye M(x) is not regular then x and y are not spectrally isomorphic.

Now, we give a class of examples of Morse sequences x for which SE(x)
consists of a continuum of classes of spectral equivalence.

Let k > 4 and let B be a block with length k such that there is a C with
[Bl =|Cl, 5(1, B) = s(1, C), s(k~1, B) = s(k—1, C) and s(r, B) = s(r, C) for
some r, 2 < r < k—1. For instance, if k = 4 one can put B =0110, C = 0010.

Let x =b%xb'x ... be a Morse sequence such that the set

F={ieN: =B and b'*' £0...0,01...01, 01...010, A, < k)
i)

is infinite. Let y = B°x B x... be a Morse sequence obtained from x by
replacing infinitely many of the b, ie ¢, by C. We observe that yeSE(x)
because the sequences {II'} and {p}, p}} are the same for x and y.

If {1} is bounded and x is regular we can use Theorem 1 to verify that
x and y are not spectrally isomorphic.

In general, we note that if te #; then 1 —(pi*1—pit1)2 » 1—((k—2)/k)2.

Assume that x and y are spectrally isomorphic. From (20) it then follows
that s(q, b) =s(q, B, O0<q<i_,;, for te # large enough. This is
impossible because s(r, B) # s(r, C): a contradiction.

Finally, note that x could be regular or not, and in both cases SE(x)
contains a continuum of spectrally nonisomorphic Morse sequences.

We do not know whether Proposition 2 is true without the assumption
of the regularity of x. However, in general we prove that the Morse sequence
x~! (defined below) is always spectrally isomorphic to x and x~'eSE ().

Let x=0b%xb'x... be a Morse sequence. For every block B
=(bo, ...bu—1) we define a block B~! as follows:

gt = Jbuosssbg) i b,y =0,
(bm—lﬁ"'}b0)~ ifbm*i =
Put
x" =Yt x (YY" x...

It is easy to see that x~! is also a Morse sequence.
Now, we define a function ¢: X — X by the formula @(z)=z""1 for
every two-sided sequence ze X, where z™*[i] = z[—i]. It is clear that o is

3 — Studia Mathematica 82.3
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continuous, invertible and ¢T ™! = Tp. Moreover, ¢ (X (x)) = X (x™'). To see
this assume ze X(x) and z[—j, k] =¢, or  (for the definition of the
numbers j,, k, see [10], [11]). Then @ (z)[—k,, j.] = ¢! or (¢; ')~ Since (B
xC) 1 =B !xC"! for all blocks B, C, our claim is established. Next,
(X (x), T, m,) and (X (x™"), T, m__,) are strictly ergodic, and so ¢ must be
an isomorphism between them. But, for every block B, B = B !, and so from
the remark after Theorem 1, (T, m,), (T, m,) and (T, m__y) are always
spectrally isomorphic.

Put, in the proof of Proposition 2, y =x~!. Since s(,—1, b") =s(/,
—1, (b)) we need not use the regularity of x to have ye SE(x). So we have
proved x~1eSE(x) for every Morse sequence x.

Note, however, that Theorem 8 in [11] provides several examples
showing that (T, m,) is not metrically isomorphic to (T %, m,).

Dekking in [2] gave an example for which hy(T) £ hg(T™ 1) for some
sequence B <= N (obviously B is not of the form {n}).

4. Examples and remarks. In the remaining part of this paper we will use
the results obtained to answer a few questions concerning sequence entropy.

ExampLE 1. The formula h,(T*) = kh,(T), k > 0, need not hold.

(a) k=2

Let x =01 x00x01x00x00x01 x00x00x00x01x...

Next, we group x into new products as follows:

I x=01x(00x01 x00)x(00 x01 x00 x00) x
x(00 x 01 x 00 x 00 x00) x ...,
x = (01 x 00) x(01 x 00 x 00) x (01 x 00 x 00 x 00) x
x{01 x 00 x 00 x 00 x 00) x ...
Assume that {n,}, {m,} are the corresponding sequences of the products

of lengths of the successive blocks in I and II respectively. Thus m, = 2n,,
t=1

We see that the representation of x in I is regular, and so By (x) > 0.
Moreover, it is clear from Corollary 1 that By (x) = 0. In addition we can
assume mg =2 (see Proposition 3 in [17]). Hence gy (T?) 5 2, (T).

Indeed, from the definition of sequence entropy it follows that
Byn (T, Q) = hyy (T, Q) for every Qe %, k> 1, so that

I

24)

h{kn,)(T) = h(nt)(Tk)v k=1.

Therefore, if h(,,t)(TZ) = 2hy,,(T) then 0= Bimy (T) = by (T) = h{,,”(TZ)
= 2hy,,(T) > 0: a contradiction,
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(b) k = 3.
Take B #0...0, 01...01, 01...010, |B| =k and put

x=Bx00xBx00x00xBx00x00x00x ...
Next, we take two representations of x:
I:  x=(Bx00)x(Bx00x00)x(Bx00x00x00)x ...,
II:  x=(Bx00xB)x(00x00xB)x(00x00x00xB)x ...

As in the preceding case, one can easily prove that hy,,(x) > 0, By, (x)
=0 and m, = kn,, t > 1. Furthermore, from (24), 0 = hy, ,(T*) # kh,,(T) > 0.

Remark 4. The above example gives a solution to the following
question of Saleski:

Suppose {a(n)/b(n)}%, is bounded away from 0 and co. Is it true that
hy(T, o) =0 iff hg(T, o) = 07

It is not difficult to verify that the examples in Example 1 give a
negative answer to this question because h,(T) = hy (T, ¢) where ¢ is the
natural generator.

Note, however, that the question of Saleski remains open if we consider
A increasing at most exponentially (i.e. lim sup(n)!/* < oo). If, for instance,

teN

A={k, k=2 and B = {k'*'}, then the answer is positive and moreover
h(T% = h,(T) for any automorphism T.
ExampLE 2. The formula HSP(TY = kHgP(T), k > 2, need not hold.
We only consider the case k = 2. We have

Bh(T) = Ky (T)
Now, let x=01x00x01x00x ... and we take two representations
of x:

(25) where n, =n, for t = 1.

I:  x=(01x00)x(01x00)x ...,
II: x = (01 x00x01)x(00x01)x(00x01)x ...
Theorem 3 and (12) imply
0 = e, 01 x 0L x ...) = logh(1+/9)

(see also [2]) and KjP, (x) = log 2 because each block in this representation is
different from 0...0, 01...01, 01...010.
In addition, m, = 2n,, t>1, and by (25) we can assume my = 2n,,
o Hgh(T?) # 2Heh(T). '
ExaMpLE 3. A-topological entropy does not depend monotonically on A.
In [2] Dekking proved that it is possible to have h(T) < hy (T) when
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A is a subsequence of A'. We show that the same is true for topological
sequence entropy.
Let B#0...0, 01...01, 01...010 and put

x=00xBxBx00xBxBx00x...
Taking ie N, we have three possibilities:
(a) 0 = 2, (b)
(3n+1)¥ =2(3n)®,
(Bn+2® =2(3n+1)®,
(3n+3) = Bn+2)D+(3n+1)?;
© =2
19 =3,
Bn+29 = 2(3n+1)0,
(3n+3)? =2(3n+2)®,
(3n+4® = (3n+3)D+(3n+2)®,

0 =2,
Bn+ 1)@ = 2(3n),
(Bn+2)9 = 3n+ )0+ (3n),
(Bn+3)P =2(3n+2)®;

In case (a)- we have (3n+r)P =2"*'6" r=0,1,2. Taking into
consideration (b) and (c), we get

HP(x) =% log 6.

Next, we group x into a new product
x=00x(BxB)x00x(BxB)x ...

and we obtain A
B3P (x) =% log 3

and consequently /gP(x) < H5P(x).

Remark 5. Let us observe that the x which we have just considered is a
contir_auogs substitution O+ (00x B x B). Such shifts were examined by
Dekking in [2]. It is'clear that the 4 and 4’ used here are different from the
sequences in [2].

We are also able to strengthen Dekking’s result showing 0 = h,(T)
< hy(T). Indeed, putting

)

x=00x...x00xBx...xBx00x...x00xBx...xBx..
iy i i3 Lig
grouping

Xx=00x...x00x(Bx...xB)x00x ... x00x(Bx ...xB)x ...

icm
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and assuming
. iy
lim —— =1,
k— o0 .
PR
Jj=1

one can get A§P(x) > O and h,.(x) > 0. But from Theorem 3 we have hgP(x)
=0, and so all the more h,(x) = 0. However, in our example 4 grows faster
than exponentially, contrary to Dekking’s example.

ExampLE 4 (On the variational principle).

Goodman in [3] gave an example of an automorphism t such that
4P (r) = log 2 and sup h4(r) =0 for some sequence A =N. His t had
peM
discrete spectrum.
We see that for every Morse sequence x = b® xb! x ... the set X (x) is

strictly ergodic, so that sup #j, ,(T) = hy,, (x). If x is not regular then we can
M

assume that b* #0...0, 61 ...01, 01...010 and Ay, ,(x) = 0. But from Theorem
3 it follows that Hgh(x) = log 2. Therefore we obtain an automorphism x
with Goodman’s property although this automorphism has a partly
continuous spectrum.

Suppose (X; T, 1), (Y, 1, v) are strictly ergodic systems and A4 is a
sequence in N. Does h,(T) = h,(r) imply HgP(T) = KgP(r) and vice versa?

Let x =b%xb'x ..., y=pB"%B"x ..., ye M(x), be Morse sequences, b’,
B'#0...0, 01...01, 01...010, x is not regular with hg,(x) =0 and y is

‘regular. Then hy,,(y) > 0 and K} (x) = hih (v) = log 2.

Now, let

x=01...01x01...01 x01...01 % ...,
ig iy iy

(the length of the first block is iy etc.),
y=01...0100 x01...0100x01...0100 % ...,

o 1 t2

and assume
(26) 3 1/iy < 0.
k=0
Writing x = b°xb' x ..., y=B°xB* x ..., we see that

(i) x and y are continuous (for the definition see [6]) because iy, k = 0,
are even;

(ii) i d(b, B9 = i card {i: b*[i] # B*[1}/A = kf /i, < c0.
k=0 k=0 =0

Thus from a recent result of Kwiatkowski ([12]) it follows that x and y
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are metrically isomorphic. From (12) it follows that

Het () =log 2, KR (x) = log $(1+./5).

In 'this way we show that topological entropy can distinguish between
two strictly ergodic and metrically isomorphic systems.
ExampLE 5 (a solution to Goodman’s question).

In [3] Goodman showed that hP(TxT)=2h0"(T) and HP(T

xT) < KEP(T)+HP(T) and he asked whether HSP(Tx TY) = HSY(T)
+ 5P (T).
Let x=0"%xb"'x ..., y=p"xp'x..., ye M(x), be Morse sequences

and denote by ¢, ¢’ the natural generators for (X(x), T, mg) and (X (y), T, m,)
respectively. Then &x & is an open partition of X (x)x X (y). Moreover, (&
X &K =& < & and :
27 N({(€xER) =NENED,
From (11) it follows that

N((ExEW) <[4 (m—t+ 1> N(Em N (&™)

=[4@Y (m—r+ DI NE =&

mkz1.

Hence

K (Tx T), (& x &) =lim sup—l-log N((Ex &)
meN M

. 1
< 1lr{'1,;up;10g {425 (m—1+ )P N (& x &)
=hph(Tx T, & x&).

Since (& x &), refines & x ¢ and (£ x &), Ae, from (1) we get

Wb (Tx T, & x &) = Wph(Tx T).
Put

4
x = 000 x x000%x 011 x...x011 x000x ... x000 x011 x ... xO%l X ..
ip iy ig i3 ’
(the first block 000 is repeated i, times etc.)

>

) .
y =011 x xOllepOx ... x000x011 x ... xo%l x000x ... x000 x ..

ig i iy i3 '
and assume

(28) im — =
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It is not difficult to_verify that h“‘;‘}’(x) = h“g‘})(y) = log 2. Indeed, it is
sufficient to compute iV for the subsequences denoted by the arrows and to
apply (28).
We will prove
@) BB () = o8, () = i (T T).
In order to prove (29) we shall estimate i®-7® where 7@ denptes the’
number defined in (12) for y.

Take ieN. Then there are a ke N and an s, 0 <5 <ix4;, such that
k-1 k-1

i=s+i+ Y i Put Y i =u,_;. From (12) we get
1=0 =0
10 284y 2% 1, 0 g2k 2

or one has to replace i) by ™ and vice versa. We have

00 —2,“’;_‘1 log 2+b—g5+1‘lgili+iJ;—“‘ log 2.

log

If i tends to infinity then log (i®-T)/i tends to log 2. Therefore (29) is valid.
ExampLE 6 ({2']-entropy of Kakutani sequences).

Putting b* = 00 or Ol, ¢ =0, we obtain the class of Morse sequences
considered by Kakutani [5]. We have

(30) e ;Lr(ptl - l01) if b [A:t—l:l =0,
! LMoy —ph) B [A—11=1,
where '
01
H'=[} ?jl or H’:[1 IJ.
7z 2 23
Due to this, for every Kakutani sequence and for every t >0,
(31 pitt =2 min(p}, 1-ph).
From Theorem 4 it follows that
t—1
(32) h_, (x)=log 2limsupt™* 3 p}.
125 teN i=0

In connection with (31) consider the transformation of the unit interval
into itself, R: [0, 11— T[0,1], R(d)=2min(d, 1 —d). Consider -also the
transformation P mapping every Kakutani sequence x to its py.

The formulas (16) imply that P is one-to-one. Only dyadic rational
numbers are not in the image (they would correspond to sequences with
b = 00 for all ¢ sufficiently large, but such sequences have been excluded).

The correspondence P conjugates the left shift S on the space of
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Kakutani sequences with R. In the measure-theoretic sense P conjugates the
one-side Bernoulli shift § with R on [0, 1] considered with the Lebesgue
measure (which is clearly R-invariant and ergodic).

By (31) for almost every x

by (X) = $log 2.

Let us observe that hm takes its maximal value % log 2 at x, = 01 x

%01 x .... Indeed, we see that x, is a fixed point under S. Hence P(x,) must °

be fixed under R, so P(x) =% and next we analyse time averages under R,
t—1

1 Y R
i=0
Moreover, we also have

{

for every Kakutani sequence y. Indeed, this is a simple consequence of the
equality

higk () < B3 (01 x 01 x ...) = log $(1+./3)

(m+1)¥ =m® + max (m@, mP)
for the sequence {i} defined in (12) for x,.
ExampLE 7. The formula hy(Tx T') = hy(T)+h,(T") fails.

Let
o ] ko i1 kg 2| "k
x=01x... lex X0l x00x ... x00x ... x00%x01x...x01x... x01
ip iy ip
X iis
jo ko i1 | & J2 ka
y=00x...x00x...x00x01x...x01 x...x01 x00x ... x00x ... x01
i i ia
X ..

13

¢ "
and let {e,},>, be a sequence of positive numbers such that

(33) lim ¢ = 0.
Put o
s§—1
ls = Z ir+js

r=0

and assume
M Jjs/ls 3 1,

ks
i) ¥ 1/2%° > 3,

Observe that (ii) can be obtained from the simple fact i 1/2%41 = 2
First, we calculate hm(x). "
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From (i), applying (16), we have, for every i with [—j <i< | and s
even, pi = %$—e&. So

Iy

Is
l\;‘_l Z pll = ls_1 Z pll = U/ls)(%_gs)'
i=0 i=Tg~ jg

By (32), (33) and (i),
h(Z,)(x) = %‘ IOg 2.

By replacing in the above considerations x by y and taking s odd we
also get h,, (y) = % log 2. .
Applying the reasoning from Example 5 we see that

h‘("z*}}(T x T) < log 2.

Therefore from the variational principle

hiyey (Tx T) < log 2 < iy () + B, 9).

Remark 6. Example 7 shows that Lemma 4 in [9] is false. We have
only h,(t x1) = 2h,(z) for every sequence A and automorphism .

Let us observe that here and in Example 5 we make use of the fact that
the limits

- - ! _ .
limllogN(T 0y ...vT "1y, hm?H(T ey L vT TR

t =00 t—o0

do not exist.

ExaMPLE 8 (on Abramov's formula).

As a simple consequence of Abramov’s formula ([1]) we get

ProposiTioN 3. Let T2 X — X be an ergodic automorphism of a Lebesque
space (X, u) and let ©: Y— Y be its factor automorphism via ¢: X->YIfois
of finite order, i.e. card {@~1(y)} is finite and constant for a.e. ye X, then h(T)
= h(7).

For sequence entropy this proposition is false. Indeed, take X = X (x)
where x = b% xb' x ... is a Morse sequence, and Y= X(x)/n where 7 is a
partition of X(x) into the sets of the form {z, Z},ex(o-

Then (Y, Ty, my/n) is an ergodic system with discrete spectrum ([11]), so
that all sequence entropies of 1fy are equal to 0 (09D).

Let us note that the wellknown formula for the induced
automorphism: h(Tp) = h(T)/u(C) cannot hold for sequence entropy for
ergodic automorphisms with discrete spectrum because the family of all
induced automorphisms gives (up to isomorphism) all loosely Bernoulli
automorphisms with zero entropy (see [15]).
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Remark 8. No Morse sequences have weakly mixing fact'o.rs.
Let T be an automorphism of a Lebesgue space. We say that T is
bounded if there is a ¢ > 0 such that h,(T) <c for every sequence A.

From [17] it easily follows that if Tis bounded then T has no weakly |

mixing factors. )

Now, let T be an automorphism and t its bounded factor
automorphism via ¢. Then, if ¢ is of finite order, say », then T has no weakly
mixing factors. Indeed, it is sufficient to show that Tis also bounded. To
prove this we use the formula (see [17])

(34 ha(T, 0) < hy(T, o)+ H(olo").

Let ¢ = (4, ..., 0,) be any partition of X. We can construct a partition
n={my. i for j#k jk=1,.., u} where ;= PO N O Ty
Put ¢'= ¢~ '#. Then from (34)

ha(T, 0) < hy(z, m)+ H(alo").

But each atom of ¢’ intersects at most n atoms of o, and so we have
ha(T) < hy(z)+log n.

Now, let x =b°xb' x ... be a Morse sequence. Since the algebra of
mirror-invariant sets gives a factor with discrete spectrum via a map of order
two (see [11]), we have proved the result stated above.
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