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Generalizations of Calderén-Zygmund operators
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KOZO YABUTA (Mito)

Dedicated to Professor Sigeru Mizohata
on the occasion of his sixtieth birthday

Abstract. Calderén~Zygmund operatofs are introduced by R. Coifman and Y. Meyer to
treat systematically the classical Calderén-Zygmund singular integrals, commutators of
Calderén, and some classes of psendo-differential operators. In this note we generalize the
notion of Calderén-Zygmund operators and apply it to the study of, for example, weighted
norm inequalities for certain classes of pseudo-differential operators, treated by Coifman and
Meyer, and recently G. Bourdaud. We also refer to a recent work of David and Journé on the
L*-boundedness criterion for operators of the Calderén-Zygmund type.

1. Introduction. Calderén—Zygmund operators are introduced by
R. Coifman and Y. Meyer [5] to treat systematically the classical Calderén—
Zygmund singular integrals, the commutators of Calderén and some classes
of pseudo-dlfferentlal operators, etc., and are-further developed by Journé
[10]. They are used in many places, [3], [6], [7], [16], [17], etc. In this note
we introduce two classes of operators which are generalizations of Calderén—
Zygmund operators, and apply them to some classes of pseudo-differential
operators considered in [1], [5] and [13].

A Calderén-Zygmund operator defined by Coifman and Meyer, is as
follows: Let T be a bounded operator from the class #(R") of Schwartz
functions to its dual & (R"), satisfying the following two conditions.

(A-1) There exists C >0 such that for any fe C§(R")

1T Y2 <
(A-2) There exist a continuous function K(x, y) defined on Q= R"x
x R\{(x, y); x =y} and Cx > 0 such that
(L.1) for all (x, y)ef

IlfIILZ(.n)’

IK(x, Y| < Cxlx—=y"";

Partly supported by the Grant-in-Aid for Co-operative Research (A-57340004), the
Ministry of Education, Science and Culture, Japan. 4
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(1.2) for all x, xq, y with 2|xo—x| <|[x—y],

|xo—x
IK (x0, ¥)— K (x, ) +|K (¥, xo) =K (¥, %) < Cx,;c-_-—};,m,

(1.3) for all feCg (R,
Tf(x)= [ K(x, y)/()dy ae. on [supp ST
R’"

Then T is said to be a Calderén-Zygmund operator (we abbreviate it to
CZO0). A function K satisfying (1.1) and (1.2) is said to be a standard kernel.

We recall the typical and important properties of CZO. To do so, we
recall some notations. For fe L} (R"), let

m f =17 [F@dx and Mo = supli|! [1f ()= f1dx,
i

where the supremum is, taken over all cubes I with sides.parallel to the
coordinate axes, and |I| denotes the Lebesgue measure of I. Then the space
of functions of bounded mean oscillation is defined by BMO(R")
={feLi.(R"; || fllsmo < oo} with the seminorm ||f]|lpyo. The real Hardy
space H'(R") is the space of all L'(R"-functions f with R;feL'(R" (j
=1, 2,...n), endowed with the norm

1ty = 17y + IR 1y
J

where R; f is the Riesz transform of f; i.e, its Fourier transform Ry f (¢) is
given by —iéjlél'lj’(é). (See [8], [10] for the spaces BMO and H!) We
recall also the Muckenhoupt A4, weight classes. For 1 <p<oo, a
nonnegative function w(x)e Li,,(R") is said to be in A,(R" if

W, =sup(1|™* [ wax)(1~* [w== g™t < oo,
I T 1

where the supremum is taken over all cubes I in R". Similarly a nonnegative
function we LL (R" is said to be in A, (R") if

wla, =sup (1|7 [ wdx)(essinfw(x)) ™" < co.
1 I xel

(See [4], [9], [10] for the basic properties of A,)
Now, the well-known important properties of CZO are the following:
(P-1) For any weight we 4,(R"(1 < p < o),

1T iy < €@ WS My

(P-2) For any weight we 4, (R"),

w(ie R (T > 1) < SO g

Calderon-Zygmund operators 19

(B3) TSl 1 < Collf gt gy

P4) 1T lypro0mn < CoollF 1 e

(P-5) (P-1) and (P-2) hold for the truncated maximal operator T, of T,
where

T.f()=sup| [ K(x,y)f0)dy.

e8>0 |x—y[>¢

In the next section we generalize the notion of CZO so that it has the
above properties (P-1) through (P-5). In Section 3 we apply the results in
Section 2 to certain classes of pseudo-differential operators, considered in [1],
[5], [13] and [14]. Our Theorems 3.1 and 3.2 comprise a recent result of
Nishigaki [15]. In the last section we generalize the notion of standard
kernel, so that the recent result of David and Journé holds true, i.e., their
criterion for L2-boundedness works.

In this paper, C§(R" is the set of all infinitely differentiable functions
with compact support in R” and L?(R") is the usual LP-space with respect to
the Lebesgue measure on R%, endowed with the norm ||f ||L,,( -
=([1f (x)|”dx)1/p . For a weight function w(x) we similarly define L*(wdx),

R
and w(E) denotes the measure of the set E with respect to w(x)dx.
Finally we note that the letter C will denote a constant which may vary
from line to line.

2. Calderén-Zygmund operators of type w(f) and of type (log, @ (1))
Following Coifman and Meyer we introduce two notions of “standard
kernel”. :

DermirioN 2.1. Let w(f) be a nonnegative nondecreasing function on
1
R, =(0, o) with fe(f)t”'dt <oo. A continuous function K(x,y) on 2

0
= R"x R"\{(x, x); xe R"} is said to be a standard kernel of type w(t) if the
following are satisfied:

@n (K (x, y)l < Clx—y™"

(22) 1K (%, )= K (%o, ) +IK (0 9 =K, x0) < C|xo~yr"w(%‘-‘j-_‘x—’j),

for all x, x4, y with 2|x—xg| < |y—xo|.

DerFINiTION 2.2. Let w(t) be the same as above. A continuous function
K(x, y) on Q is said to be a standard kernel of type (log, w(2)) if it satisfies
(2.1) and )

(22') For all x, x5, y with 2|x—xo| <|y—X,|, the left-hand side of (2.2) is
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- lxo“x|>
Cllxo— "w|—— +G(x:x ay) ’
[| o=Vl <|J"‘xo| 0

where G(x, x,, y) is a function satisfying

bounded by

G(xz X0 .V)
-1

|xo_y1‘"(1og ) if |x—x0/ <1 and |x0~y|<2ﬁ,

[ — o
< (1x—%ol, 1) '

max — Xols .

Xo— W "o | —————— if ly—xol 21

i (1] y‘ - ( Ixo‘“Y| ) 0l =

For a standard Kernel K, |K|., denotes the infimum of C in (2.1) and (2.2) (or
2.2)).

DeriNmmion 2.3, Let () be the same as in Definition 2.1. A linear
operator T from (R to &'(R") is said to be a Calderén-Zygmund operator
of type w (1) (respectively, of type (log, w (1)) if the following conditions are
satisfied:

(A1) TS| 2 < C ISy S CERD;

(A-2) There exists a standard kernel K (x, y) of type w(f) (respecuvely,
of type (log, (1)) such that for all feC§(R")

Tf(x)= [ K(x, ») f(y)dy  ae. on [suppfTJ.

We abbreviate Calderén—Zygmund operators of type w(t) (or of type
(log, ®(@®)) to CZO of type w(t) (or(log, w(®))), or simply CZO. For a
Te CZO, |T|c, will denote the infimum of C in (A-1) plus |K]|e.

Now our main result is:

'];HEOREM 24. Let w(t) be a nonnegative nondecreasing function on (0, c0)
with [w(t)t™ dt < 0. Let T be a Calderén-Zygmund operator of type w(t)

0
{or of type (log, o(®)). Then T has the continuity properties (P-1) through
(P-5). '

Let I(a, r) denote the cube with sides parallel to the coordinate axes and
w1th side length r and center a. For any cube Q = I(a, r), § denotes the cube

a, (4\/;1+ l)r. Then, by the arguments in Journé [10] and Coifman—

Meyer [5], the conclusions in the theorem follow from the following three
estimates:

Calderén-Zygmund operators 21

(2.3) For all Q =1I(x,r) and all fe L. (R",
Qf K (x, y) f W) dy < CM(f)(x),

where M (f)(x) ——sup Tilmk j [ f ) dy (the Hardy-Littlewood maximal

function);
(24) For all cubes Q, all x, x,cQ and all feLi (R",

I K (x, y)— K (x0, WSO dy < CM(f) (xo);

(2.5) For all cubes Q, all yoeQ, all fe L,OC(R"), and all we 4, (R"),

f glK(x, V=K (x, yol lf @lwx)dydx < C(n, wyw(@)IQ™" [ 1f ()l dy.
' Q ’
Now (2.3) follows immediately from (2.1). Instead of (2.4) and (2.5) we shall
show a stronger inequality: for all cubes Q and all x, xoe(Q,

(2.6) J 1K (x, )= K (x0, I f W)l dy < CSUP - Ilf(y)ldy
&

Once this is established, (2.4) is trivial, and taking f = w in (2.6) and noting
that

-t )[W(y)dy < Wlyy CSSi;an(x) < wlg, 10171 [w()dy
xe Q

(by the definition of 4; and Q <), we get

@27 | 1K (x, y)—K(xq, y)IW(y)dy<C|W|A1IQ| 'w(Q).
QB

Hence, from the form of K(x, y), interchanging the roles of x and y, we
obtain (2.5). So we have only to show (2.6).

Proof of (2.6). We shall prove this for the case where |K (x, y)
—K (%0, ¥)| € G(x, Xo, »). In the same way as in the following Case 1 one
can handle the case of Definition 2.1. One can complete the case of
Definition 2.2 by combining the two cases. Now let Q =1I(a,7) be an
arbitrary cube.

Case 1: Jnr=1. I yeQ:, then |x0—y1>2\/?:r>2 and 2|x— x|
< |xo—y|. Hence by (2.2)

K (x, y)— K (x0, Y| < Clxo=Y "0 (/nr/ixo— ).
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So

jIK(x, Y)=K(xo, IS dy

QL‘
< f L.dy

Kxg,4vnr®

< . dy

<c 3 o2 )
=0 (2j+1\/"lr)n

0

S4C(Y 0277 sup =t {17 G)dy.

j=0

[F ()l dy

I(xg,2/t 3, 7p

1
The series in parenthesis above is equivalent to | w(t)t™dt.

Case 2: \/;rs'l.
< |y—xo|. Hence

J 1K (x, y)=K (xo, Yl f(¥)l dy
g¢

0
In this case |x—~x0|<\/ﬁr<1 and 2|xq—x|

< ) o . dy
0<j<~loga(Wnr)  K(xg,20% 3 /mr\1(xn, 20+ 2 Jnr
o0

+ 3 | cdy

I=0 Kxg, 20+ 2)\1(x, 20+ 1)
= 11 +12.

Then by the first inequality for G(x, Xo, ¥) in (2.2) we get

C +1 -n o,
b S gy = 2V

I(x0, 203 /nr)

< CZ‘S = jlf(y)ldy (by |x—xo| < \/nr).

If ()l dy

icm
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By the second inequality for G in (2.2) we get

o0 2—j
n<cy 280 F Ol dy
=0
. I(xg,2/ 12 .
<C(Y w@ ) sup |1]~* flf(y)l dy.
j=0 Q<l Y

This completes the proof of (2.6) and hence of Theorem 2.4.

Remark 2.5. As shown by Proposition 3.5 in the next section, Theorem
24 is sharp in the sense that the properties (P-1) through (P-5) hold.

Finally, in this section we note the following two properties of CZO’s.

ProPOSITION 2.6. Let (1) be the same as in Theorem 2.4. Suppose that T
is a bounded linear operator on L*(R") and that there exists a sequence ( T)jen
of CZO’s of type w(t) (respectively, (log, w(t))) such that

() | Ty is uniformly bounded in j;

(i) jlim NG f=Tf Wl 2 pm, =0 Sfor all feCE(R").

Then T is a CZO of type w(r) (respectively, (log, o (t))).

Proof. Using the equicontinuity and uniform boundedness of K; on
every compact set in £, one can prove the above quite similarly to [5, pp.
83-84].

ProposiTion 2.7. Let T he a CZO and heBMO(R". Then the
commutator of T and the operator of muliiplication by b, [b, T, is bounded
on all IP(wdx), for 1 <p < co and we 4,.

The proof in [10, p. 60] works without change.

3. Pseudo-differential operators. In this section we assume that w(z) is a
nonnegative, nondecreasing and concave function on (0, c0) and Q(t) is a
positive function on (0, o) satisfying the following property: for every ¢ > 1
there exists 4(c) > 0 such that t/c < s < ct implies Q(s) < A(c) Q2 (2).

Let o(x, £) be a sufficiently smooth function defined on R"x R". The
pseudo-differential operator (Y. d. o) with symbol ¢ is defined on the
Schwartz class by the formula

~o(x, D) f(x) =0p(0) f () = 2m)™" | e*%a(x, & (&) de,

&"
(where f(&) = [ e™™* f(x)dx is the Fourier transform of f).

Coifman anqu Meyer [5] showed that if ce S9 , (H6rmander’s class) then
o(x, D) is a Calder6n—Zygmund operator. They also showed the L*-
boundedness of o(x, D) for certain classes of . d. o. with less regular
symbol. Bourdaud 1] has developed the subject further. We shall show in
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this section that for a subclass of . d. 0., 6(x, D) is a CZO in the sense of
Section 2, so that, for example, weighted LP-norm inequalities hold in this
case as in the $9, case in Miller [12] vand as in Nishigaki’s case [15].

Our results are the following two theorems. Though the first one is
contained in the second in the sense that properties (P-1) through (P-5) hold,
we hope that it would have its own sense; at least a CZO of type w(t) is
simpler than a CZO of type (log, w(t)).

TueorEM 3.1, Ler O0<a<l, Q) be w(l) >0,

';[w"(r)z“dt <o, and @' ()Q(t™") be. bounded on (0, 1]. Suppose that
a(x, e C(R" x R") satisfies

(3.1 [@o(x, O < C(1+]¢) M, ol < n+2;
(-2 |Ea(x+h, O)—Fo(x, & < Coo(H)Q(EN(L+]E) ™,

where o is a multiindex and |o| = oy + ... +a,. Then o(x, D) is a Calderén—
Zygmund operator of type «*(t).

THEOREM 3.2. Let 0 < a <1, Q(t) be nondecreasing, w*(t) = O((logH™4)
as t—0, and o'~ *()Q(t™') be bounded on (0, 1]. Suppose ¢ (x, &) satisfies
(3:1) and (3.2). Then o(x, D) is a Calderén-Zygmund operator of type (log, t).

Proof of Theorem 3.1. It is known that o(x, D) is bounded on

L*(R") provided ) »*(27%)Q2(%) < 0. (For L*(R")-boundedness one needs
j=0
(3.1) and (3.2) only for |« < n+1, see [1] and [5].) This condition is satisfied
1

nondecreasing,

) < n+1,

in our case, because w(279)Q(2) < Cw®(27/) and Jo* ()t~ dt < co. Using
0

Proposition 2.6 (if necessary) and a standard argument, we may assume that
the support of o(x, £) is contained in a set compact with respect to ¢,
Therefore for fe CE(R"

o(x, D) f(x) = [K(x, y) f(¥)dy,
where
K(x, y)) =Qm)7"6(x, y=x) =2m)™" | e~ 9¢g(x, &) de.
P

Thus we have only to check that this kernel K (x, y) satisfies conditions (2.1)
and (2.2) for w replaced by w“(t). (2.1) and the estimate

[x—x

(3.3 K@y, x)—K@, x) < Cl (x=x] <[x—)/2)

x_y'n+l

are already known in Journé [10, pp. 65-66], under our assumption. (3.1).

icm°®
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Since @ (1) > 0 and w(t) is concave, w*(z) is also concave and ¢ < Cw?(t) (0
<t < 1). So, it suffices to prove that for |h| < |y|/2

(34) 16 (x+h, y)=6(x, Y)| < Cly| "0 (hl/|y)).
Let now Y (&)e CF(R" be a radial function with support in {1/2 < ||
<2} satisfying y(§) =1 on 3/4 <|¢| <1 and P(&)= ) Y (277¢ =1o0n|¢

j=1
22 Let @(@)=1-P(). Put oo(x,) =0)o(x, 8 and oy(x,¢)
=y;(§o(x, &) (=1,2,...). Then o;(x, ) satisfies (3.1) and (3.2) uniformly
in j. Put
L(x, b, y) = 6(x+h, y)—6(x, y),
and similarly define L;(x, h, y) in terms of o;. Then
Lj = [[o;(x+h, O —a;(x, OTe™ ¥4 dE.
Hence, integration by parts and (3.2) yield for j > 1
(3.5 WLy (x, b, y) <€ { o (k) QE)Ig " de
2~ 1cjg <2itl
< Co(h)Q(2)277.
The same inequality holds for j = 0. ,
Case 1: 1 < |y|l. By the concavity of @, w(t)/t is nonincreasing. Hence,
one can easily show, by combining this with the nondecreasingness of w, that
for jeN
o (k) < Iy1* 2472 ® (H/Iyh o ~*(27) (n <1)
and
o (h) < Iy1* 242 (B~ 0 (h)/ly) o' ~*(27)
Therefore, for |h| < |y|/2, we get
o () 2(2)
2yl
from which we get

(1 < [A).

< o (R/y) o' 27 2(2)27%,

IL| < C o (|hl/AyDIyI™™

Case 2: |yl < 1. Since |h| <|¥//2. we have (h]) < «®(Al/ly)) @' ~*().
Notice that w(t)/r is nonincreasing. Hence, if 1 <y|2, we get ()Yl
< (279 2. Thus by (3.5) and the boundedness of w*~*()Q(t™") on (0, 1]
we have

S LI < CIyIT" o (Bl

1524yl

Y @) < Cot (RN IV

1<2d)y|
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Now letting j, be the greatest j satisfying 27|y <1, we get

| 2 Li< |
2dly <1 Il <2fot1

< Co(H) (™ 2%™

< Ca* (h/ly '~ () 22y~
< Cor (/) ! =227 22 ™
< Co* (Hl/IAy ™"

This completes the proof of Theorem 3.1.

) Remark 3.3. If w(1) = 0 in Theorem 3.1, by the concavity of w and the
integral condition on @ we get w(t) = 0. Hence o (x, &) is independent of X,
and so o(x, D) is a CZO of type t.

Rtlamark 3.4. If Q(r) is nonincreasing on [1, co) and bounded on (0, 1],

lo(x+h, )—a(x, Ol dd

and if [ w ()t dt < co, then by Theorem 3.1, a(x, D) is.a CZO of type o (t).
0

1
Proof of Theorem 3.2. By assumption, [ ()™t dt < co. Hence as

R 0
before o(x, D) is bounded on L?(R". We already know that (2.1) and (3.3)
hold. If 1< |y, then integration by parts gives |G(x, y)| < Cly|™""", from
which we get

[G(x+h, Y)—60x, < CHY™" (1< ).

If | .}’l < 2\/;, then in the same way as in Case 2 in the proof of Theorem 3.1
(using now w(lh) < w®(|h)w'~4()y))), we have

-1
16(x+h, y)—6(x, )| < Co* (M) Iy "< C <10g[%|) ="
Summing up, we get

IK(x+h, y)~K(x, y)| < C[(log£>hl+—ﬂ—]|x——yl"'
, |#l [x—y

if [x—y < 2n'’? |h <1 and |B <|x—y|/2, and
IK(x+h, y)—K(x, Y| < C[1+]|H]|x~y/~""!

if 1<]x—y| ar}d |kl < |x~yi/2. This completes the proof.
_ We next give a proposition which shows that Theorems 3.1 and 3.2 are
in a sense sharp.

PROPOSITION 3.5. Let o(&)e C*(R) and ¢ (¢) = 0 (el <1), =12 <¢), and

icm
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=—1( < —2). Let
a(x) = min ((log%)_l, 1/log 2>.

as(x, &) = (sgnx) a’(x) o (£).

For 0 <0, set

Then

() if 1 <9, o5(x, D) is a CZO of type a°(t);
(i) if 6 =1, o5(x, D) is a CZO of type (log, t);
(i) if 0 <8 < 1, a4(x, D) is not a CZO. There exists an feL*(R) with
compact support such that a5(x, D) f¢ BMO(R).
Proof. One can easily show that |a(x+h)—a(x)] < a(h). Hence, (i) is a
consequence of Theorem 3.1. (ii) follows from Theorem 3.2 (with Q(r) = 1 and
w(t) = a®(1)). We shall prove (iii). o (D) has the following form:

(D) = c(H—¢*H),
and H is the Hilbert transform. Since Hy,;) = nlog|x/(x—1), we have,
putting bs(x) = (sgn x) a®(x),

where $(£)=1—a(&)sgnée CF(R),

05(x, D) x(0,1){X) = cbs(x)log|x| —cbs(x)log|x—1]
— (@ #log|x/(x —1)[) (x) bs (x)-

The last two terms belong to BMO. However, if 0 <& < 1, then, as is easily
shown, bs(x)log|x|¢ BMO(R). This shows that o;(x, D) is not a CZO. This
completes the proof. '

Remark 3.6. Let K;(x, y) = (2m)~ ! b;(x) 6 (y— x) be the standard kernel
associated with o;(x, £). Then we can easily get |K;(x, y)| < C|x—y~*!, and
for |x—xo| < |xo—yl/2

IKs(y, %)= Ks(y, Xo)| < Clx—xql/1x0— [,

IK5(x, ¥)—Kj(x0, y)| < Ca®(|x~xol/Ixo =y Ixo— 7.
The last inequality can be derived from the concavity and nondecreasingness
of a’(t) (t > 0) as in the proof of Theorem 3.1.

4. An L*-boundedness criterion for operators with standard kernels. An
operator T from & (R") to &' (R") has the weak cancellation property if for
any bounded subset E of C§(R") there exists a constant C such'that for all
¢, and @,k all xeR" and 4 >0,

KTp, 93] < CA",


GUEST


28 K. Yabuta

where ¢4 is defined by @¥4(y) = ¢, ((ywx)/A) for j=1, 2 and ¢, is the
dual form for & and &'. David and Journé have recently proved the
following in [7] and [7'].

TueoreM A. Let T be a continuous operator from (R to Z'(R".
Suppose there exists a standard kernel K(x,y) of type t* (for some §: 0
<6 < 1) such that for all f and ge C(R" with disjoint supports,

T, 9> = [{ K(x, ) f (1) g (x)dydx.

Then T can be extended to a bounded operator from L2 (R to itself if and only
if the following three conditions are satisfied:

(i) T1e BMO,
(i) T 1eBMO,
(i) T has the weak cancellation property.

Here T* is the adjoint operator of T For the details see [7]. Our
remark on the above theorem is the following.

TreoreM 4.1. Let w(t) be a nonnegative, nondecreasing and concave
Junction on (0, o) satisfying

1
jo'®®etdt < co.
0

Let Tbe the same as in Theorem A, where K (x, y) is a standard kernel of type
@ (t). Then the conclusion in Theorem A holds true.

Proof. The “only if” part follows from Theorem 2.4. In order to prove
the “if” part, one has only to follow the proof of David and Journé [7] word
for word, replacing t* by w(t). We only point out that fragment of our proof

1

which differs most from their proof, where the condition @t dt < oo
)

appears. It is Lemma 4.2 below. g.e.d.
Let p(x) = o (1/(1+|x]))(1 +]x}) ™ and p;(x) = 2™ p(2~/ x). Observe that

| pi(x)dx < C:j;co(t)t“ldt <C } a}1/3(z)r1dt <00,

i 1]
For each jeN, let T; be an integral operator which is defined by a kernel
K;(x, y) such that
(4.1) IK;(x, y) < Cp;(x—y);
(4.2)  K;(x, )= K;(x, Y +IK;(y, x)=K;(y, x)|

< Cmin(1, [x—x1/2) [p; (x~y)+ p,(x' —»)];

4.3) P {K;(x, y)dy =0
(4.4) JK;(x, »)dx =0

for all x;

for all y.
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Then we have the following lemma, by which we can apply the Cotlar—
Knapp-Stein lemma to the operators {Tj}.

Lemma 4.2. Let T, be as above. Then there exists a constant C > 0 such
that for (j, ke Z%,

T Tl 2 2+ T T < Co?3 (27 1i=H),

2,12
where ||*|| 2,2 denotes the operator norm from L*(R") to L*(R".

Proof. Let K, be the kernel of T;* T;. Then the above results from the
following estimates, by using the interpolation theorem:

(4.5) JIK;k(x, Y dy < Co3(2717H) - for all x,
and
(4.6) [ 1Kk (%, )l dx < Co®?(27V74)  for all y,

and similar estimates for the kernel of T; T*. _

It suffices to prove the above estimates only when j <k, by virtue of
(4.1) through (4.4). We only check (4.5), since the other is treated similarly.
Using (4.1), (4.2) and (4.4), we get

K (%, Y| < | pj(z—x)min(L, |z—x1/2%) [pe (2 —¥) + pe (x —y)] dz.
Since | py(z—y)dy = C, it suffices to show
%) § py(2)min(l, [2}/2) dz < Cw?® (2797H).
This can be shown as follows:

2k K
j pj(z)|z|2_"dz< 27kC jw(l/(1+r/2]))dr
0

<2k
2| 1

<?7*c |
1)1+ 2k~ J)

w(s)s”2ds.

2/3 ;
Since w(s) is concave, w?*(s) is also concave, and hence w3 (s)/s is

. nonincreasing. Thus the last term in the above inequalities is smaller than

1
C2H (1427 0?3 (1/1+247) [ P (s)s™ ds
0
1
< Co??(27H )] 0! (5)s7 " ds.
V]

Since for 2¢ < |z| we have (1+2*7)(1+27*|z)) < 3(14'-2”"|z|), and since o ()
is nondecreasing and w(2t) €2 (t) (by the concavity of @), we have
a)(l/(1+2"j|z|)) < Co?B (111 +2"‘f))w”3(1/(1+2"“ |20))
< Co*P 2 kMt (1/(1+2“"lz|)).
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So, noting j <k, we get

wl/a (1/(1 +2~klzl))
(1+27%|z))

2k el i 2k
12

< Ca?3 (27 k=11 J w3 (s)s™ 1 ds.
)

This completes the proof.
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