38 M. Nawrocki

[15] ;’6.18. Vgarad arajan, Measures on topological spaces, Amer. Math. Soc. Transl. 48 (1965),
—228. ’

[16] 1. Wells, Bounded continuous vector-valued functions on a locally compact space, Michigan
Math. J. 12 (1965), 119-126.

INSTYTUT MATEMATYKI UNIWERSYTETU ADAMA MICKIEWICZA
INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY
ul. Matejki 48/49, 60-769 Poznan, Poland

Received March 19, 1984 (1964)

- ©
Im STUDIA MATHEMATICA, T. LXXXII. (1985)

An atomic theory of ergodic H” spaces
by

R. CABALLERO and A. de la TORRE (Milaga)

Abstract. Let T be an invertible measure-preserving ergodic transformation on a
probability space. We define elementary functions associated with T, called “atoms”, and we use
them to define ergodic Hardy spaces H” for p< 1. From this atomic definition we obtain
maximal function characterizations of H”. We identify the duals of H” and of H!, and finally
we obtain interpolation theorems between H” and L,, p<1<gq. ’

Introduction. In this paper we study the Hardy spaces induced by
an invertible, ergodic, measure-preserving transformation on a probability
space X.

P In [2], Coifman and Weiss studied the space H'(X), which they defined
as the space of functions in L, (X) whose ergodic Hilbert transform is in
L,(X). Their main results are that, as in the classical case, H' can be
characterized in terms of maximal operators and that the dual of H' can be
identified with the space of functions of bounded mean oscillation. (See [4]
for the case H'(R").

It was found later that H?(R" can be defined in terms of elementary
functions called “atoms” [1], this atomic characterization being very useful
in studying interpolation, duality, etc.

Since the methods of [2] do not seem to work for p <1, we use an
“atomic” approach. We define H4(X) for 1/2 < p < 1, p < g, as the spaces of
functions that can be written in terms of (p, g) atoms. In the first section we
show that H™ can be characterized in terms of maximal operators as in the
case p=1. As a corollary we show that H»¢ depends only on p, i.e. H™
= HP®, so that we may write simply H”.

In the second section we use our atoms to study the dual of H?. One
easily sees then that the dual of H' is BMO, obtaining another proof of the
result in [2]. For p <1 the analogy with the case H”(R") breaks down since
the dual of H?(X) (p < 1) is made only of multiples of the functional induced
by the measure on X, while in the classical case H?* is a space of Lipschitz
functions. For ergodic H” spaces, defined by an ergodic action of Rin X, this
result was obtained by Muhly in [6], but his methods are entirely different
and do not seem to be applicable to the discrete case. Our “atomic” proof
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has also the advantage of giving both H'* and HP* at one stroke, thus
explaining why there is such a sharp difference.

Finally, in the third section we extend to the ergodic case the
interpolation theorems which, in the real case, are due to Fefferman, Riviére,
and Sagher [5]. We obtain interpolation theorems between H” and L, for
1/2<p<1<p < o, using once more our atoms and the fact that H»®
= HP1=HP,

The restriction p > 1/2 is only technical, and it is only made to simplify
the proofs. One can extend the results to p < 1/2 by asking for more
cancellations in the definition of the atoms, in the same way as in [3].

H™ spaces. Definitions. Let (X, m) be a nonatomic probability space
and T: X — X an invertible, measure-preserving, ergodic transformation.

DeriniTiON. Let B < X be a set of positive measure such that for some k
=1 we have

T'BNT'B =0, i#j, 0<i,j<k=1.

k-1
Then the set R = {J T'B will be called an ergodic rectangle with base B and
i=0
. length k.
DermNiTioN. Let p, g be real numbers, 12 <p<1<g< o, p<q A
real-valued function a is a (p, q) atom if either
. k=1
(1) a is zero outside an ergodic rectangle R = U T'B and satisfies
k-1 . =0
(a) Z a(T’x)
-1

(b) k™1 }: la(TV %) <

lallw m(R)~H if g =0

=0 for xeB,

m(R)™¥?, xeB, q < co,

or )
(2) ae L, (X), llall, <

We will say that an atom is of type 1 if it verifies (1) and of type 2 if
it verifies (2).

It is easy to show that (b) implies that
llall, < m(RyM 9= @/p)

DerNtTiON. For p, g as before, H?(X) is the set of functions f that can
be written as

s

f=

i

¢ q

I
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=

0 .
where a; are (p, q) atoms, Y |¢|? < oo, and the convergence is in the

i=1

L, -metric.
We introduce a metric in H"“(X) by
p,q (hl > hl) = Ihl - h2|p,q
where

[a] 2] =]
[Alpg = {inf ¥ |l h=3 ca, 3. leff < o}
i=1 i=1 i=1
It is clear that H** cHM cH™ if r<q <
continuous.
We will show that the converse also holds by using a characterization of
the H?? spaces in terms of a maximal operator.

o0, the inclusion being

The maximal operator. Let ¢peL,(Z) and feL,(X). The convolution
of fand ¢ is defined as (fx@)(x) =) f(T ™ "x)p(n). It is obvious that

neZ
1= lly < llell 11

DeFINITION. Let ¢ be a nonnegative C°(R) function with support in
(—1,1) and L>0. For feL,(X) we define

M(L, @) f () = W I(f* u) (T )|

and
M) f(x) = Llim M(L, @) f (%)

where

We also define
ML) f(x) =supM(L, 9) f () (A(9)) "

-where the sup is taken over all C* functions with support in (—1, 1) and

where A(¢) is the normalizing factor

A(@) = llollo + 197 o
Finally, .
Mf(x) = Llim M(L) f (x).

It is not difficult to show that this operator is dominated by the ergodic
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maximal operator, and therefore is of weak type (1, 1) and bounded in any
L, 1<q.

We now show that atoms behave well with respect to the maximal
operator. More precisely:

Prorosimion. Let a be a (p, q) atom. Then MaeL,, and [IMd)|, < C,
where C is an absolute constant.

Proof. If a is a type 2 atom then since our space has measure one we
have

IMdll, < |IMdll, < Clldl, < C  for ¢> 1.

For g =1 we use Kolmogorov’s inequality to obtain
|Mdll, < Clldl, < C.

If a is a type 1 atom, we use a transference argument.
We say that a function 4: Z— R is a (p, q) atom in the integers if its
support is contained in an interval (I, 1+1, ..., I+k—1) and

@ 3 A(m =0,

k-1
) k™1 Y A+ < ke,

=0 .
We will show that if we consider MA where M is the maximal operator
defined above, we have

w© .

Y. IMA@®)IP< C(p, g)

n=-oo

where C depends only on p and ¢. The proof'is an adaptation to the integers

of the standard argument for the continuous case, and we include it only for
completeness.

First of all, since M commutes with translations, we can assume that
I=0. Now

4k 4k

5 |MA(m)|P<(8k+1)(~—1~ 5 IMA(m)I“>p/q
k k

e 8k+1,2,
plq
!A('rn)l")

< C(p, q)(Bk+1)1 =¥ -1~ p/ap

<C(p, Q(Bk+1y *‘PM( »

m= - on

<C[® 9.
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Let us now fix |m| > 4k, and let us fix n, L, ¢ and |i| <n < L. Then
k—1
(Ax@)(m+i) =Y Am+i—)e,() = Y AG)@a(m+i=j)
. 7 j=0

R )

Now the sum is zero unless n > |[m/4], for if n < |m/4| then |ij <|m|/4, j <k
< |m|/4, and thus [m+i—j| > |m|—|m/2| > n. Therefore

k-1
(Axp)mt Dl <5 3 140) A0

A(@C

mZ

k-1~ CA ~
€y 1401 < 2P -,
j=0

< me

This means that
|[MA(m) s%kz"““” if |m| > 4k
m

and

1
Y IMA@m)PF < CE*P Y —5; < C
|m| >4k |m|>ak T
We can now go back to the ergodic case. Let a be a (p, q) atom with
support in

if p>1/2.

k=1
R= | TB.

i=0
For each xe X we consider the function

a,(n) =a(T"x).

Since the orBit of x enters B infinitely many times, let us call y; the points o_f
the orbit that belong to B. Then for each n, a,(n) =a(T'y,) for some i,
0<I<k. It is then clear that we can write
ag(n) =y, m(B)™V" A, (n)
ieZ
where A; .(n) = m(B)"/?a(T"x) are (p, ) atoms in the integers with support
in (I, .... ,+k—1) with y, = T"xeB. Therefore for N > L >k

1 P
JlM(L)a(x)lde = f2N+1 ZN |M (L) ax(n)? dx
X X
1 N —1/,,A~ P dx.
| - J WAL 2, & MDmEB) A ()7 dx
X
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Now the atoms 4;, whose support does not cut the interval (—~3N, 3N) do
not contribute anything to M (L) since it is easy to check that *

_ M(L)A; (=0 if n¢(—3N, 3N);
since k < L < N, we can thus restrict our attention to those atoms whose
support is contamed in (—4N, 4N).
Now
le(L)a(x)l”dx < J‘

X X

Ly 3

2N+1 n= =N suppd; =(— 4N,4N)

[M(L)ym (B)~*'" 4, (n)|?dx

: m(B)"lf ) i IM(L) Ay, (n)|" dx

<
2N+1 P suppd; S(~ 4N,4N) 'n=~ oo
m(R)"* j
Cdx
2N+1 e suppd; =(— 4N,4N)
_mR)"! o
= IN+1 J‘k{number of A’s with
b
supp4; = (—4N, 4N)}
_m®! ;
=N+l ;—;m 2r (T x)dx
X
EN+1 -, 8N +1
= C——m(R)~? =  —————
w1 ® f"“ CoONTT
X

Letting N and L go to infinity, we are done.
Our proposition obviously implies that if fe H™? then Mfe L, and

JIMfIP< CY e

T.hiS means that any H™ function has a maximal function in L,. Our next
aim is to prove the converse, namely that if f is an L, function whose
maximal function Mf'is in L, then f is in H»*. As a corollary we will have
HP.‘I = HPv w_

First of all we need two technical lemmas.

) LemMma 1. Let O = X be a set of positive measure such that the subset of Z
defined by O* = {ne Z; T"xe O} does not contain an interval of infinite length.
Then.O can be written as a disjoint union of ergodic rectangles R; of length i.

Proof. One just defines R; = {xe 0;1(03) =i}, ie. the set of points in
O such that the interval of O* that contains the origin has length i. It is

icm°

is a rectangle one just observes that R; =
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© .
obvious that O = |J R; and that the R; are pairwise disjoint. To see that R;

U TV B;, where B; is the set of

points x in O such that T~ 'x¢O, T’er for j=1,2,.
T'x¢O0.

Lemma 2. Let I be an interval in R of the form [a, b], a, be Z. Then'there
exist a finite number of C* functions {¥;} such that

(a)‘z ¥,(x) =1 for xel; supp ¥; = [a—1/2, b+1/2],

., i—1, and

J
(b) |%}ll, < Clsupp 71,
(c) d(supp ¥;, R—1) ~ |supp ¥|; T —[a—1, b+1],
(d) Zz ¥;(n) = C|supp ¥
ne.
This is just a version adapted to the integers of a smooth partition of
the characteristic function of an interval.
Proof Let N =b—a. If N <3, we do it with just one function since it
is clear that one can always construct a C* function identically 1 on [a, b]
with support in [a—1/2, b+1/2] and satisfying (b), (c) and (d).-
If N>3, we consider an interval I, = [ay, by], a4, b1eZ, by—a,
= [N/3] and situated in the middle of I. We take a C* function ¢, satisfying

&(x=1, xely, <& <1,
suppé; < [a; —[N/6], by +[N/6]1],
€1l < 6/N. Y

From now on we consider only what is left on the right-hand side of I,
(and proceed on the left side in the same way).

Let-J = [by, b]. We cut it in half, consider [b;, by +{1J|/2]] = [b;, b2]
and construct &, such that 0< &, <1, £,eC™ and

supp &, = [by —|JI/4, ba +1J1/4]1, 11€51 < 4/,

L) =1, xelby, byl
One then repeats the process on [b,, b] until one gets an interval [, b] of
length less than 4, in which case we define & as above, identically 1 on

[by, b1, with support in [b,—1/2, b+1/2], and [|&+1(le < 2.
It is clear now that if we define

we have the family of functions satisfying (a), (b), (c) and (d).
We are ready to prove our main result.
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TreoREM 1. Let f be an L, function such that Mf is in L,. Then f can be

written as f(x) =Y. ¢;a;(x) where the a; are (p, o) atoms and

¥ lel? < C My 5.
Proof. For each 1> O consider the set
O} ={xeX; Mf(x)>A}.

Let 1o =inf{A>0;m(0,) <1}. If 1, %0, we consider the sequence A
=200, k=0,1,...

Let k # 0. Then m(O(4,)) <1 and since T is ergodic we can use Lemma
1 and write

0(4y) = L‘J RY
where the R} are disjoint rectangles of length i; we now write for k fixed
f= Xi:fXR'!c‘*‘f(l‘Xou.k))-
For cach i fixed, we use Lemma 2 on the interval [0, HONUOES!

=length of R) and we call {¥};} the corresponding partition of unity.
Let Bf be the base of R and write

LS(T"x) P (m)
k(T = k ;
m;(T™ x) Z'f’f,j(") — xeBf, me[0, 1()],
m(T"x) =0 if T"x¢RE.

Each Tf‘ ; can be used to define a function on X, which we will call by
the same name, as

P (T"x) = ¥;(n) - for xeBY, 0<n<I(i),
and zero otherwise. It is clear that ) ¥f; = Xge Now for k fixed we may
7 i

write

i

f=2 X (f—m) 'I’ﬁﬂ‘% mi; Wi+, (1= toay) = bt gy
J L,
where
be=Y X~ me;) ¥,
]

I = Zj mik,j ‘Il?,j +f(1 “Xomk))-

icm°®
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Let (a—h, a-+h) be the smallest interval containing the support of ¥

. =¥}, with a, he Z. Let N be a fixed number (independent of f, i, j, k) such

that (a—Nh, a+ Nh) intersects R—(—1, I(i)+1). The let
@(s) = Nh¥(a—sNh).
It is clear that
ol < -Nh

and  [|@lo < (NB?[[¥]l, < Ch

and

(f* ) (T°X) =Y (T*"X) puu(n) = ¥ £ (T°""x) ¥ (a—n)
= Zf(T”x) ¥ (n).

Remembering the definition of our maximal operator, we have
[Zf(T"x)'I’(n)l S CMf(T* ' x)h
provided |l] < N h. Now because of propcfty (c) in Lemma 2 we choose ! such
that T°"!(x)¢ 0 (%) and by property (d)
mt, < CMf(x)  with X'e X—0 (k).

Therefore

mf; < Chy.
On the other hand, if x¢0(4,) then

F(x) < Mf(x) < A,

and we obtain

(¥ < Chg.

Since we are assuming Mf e L,, it is clear that m(0(4,)) — 0 as 4 — oo,
and therefore, since b, has support in O(4,), we have -

f(x) = ’}lm gk’
and defining
bo(x) =f(x)

we have

fx)= i Grr1—90) = i (bx—by+1)-
© k=0 k=0
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Now we observe that O (4, ;) = O(4) and therefore each
R = O(4) = U RE;
- i
so if we write

Rk+1 U(Rk+1f“\Rk)

we obtain Rf** as a disjoint union of R¥F* = R5*! ~ R¥, where each RiFY i
a rectangle w1th base Bfj! = Bi+! mR" and length that of Ri*1,
If we write

afy=(f~ m;) ¥
then

bk = Z bi,k
i

Let us fix i and write

with by, = Y a¥,.
7

Aip = ba.k—Z bl,k+1XRk+1’
5 r

the sum extended over all j such that Rff!s (. From the above
observation on the decompositions of O(4,) and O(4) it is clear that

be—bysy = Z Apy = Gevr —Ge-
But since the 4;, have disjoint supports for k fixed, it follows that for any x

145 (X))

Also from the definition of m¥; it follows that

= [Grs 1 (X)=gp (x)] < Chy.

i—-1

> a;(T'x) =0,

=0

xe BY.
These last two observations imply that

gi.k = (C’lk m(Rf)”p)‘l
is a (p, o0) atom for k=1,2, ... ‘
. For k=0 we define 4y =b,—b, =g, —~g,, which implies

o ()l < Cy,

so that

Ay =(Cho)™" 4o

icm

Ergodic H® spaces 49
is a (p, o0) atom of type 2. We may then write

f= X ti=byer) = Clo Dot 3, Cy fm(R) A

where A,, 4, are (p, ) atoms, while the sum of the pth powers of the
coefficients is dominated by
A <Mf(x)
CY mO@)=CY A { ldx={ > Mdx
k k (X:MS >4 X k=0

<C [ 1M (o d

If A, = 0 we choose A, = 2%, ke Z. Then for each k, m{0(4)) < 1 and we

may write as above
f=b+g
with |g,] < CA, which means that g, >0 as k— —oo0. On the other hand,
since the support of b, is contained in O (4,), it follows that b, — 0 as k — co
and therefore
f= lim b= lim g,
k~—o k— o0

and

i (Grr1— g (%) =

k=—o0

Z (b~ b+ 1) (%)-

k=—o0

fx) =

From this equality ‘we proceed as in the case iy # 0.

The theorem implies that the set {feL,; MfeL,} is contained in
HP® = HP and the metric induced by Mf is equivalent to that of H”*. We
thus have

HP = HP® = {feL,; MfeL,}

with equivalent metrics. We may therefore drop the ¢ and write simply HP.
The characterization of H” in terms of the maximal function allows us
to show that HP is a complete metric space.
THEOREM 2. HP is complete.
Proof. Let {f,} be a Cauchy sequence, ie,

M (f,—fwlll; = O

Then {f,} is a Cauchy sequence in L,. Let f be its L,-limit. We will show

that f,— f in H".
First of all, for f, f,, L, x and & fixed, there exist k(x), i = i(x) such that

k(x)
(f=II T %) Py ()] + &,

MOU-AES<] X

4 — Studia mathematica LXXXIL 1
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which means that
k(x)

[ MO ~fHINdz< || 3
¥ X

J=—k(x)

([T %) Py (f)lp dx+¢”.

But since
k(x) k(x)

Y (AT %) ¥y 2 lim Y

J=—k=x) m= o0 j= —k(x)

(fu—=S( T X} Wi (1)

we have
k(x)

)j(lM(L)(f—fn)(x)l"dxs lim [| 3

mow X j=—k(x)

(fm _fn)(Ti - x) lPk(x) (])fp dx+¢?

< lim | IM(fu=f) @l dx+e <&

m-o0 X
if n is big enough. This shows that f is in H? and f,— f in HP.

Dual spaces. In this section we will show that the dual of H* is the space
of functions of bounded mean oscillation (BMO), while the dual of H? (p < 1)
is trivial.

For p =1 the result was first proved by Coifman and Weiss [2], while
for p <1, in a different setting, Muhly [6] proved that (HP)* is trivial. We
present a very simple proof based on the atomic decomposition, which gives
both cases and explains the reason for the sharp differences. We recall that
for any integrable function f one can define f* as

1@ =supnt T AT -T, 1)
where ' o
LI = E ST,
A function is said to belong to BMO iff f* is bounded. We norm BMO by
1/ llamo = LAl 411/ *ll -

We start by showing that any BMO function “is” a linear functional in H?!.

N
ProposiTION. Let fe BMO. Then for any he H of the form h =Y A a,,

I=1
Sohy=[fh

satisfies

N
I<A, B <l fllsmo _Zl 14l < 11f smo 1Bl e

icm
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Therefore f induces a linear functional in H' with norm at most ||fllamo-
Proof. It is enough to show that if a is a (1, o0) atom, then

Hfal < || fllsmo-
If a is a type 2 atom then
| {74 < J1f1 <11 llswo
k-1
since |a]|, < 1. If a is a type 1 atom supported in the rectangle R= () T'B,
i=0

i=

then

k—1
|1/0a0] = | [f(at] =] | ¥ a(T') /(T
X R Bi=0
= 1] %, a(T (T - T, )
<[ T 1a(T 9IS ("9~ T )

k-1
<km@®B)' [k Y 1A (T0)=T,f (%)
B i=0

< km(R)™* m(B)||fllsmo = [1fllsmo-

It follows that BMO < (H')*. For p<1 it is trivial that any constant
produces a continuous linear functional on H”.

Let now L be an element of (H”)*. Fix any g, 1 <g < oo. Then if h is
in L,, we have

IMH||, < C,llHl,
and therefore
([ IMBfP)e < || MB)|, < C|lll,,

and this means that L defines a linear functional in L,, and so it can be
represented by a function f in L, < L,. Let now a be a (p, c0) atom of type
1. Then

KL, a)| =|£fa| < |14

k-1 i
Let us now fix an ergodic rectangle R= |J T'B, and let us write, for
=0

any yeR,

k-1 '
LfG) =kt Y f(T'x) where xeB, y=T/x,0<j<k—1.
=0 ‘
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We observe_that

1= TSl = | sup | [U=TNg]-
But
I (/=% =|{(-%)e-To)
since
}g(f—nf) Tg={ z (f= BT T (T'),
but T,g(T'x) is independent of i and

Z (=TT =L f ()~ f(x) =

The same argument shows that
J(LNHeg—Tg =
R

and therefore

U(f—ka)g’= Uf(g—Tkg)\
R R

g—Tg
Uf Tm (B; 75 (km(B)"| <

2(km(B))'"”

o
R

with

__9-%yg
2(km(B))? ***
which is a (p, c0) atom. Therefore
1= T flleymy < 2m(R)P||LJ].

This can be written as

m(B) jk' Z I (T'x)= 5 f (x)) < 2m(R)*P= 1|1

icm
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Let now A cB m(4)>0. It is obvious that 4 is the base of the

rectangle R = U T 4 and so
=0

1

mid) J‘k 1 Z If(T' %)= T, f1 < 2||Lim(B)MP=1 < 2||Lj| m(R) P~ 1,

A

Since A is arbitrary, this implies that for almost all x in B we have
= zo (T %)= T f| < 2| L m(RY1,
If p=1, this means that
EUT TA-RA<2 as
If p <1, by choosing small rectangles one gets
T TN-TA =0 ae,

ie. f is constant on orbits, and since T is ergodic, f is constant.
We have thus shown that for p < 1, f must be constant, while for p =1
we have feBMO and .

I < 2010

Furthermore, since any function g such that ||g||, < 1 is a (1, o0) atom, we
have | [fg| <||LI| for any such g. Therefore ||f}|; <||L|| and finally

1fllsmo = ANl +11f *ll < 3NLI

Interpolation. In this section we will show that one can interpolate
between H?, 1/2<p<1 and L% g>1.

DermiTioN. We will say that a sublinear operator T is of weak fype
Hp), ps1if :

m{x; |Tf(x) > A} < (M/A)? 1S |p,co-

We will prove that if an operator T is of weak type (H"%, p1) and (ps,
p,) with 1/2 <p, < 1 < p; € o0, then T is bounded in H?, p; <p <1, and

also in L,, 1 <p<p,.
We will split the proof into two theorems.
Treorem 1. Let T be a sublinear operator of weak type (H™, py) and (p,,
P2y 1/2<py €1 <p,. Then T is bounded from H? into L,, p; <p< 1.
Proof. It is enough to show that ||Ta]|, < C for any (p, c0) atom.
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. . . k=1 i
If a is a type 1 atom with support in R = (J T'B, then it follows that
i=0

Since p; < p < p,, the last expression is bounded by

1/pa)—-(1
||aH,, < m(R)( 1p2)= (/)
and

k=1
(k—-l .;0 Ia(Ti X)IFZ)I/FZ < m(R)' 1/‘7’

which means that

b=m(R)MPW
is a (py, p,) atom since

k—1 -

(k™% 3 1b(T ) ") < mR)™Hm

i=0

f;r:jce HPVUP2 P = HP with equivalent “norms” it follows that ge H"!
<l

laly, < m(R)WP0 ™ Wioes m(R)! 1P,
Therefore we know that
mi{x; [Ta(x) > A} < (M, /4™ lal,, < (M /AP m(R) ™ #1/P
and
m{x; [Ta(x)] > 2} < (My/ay? [ lal" < (Ma/A)* m(R)' =727

From these two estimates one obtains a bound for 1 7al[? in the usual way:
we fix a number D and write

Dm(R)~ 1/p

[1Tal" = p (j)' A mx; |Ta(x)| > A} di+

o0
o [ PTimix; | Ta(0) > A} dA
Dm(R)~1/p
Dm(R)~1/p
P y p Lk iat st M m(R)l'(““”d,H-
0

A

o0
+p f JLat i 21 M';zm(R)l—(pzmd/l.

Dm(R)~ 1/p

. Pp len m(R)l"(”/’)(Dm(R)_1/")p_p1+
—D

+ 14 Mgzm(R)l—(pzlp)(Dm(R)—up)P—pz
p2—p
__P Mfl DP Py p M;szﬂ:z-
P—ps p.—p
Taking D = (M3 M; P)®27P1) we obtain

p p \"?
|[Tal!,<<————~+ ) M, Mt
P~p1 P2—p
with
tzpl(pz—p)
p(p2—p1)

If a is a type 2 atom, ie. if ae L, ||lal, < 1, then obviously ac H"' with
lal,, <1 and aeL,, with |la|[,, <1, and we may write

D ©
J1TaP =p [ 22~ m{x: |Ta| > A}di+p [ A7~ m{x; |Ta| > 1} dA
0 )
D - © —1-p
<p A MM dA+p [ A 2 M3 da
0 b

<L _mpprrig P ppprre
P—P: P2—P
Choosing D as before, we have the same bound for ||Tal|,. This ends the
proof of Theorem 1.

Next, we want to show that an operator of weak type (H, 1) and (p,,
p2)y 1 <p,, is bounded in L,(1 <p<p,). The idea is, as in the
Marcinkiewicz interpolation theorem, to split f in L, into two functions f;
and f,, with f; in H; and f; in L,,. In order to be able to do this we need a
technical lemma that will play the role of the Calderén-Zygmund
decomposition.

For p>1, let us fix py, 1 <pp <p, and let us consider the operator

Ao () = (f17H) P

where
k-1 X
g*(x)=supk™t ) |g(T"x)|.
0
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Then obviously, since p/p, > 1, we have

[ 1Ago (N7 = [ (170 < Cpppo 1117,

which means that A,, is a bounded operator in L, and in particular the set
O(A) = {x; A,,(f)(x) > A} has measure strictly less than 1 if 1> Corpo 115

Lemma 3. Let feL, and A > Copolf1lp- Then O(2) = {x; A, f(x) > A}
=\{JR; where the R; are ergodic rectangles, pairwise disjoint, and for each
x€ By (the base of R;) we have

(71T 1@y < o
i=0

Prqof. As in Lemma 1, we just define

B={xe0(); T"'x¢0(4), xeO(A), ..., ""*xe0 (), TV x¢ 0(4)},
-1
and it follows that O(J) ={J R; with R; = | T'B,. Finally
i=0

j=1 ) 9 -t ) ‘
A IR VAVARY Sm 2 (T < 27" (T x) < 227
i=0 i=—1
since T~ x¢0(J).
Tueorem 2. Let T be a sublinear operator of weak type (H', 1) and
(P2, ), 1 <py <o0. Then T is bounded in L, 1<p<p,.
For p; = co, the result holds assuming that T is bounded in L.,

Proof. We will prove the theorem only in the case p, < oo, since the
other case is similar.
Let f be an L, function, 1 < p < p,. We choose p,, 1 < py < p, and we

consider the operator Apy- For each 4> Cp, [1fll,, we use Lemma 3 to
write

O() = {x; A, f(x)> 1} =UR,.
_ For each yeR;, we define
@NO) = 3 1)
where xeB;, y=T'x, 0<I1<j—1. We may then write
f=§: (f~T}f)XRj'I';(ij)XRJ'hf(I_XO(}.)) =b,+g,
where

b =% (f~ T 1,

icm
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Since Y
j-1 )
(GHOGI<EE Y AT %)% < 24,
i=0
we have for each j, and for each xeB;,

G Zo f (T %)= T (T ") e

<G~ Z f (T 7)™ 41T, f (9] < 4.

Therefore the function
%= Gm(R)

is a (I, po) atom supported in the rectangle R;. This means that we can write
b, as an H"? function, since

b, = Z 4im(R)) a;
J

f“T;f)XRj

with norm bounded by 44Y m(R;) =4im(0(4). Since H'?*=H' with
equivalent norms, we have b;eH' and |b|,; < CAm{0O(1)). On the other
hand, g, is in L,, since

g = Z (T}f)lxj'f'f(l—)(ou));

so if ye O(4) we have g,(y) = T; f (v} for some j, and then |g, ()| < 24, while
if y¢O0(4), then

g0 = 1f O <4, ) < 4.

These are the type of estimates one needs to make the argument in the
Marcinkiewicz interpolation theorem work.
Let us consider a constant L larger than C,, |Ifll,- Then we have

fle|”<p(J).i”“1m{x; |Tf ()| > A} dA+
+p°fl”"’m{x; |Tg2 () > A/2} dA+
i

0
+p [ AP m{x; |Thy(x)| > A/2}dA
L

=I,+1,+1,.
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In order to estimate I,, we recall that fe Ly=>a= f/|fll, is a (1, p) atom
and therefore f belongs to H' with norm bounded by C||f ll,- Therefore

J

L

L<cp [# s d= o 2o,
0
For Iy we use the fact that b;e H' with norm bounded by CAm(O (%) to

obtain
I;<Cp j A”'zlm(O(l))dl <Cp f AP m{x; Ap0f> A} dA
L 0
=C [(Ap S < C-Chp [IFIP = C|I 12

Finally, for I, we use the fact that T'is of weak type (p2> p2), and we have

I,

N
9]
i}

I
Q
o~ ]
Ot g Mg te— g

JpmraTt jlgl”dxdi

lp-m*l( Jlg‘pzdx+ j |gl”dx>di

o) X-0(4)

AP7P2T (22 m(0 () di

s
<

|fI"2dxdi

(Apofsz)

+Cp J Jpret
L

<C-2"p J A mix; Ay f> A} dA+
]

0

+Cp flfl”' J AP gaax

ApoS

<C~2‘72 j(Apof)de+Cﬁ jlf'PZ(Apof)P”Pzdx
,—

s(cz‘%c;;%) f(A,,of)”dx<C’ b0 jlf]"dx.
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Choosing now L= 2C,, | fll,, we have obtained

FITAP < CliflIE

as we wanted.

Clearly Theorems 1 and 2 together imply that a sublinear operator
of weak type (H'', py) and (p,, p,), p; <1 <p,, must be bounded in L,
1<p<p,.
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