38

M. Nawrocki

icm[©]

- [15] V. S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. 48 (1965), 161-228.
- [16] J. Wells, Bounded continuous vector-valued functions on a locally compact space, Michigan Math. J. 12 (1965), 119-126.

INSTYTUT MATEMATYKI UNIWERSYTETU ADAMA MICKIEWICZA INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY ul. Matejki 48/49, 60-769 Poznań, Poland

Received March 19, 1984

(1964)

STUDIA MATHEMATICA, T. LXXXII. (1985)

An atomic theory of ergodic H^p spaces

bу

R. CABALLERO and A. de la TORRE (Málaga)

Abstract. Let T be an invertible measure-preserving ergodic transformation on a probability space. We define elementary functions associated with T, called "atoms", and we use them to define ergodic Hardy spaces H^p for $p \leqslant 1$. From this atomic definition we obtain maximal function characterizations of H^p . We identify the duals of H^p and of H^1 , and finally we obtain interpolation theorems between H^p and L_a , $p \leqslant 1 < q$.

Introduction. In this paper we study the Hardy spaces induced by an invertible, ergodic, measure-preserving transformation on a probability space X.

In [2], Coifman and Weiss studied the space $H^1(X)$, which they defined as the space of functions in $L_1(X)$ whose ergodic Hilbert transform is in $L_1(X)$. Their main results are that, as in the classical case, H^1 can be characterized in terms of maximal operators and that the dual of H^1 can be identified with the space of functions of bounded mean oscillation. (See [4] for the case $H^1(\mathbb{R}^n)$).

It was found later that $H^p(\mathbb{R}^n)$ can be defined in terms of elementary functions called "atoms" [1], this atomic characterization being very useful in studying interpolation, duality, etc.

Since the methods of [2] do not seem to work for p < 1, we use an "atomic" approach. We define $H^{p,q}(X)$ for 1/2 , <math>p < q, as the spaces of functions that can be written in terms of (p, q) atoms. In the first section we show that $H^{p,q}$ can be characterized in terms of maximal operators as in the case p = 1. As a corollary we show that $H^{p,q}$ depends only on p, i.e. $H^{p,q} = H^{p,\infty}$, so that we may write simply H^p .

In the second section we use our atoms to study the dual of H^p . One easily sees then that the dual of H^1 is BMO, obtaining another proof of the result in [2]. For p < 1 the analogy with the case $H^p(\mathbb{R}^n)$ breaks down since the dual of $H^p(X)$ (p < 1) is made only of multiples of the functional induced by the measure on X, while in the classical case H^{p*} is a space of Lipschitz functions. For ergodic H^p spaces, defined by an ergodic action of \mathbb{R} in X, this result was obtained by Muhly in [6], but his methods are entirely different and do not seem to be applicable to the discrete case. Our "atomic" proof

Eraodic H^p spaces

has also the advantage of giving both H^{1*} and H^{p*} at one stroke, thus explaining why there is such a sharp difference.

Finally, in the third section we extend to the ergodic case the interpolation theorems which, in the real case, are due to Fefferman, Rivière, and Sagher [5]. We obtain interpolation theorems between H^p and L_p , for $1/2 , using once more our atoms and the fact that <math>H^{p,\infty} = H^{p,q} = H^p$.

The restriction p > 1/2 is only technical, and it is only made to simplify the proofs. One can extend the results to p < 1/2 by asking for more cancellations in the definition of the atoms, in the same way as in [3].

 $H^{p,q}$ spaces. Definitions. Let (X, m) be a nonatomic probability space and $T: X \to X$ an invertible, measure-preserving, ergodic transformation.

DEFINITION. Let $B \subset X$ be a set of positive measure such that for some $k \ge 1$ we have

$$T^i B \cap T^j B = \emptyset, \quad i \neq j, \ 0 \leq i, j \leq k-1.$$

Then the set $R = \bigcup_{i=0}^{k-1} T^i B$ will be called an *ergodic rectangle* with base B and length k.

DEFINITION. Let p, q be real numbers, 1/2 , <math>p < q. A real-valued function a is a (p, q) atom if either

(1) a is zero outside an ergodic rectangle $R = \bigcup_{i=0}^{k-1} T^i B$ and satisfies

(a)
$$\sum_{j=0}^{k-1} a(T^j x) = 0$$
 for $x \in B$,

(b)
$$k^{-1} \sum_{j=0}^{k-1} |a(T^j x)|^q \le m(R)^{-q/p}, \quad x \in B, \ q < \infty,$$

$$||a||_{\infty} \le m(R)^{-1/p} \quad \text{if } \ q = \infty,$$

or

(2)
$$a \in L_q(X)$$
, $||a||_q \le 1$.

We will say that an atom is of type 1 if it verifies (1) and of type 2 if it verifies (2).

It is easy to show that (b) implies that

$$||a||_a \leq m(R)^{(1/q)-(1/p)}$$

Definition. For p, q as before, $H^{p,q}(X)$ is the set of functions f that can be written as

$$f = \sum_{i=1}^{\infty} c_i a_i$$

where a_i are (p, q) atoms, $\sum_{i=1}^{\infty} |c_i|^p < \infty$, and the convergence is in the L_n -metric.

We introduce a metric in $H^{p,q}(X)$ by

$$d_{p,q}(h_1, h_2) = |h_1 - h_2|_{p,q}$$

where

$$|h|_{p,q} = \{\inf \sum_{i=1}^{\infty} |c_i|^p : h = \sum_{i=1}^{\infty} c_i a_i, \sum_{i=1}^{\infty} |c_i|^p < \infty \}.$$

It is clear that $H^{p,\infty} \subset H^{p,q} \subset H^{p,r}$ if $r \leq q \leq \infty$, the inclusion being continuous.

We will show that the converse also holds by using a characterization of the $H^{p,q}$ spaces in terms of a maximal operator.

The maximal operator. Let $\varphi \in L_1(\mathbf{Z})$ and $f \in L_1(\mathbf{X})$. The convolution of f and φ is defined as $(f*\varphi)(x) = \sum_{n \in \mathbf{Z}} f(T^{-n}x) \varphi(n)$. It is obvious that $\|f*\varphi\|_1 \le \|\varphi\|_1 \|f\|_1$.

DEFINITION. Let φ be a nonnegative $C^{\infty}(\mathbf{R})$ function with support in (-1, 1) and L > 0. For $f \in L_1(X)$ we define

$$M(L, \varphi) f(x) = \sup_{|i| < n < L} |(f * \varphi_n)(T^i x)|$$

and

$$M(\varphi) f(x) = \lim_{L \to \infty} M(L, \varphi) f(x)$$

where

$$\varphi_n(m) = \frac{1}{n} \varphi\left(\frac{m}{n}\right), \quad m \in \mathbb{Z}.$$

We also define

$$M(L) f(x) = \sup M(L, \varphi) f(x) (A(\varphi))^{-1}$$

where the sup is taken over all C^{∞} functions with support in (-1, 1) and where $A(\varphi)$ is the normalizing factor

$$A(\varphi) = ||\varphi||_{\infty} + ||\varphi'||_{\infty}.$$

Finally,

$$Mf(x) = \lim_{L \to \infty} M(L) f(x).$$

It is not difficult to show that this operator is dominated by the ergodic

maximal operator, and therefore is of weak type (1, 1) and bounded in any L_q , 1 < q.

We now show that atoms behave well with respect to the maximal operator. More precisely:

PROPOSITION. Let a be a (p, q) atom. Then $Ma \in L_p$, and $||Ma||_p \leq C$, where C is an absolute constant.

Proof. If a is a type 2 atom then since our space has measure one we have

$$||Ma||_p \le ||Ma||_q \le C ||a||_q \le C$$
 for $q > 1$.

For q = 1 we use Kolmogorov's inequality to obtain

$$||Ma||_p \leqslant C ||a||_1 \leqslant C.$$

If a is a type 1 atom, we use a transference argument.

We say that a function $A: Z \to R$ is a (p, q) atom in the integers if its support is contained in an interval $(l, l+1, \dots, l+k-1)$ and

(a)
$$\sum A(n) = 0,$$

(b)
$$k^{-1} \sum_{i=0}^{k-1} |A(l+i)|^q \le k^{-q/p}$$
.

We will show that if we consider MA where M is the maximal operator defined above, we have

$$\sum_{n=-\infty}^{\infty} |MA(n)|^p \leqslant C(p, q)$$

where C depends only on p and q. The proof is an adaptation to the integers of the standard argument for the continuous case, and we include it only for completeness.

First of all, since M commutes with translations, we can assume that l=0. Now

$$\begin{split} \sum_{m=-4k}^{4k} |MA(m)|^p &\leqslant (8k+1) \left(\frac{1}{8k+1} \sum_{m=-4k}^{4k} |MA(m)|^q \right)^{p/q} \\ &\leqslant C(p, q) (8k+1)^{1-(p/q)} \left(\sum_{m=-\infty}^{\infty} |A(m)|^q \right)^{p/q} \\ &\leqslant C(p, q) (8k+1)^{1-(p/q)} k^{-(1-(p/q))} \\ &\leqslant C'(p, q). \end{split}$$

Let us now fix |m| > 4k, and let us fix n, L, φ and |i| < n < L. Then

$$(A * \varphi_n)(m+i) = \sum_j A(m+i-j) \varphi_n(j) = \sum_{j=0}^{k-1} A(j) \varphi_n(m+i-j)$$
$$= \sum_{j=0}^{k-1} A(j) \left(\frac{1}{n} \left(\varphi\left(\frac{m+i-j}{n}\right) - \varphi\left(\frac{m+i}{n}\right) \right) \right).$$

Now the sum is zero unless n > |m/4|, for if $n \le |m/4|$ then |i| < |m|/4, j < k < |m|/4, and thus |m+i-j| > |m| - |m/2| > n. Therefore

$$|(A * \varphi_n)(m+i)| \leq \frac{1}{n^2} \sum_{j=0}^{k-1} |A(j)| A(\varphi)j$$

$$\leq \frac{A(\varphi)C}{m^2} k \sum_{j=0}^{k-1} |A(j)| \leq \frac{CA(\varphi)}{m^2} k^{2-(1/p)}.$$

This means that

$$|MA(m)| \le \frac{C}{m^2} k^{2-(1/p)}$$
 if $|m| > 4k$

and

$$\sum_{|m|>4k} |MA(m)|^p \leqslant Ck^{2p-1} \sum_{|m|>4k} \frac{1}{m^{2p}} \leqslant C' \quad \text{if } p > 1/2.$$

We can now go back to the ergodic case. Let a be a (p, q) atom with support in

$$R = \bigcup_{i=0}^{k-1} T^i B.$$

For each $x \in X$ we consider the function

$$a_{\mathbf{x}}(n) = a(T^n x).$$

Since the orbit of x enters B infinitely many times, let us call y_i the points of the orbit that belong to B. Then for each n, $a_x(n) = a(T^l y_i)$ for some i, $0 \le l \le k$. It is then clear that we can write

$$a_{\mathbf{x}}(n) = \sum_{i \in \mathbf{Z}} m(B)^{-1/p} A_{i,\mathbf{x}}(n)$$

where $A_{i,x}(n) = m(B)^{1/p} a(T^n x)$ are (p, q) atoms in the integers with support in $(l_i, \ldots, l_i + k - 1)$ with $y_i = T^{l_i} x \in B$. Therefore for N > L > k

$$\int_{X} |M(L) a(x)|^{p} dx = \int_{X} \frac{1}{2N+1} \sum_{n=-N}^{N} |M(L) a_{x}(n)|^{p} dx$$

$$= \int_{X} \frac{1}{2N+1} \sum_{n=-N}^{N} \sum_{i} |M(L) m(B)^{-1/p} A_{i,x}(n)|^{p} dx.$$

Eraodic HP spaces

Now the atoms $A_{i,x}$ whose support does not cut the interval (-3N, 3N) do not contribute anything to M(L) since it is easy to check that

$$M(L) A_{i,x}(n) = 0$$
 if $n \notin (-3N, 3N)$;

since k < L < N, we can thus restrict our attention to those atoms whose support is contained in (-4N, 4N).

Now

$$\int_{X} |M(L) a(x)|^{p} dx \leq \int_{X} \frac{1}{2N+1} \sum_{n=-N}^{N} \sum_{\text{supp} A_{i} \in (-4N,4N)} |M(L) m(B)^{-1/p} A_{i,x}(n)|^{p} dx$$

$$\leq \frac{1}{2N+1} m(B)^{-1} \int_{X} \sum_{\text{supp} A_{i} \in (-4N,4N)} \sum_{n=-\infty}^{\infty} |M(L) A_{i,x}(n)|^{p} dx$$

$$\leq \frac{m(R)^{-1}}{2N+1} \int_{X} k \sum_{\text{supp} A_{i} \in (-4N,4N)} C dx$$

$$= \frac{m(R)^{-1}}{2N+1} \int_{X} k \{\text{number of } A_{i} \text{'s with} \}$$

$$\sup_{n=-\infty} dx = (-4N,4N) \}$$

$$= \frac{m(R)^{-1}}{2N+1} \int_{X} \sum_{i=-4N}^{4N} \chi_{R}(T^{i} x) dx$$

$$= C \frac{8N+1}{2N+1} m(R)^{-1} \int_{X} \chi_{R} = C \frac{8N+1}{2N+1}.$$

Letting N and L go to infinity, we are done.

Our proposition obviously implies that if $f \in H^{p,q}$ then $Mf \in L_p$ and

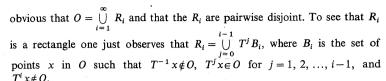
$$||Mf||^p \leqslant C \sum |c_i|^p$$
.

This means that any $H^{p,q}$ function has a maximal function in L_p . Our next aim is to prove the converse, namely that if f is an L_p function whose maximal function Mf is in L_p then f is in $H^{p,\infty}$. As a corollary we will have $H^{p,q} = H^{p,\infty}$.

First of all we need two technical lemmas.

LEMMA 1. Let $O \subset X$ be a set of positive measure such that the subset of Z defined by $O^x = \{n \in Z; T^n x \in O\}$ does not contain an interval of infinite length. Then O can be written as a disjoint union of ergodic rectangles R_i of length i.

Proof. One just defines $R_i = \{x \in O; l(O_0^x) = i\}$, i.e. the set of points in O such that the interval of O^x that contains the origin has length i. It is



LEMMA 2. Let I be an interval in **R** of the form [a, b], $a, b \in \mathbb{Z}$. Then there exist a finite number of C^{∞} functions $\{\Psi_i\}$ such that

(a)
$$\sum_{j} \Psi_{j}(x) = 1$$
 for $x \in I$; supp $\Psi_{j} \subset [a-1/2, b+1/2]$,

(b) $\|\Psi_j'\|_{\infty} \leq C |\operatorname{supp} \Psi_j|^{-1}$,

(c) $d(\text{supp } \Psi_j, \mathbf{R} - \overline{I}) \sim |\text{supp } \Psi_j|; \overline{I} - [a-1, b+1],$

(d) $\sum_{n \in \mathbb{Z}} \Psi_j(n) \geqslant C |\text{supp } \Psi_j|$.

This is just a version adapted to the integers of a smooth partition of the characteristic function of an interval.

Proof. Let N=b-a. If $N \le 3$, we do it with just one function since it is clear that one can always construct a C^{∞} function identically 1 on [a, b] with support in [a-1/2, b+1/2] and satisfying (b), (c) and (d).

If N > 3, we consider an interval $I_1 = [a_1, b_1], a_1, b_1 \in \mathbb{Z}, b_1 - a_1 = \lceil N/3 \rceil$ and situated in the middle of I. We take a C^{∞} function ξ_1 satisfying

$$\xi_1(x) = 1, \quad x \in I_1, \quad 0 \le \xi_1 \le 1,$$

 $\sup \xi_1 \subset [a_1 - [N/6], \ b_1 + [N/6]],$
 $\|\xi_1'\|_{\infty} \le 6/N.$

From now on we consider only what is left on the right-hand side of I_1 (and proceed on the left side in the same way).

Let $J=[b_1,\,b]$. We cut it in half, consider $\begin{bmatrix}b_1,\,b_1+\lceil |J|/2\end{bmatrix}\end{bmatrix}=\begin{bmatrix}b_1,\,b_2\end{bmatrix}$ and construct ξ_2 such that $0\leqslant \xi_2\leqslant 1,\,\,\xi_2\in C^\infty$ and

$$\begin{split} \sup & \xi_2 \subset [b_1 - |J|/4, \ b_2 + |J|/4], \ ||\xi_2'|| \leqslant 4/|J|, \\ & \xi_2(x) = 1, \quad x \in [b_1, \ b_2]. \end{split}$$

One then repeats the process on $[b_2, b]$ until one gets an interval $[b_k, b]$ of length less than 4, in which case we define ξ_{k+1} as above, identically 1 on $[b_k, b]$, with support in $[b_k-1/2, b+1/2]$, and $\|\xi'_{k+1}\|_{\infty} \leq 2$.

It is clear now that if we define

$$\Psi_j = \frac{\xi_j}{\sum_i \xi_j}$$

we have the family of functions satisfying (a), (b), (c) and (d). We are ready to prove our main result.

Eraodic Hp spaces

Theorem 1. Let f be an L_p function such that Mf is in L_p . Then f can be written as $f(x) = \sum_i c_i a_i(x)$ where the a_i are (p, ∞) atoms and

$$\sum_{i} |c_i|^p \leqslant C ||Mf||_p^p.$$

Proof. For each $\lambda > 0$ consider the set

$$O(\lambda) = \{ x \in X; Mf(x) > \lambda \}.$$

Let $\lambda_0 = \inf \{ \lambda > 0; m(O_{\lambda}) < 1 \}$. If $\lambda_0 \neq 0$, we consider the sequence $\lambda_k = 2^k \lambda_0, k = 0, 1, \dots$

Let $k \neq 0$. Then $m(O(\lambda_k)) < 1$ and since T is ergodic we can use Lemma 1 and write

$$O(\lambda_k) = \bigcup_i R_i^k$$

where the R_i^k are disjoint rectangles of length i; we now write for k fixed

$$f = \sum_{i} f \chi_{R_{i}^{k}} + f \left(1 - \chi_{O(\lambda_{k})}\right).$$

For each i fixed, we use Lemma 2 on the interval [0, l(i)](l(i)+1) = length of R_i) and we call $\{\Psi_{i,j}^k\}$ the corresponding partition of unity. Let B_i^k be the base of R_i^k and write

$$m_{i,j}^{k}(T^{m}x) = \frac{\sum_{n} f(T^{n}x) \Psi_{i,j}^{k}(n)}{\sum_{n} \Psi_{i,j}^{k}(n)}, \quad x \in B_{i}^{k}, \ m \in [0, \ l(i)],$$

$$m_{i,j}^{k}(T^{m}x) = 0 \quad \text{if} \quad T^{m}x \notin R_{i}^{k}.$$

Each $\Psi_{i,j}^k$ can be used to define a function on X, which we will call by the same name, as

$$\Psi_{i,j}^k(T^n x) = \Psi_{i,j}^k(n)$$
 for $x \in B_i^k$, $0 \le n \le l(i)$,

and zero otherwise. It is clear that $\sum_{j} \Psi_{i,j}^{k} = \chi_{R_{i}^{k}}$. Now for k fixed we may write

$$f = \sum_{i} \sum_{j} (f - m_{i,j}^{k}) \, \Psi_{i,j}^{k} + \sum_{i,j} \, m_{i,j}^{k} \, \Psi_{i,j}^{k} + f \, (1 - \chi_{O(\lambda_{k})}) = b_{k} + g_{k}$$

where

$$\begin{split} b_k &= \sum_i \sum_j \left(f - m_{i,j}^k \right) \varPsi_{i,j}^k, \\ g_k &= \sum_{i,j} m_{i,j}^k \varPsi_{i,j}^k + f \left(1 - \chi_{O(\lambda_k)} \right). \end{split}$$

Let (a-h, a+h) be the smallest interval containing the support of $\Psi = \Psi_{i,j}^k$ with $a, h \in \mathbb{Z}$. Let N be a fixed number (independent of f, i, j, k) such that (a-Nh, a+Nh) intersects R-(-1, l(i)+1). The let

$$\varphi(s) = Nh \Psi(a - sNh).$$

It is clear that

$$\|\varphi\|_{\infty} \leq Nh$$
 and $\|\varphi'\|_{\infty} \leq (Nh)^2 \|\Psi'\|_{\infty} \leq Ch$

and

$$(f * \varphi_{Nh})(T^a x) = \sum_{n} f(T^{a-n} x) \varphi_{Nh}(n) = \sum_{n} f(T^{a-n} x) \Psi(a-n)$$
$$= \sum_{n} f(T^n x) \Psi(n).$$

Remembering the definition of our maximal operator, we have

$$\left|\sum_{n} f(T^{n} x) \Psi(n)\right| \leqslant C M f(T^{a+1} x) h$$

provided |l| < Nh. Now because of property (c) in Lemma 2 we choose l such that $T^{a+l}(x) \notin O(\lambda_k)$ and by property (d)

$$m_{i,j}^k \leq C M f(x')$$
 with $x' \in X - O(\lambda_k)$.

Therefore

$$m_{i,j}^k \leqslant C\lambda_k$$
.

On the other hand, if $x \notin O(\lambda_k)$ then

$$f(x) \leq Mf(x) < \lambda_k$$

and we obtain

$$g_k(x) \leq C\lambda_k$$
.

Since we are assuming $Mf \in L_p$, it is clear that $m(O(\lambda_k)) \to 0$ as $\lambda_k \to \infty$, and therefore, since b_k has support in $O(\lambda_k)$, we have

$$f(x) = \lim_{k \to \infty} g_k,$$

and defining

$$b_0(x) = f(x)$$

we have

$$f(x) = \sum_{k=0}^{\infty} (g_{k+1} - g_k) = \sum_{k=0}^{\infty} (b_k - b_{k+1}).$$

Now we observe that $O(\lambda_{k+1}) \subset O(\lambda_k)$ and therefore each

$$R_j^{k+1} \subset O(\lambda_k) = \bigcup R_i^k;$$

so if we write

$$R_j^{k+1} = \bigcup_i (R_j^{k+1} \cap R_i^k)$$

we obtain R_j^{k+1} as a disjoint union of $R_{i,j}^{k+1} = R_j^{k+1} \cap R_i^k$, where each $R_{i,j}^{k+1}$ is a rectangle with base $B_{i,j}^{k+1} = B_j^{k+1} \cap R_i^k$, and length that of R_j^{k+1} . If we write

$$a_{i,j}^k = (f - m_{i,j}^k) \, \Psi_{i,j}^k$$

then

$$b_k = \sum_i b_{i,k}$$
 with $b_{i,k} = \sum_j a_{i,j}^k$.

Let us fix i and write

$$A_{i,k} = b_{i,k} - \sum_{j} b_{j,k+1} \chi_{R_{i,j}^{k+1}},$$

the sum extended over all j such that $R_{i,j}^{k+1} \neq \emptyset$. From the above observation on the decompositions of $O(\lambda_{k+1})$ and $O(\lambda_k)$ it is clear that

$$b_k - b_{k+1} = \sum_i A_{i,k} = g_{k+1} - g_k.$$

But since the $A_{i,k}$ have disjoint supports for k fixed, it follows that for any x

$$|A_{i,k}(x)| = |g_{k+1}(x) - g_k(x)| \leqslant C\lambda_k.$$

Also from the definition of $m_{i,j}^k$ it follows that

$$\sum_{l=0}^{i-1} a_{i,j}(T^l x) = 0, \quad x \in B_i^k.$$

These last two observations imply that

$$\widetilde{A}_{i,k} = \left(C\lambda_k m(R_i^k)^{1/p}\right)^{-1} A_{i,k}$$

is a (p, ∞) atom for k = 1, 2, ...

For k = 0 we define $A_0 = b_0 - b_1 = g_1 - g_0$, which implies

$$|A_0(x)| \leqslant C\lambda_0,$$

so that

$$\tilde{A}_0 = (C\lambda_0)^{-1} A_0$$

is a (p, ∞) atom of type 2. We may then write

$$f = \sum_{k=0}^{\infty} (b_k - b_{k+1}) = C\lambda_0 \, \tilde{A}_0 + \sum_{i,k} C\lambda_k (m(R_{i,k}))^{1/p} \, \tilde{A}_{i,k}$$

where \tilde{A}_0 , $\tilde{A}_{i,k}$ are (p,∞) atoms, while the sum of the pth powers of the coefficients is dominated by

$$C \sum_{k} \lambda_{k}^{p} m(O(\lambda_{k})) = C \sum_{k} \lambda_{k}^{p} \int_{\{X: Mf > \lambda_{k}\}} 1 dx = \int_{X}^{\lambda_{k} < Mf(x)} \sum_{k=0}^{\lambda_{k} < Mf(x)} \lambda_{k}^{p} dx$$
$$\leq C \int_{X} |Mf(x)|^{p} dx.$$

If $\lambda_0=0$ we choose $\lambda_k=2^k,\ k\in \mathbb{Z}.$ Then for each $k,\ m\bigl(O\left(\lambda_k\right)\bigr)<1$ and we may write as above

$$f = b_k + g_k$$

with $|g_k| < C\lambda_k$, which means that $g_k \to 0$ as $k \to -\infty$. On the other hand, since the support of b_k is contained in $O(\lambda_k)$, it follows that $b_k \to 0$ as $k \to \infty$ and therefore

$$f = \lim_{k \to -\infty} b_k = \lim_{k \to \infty} g_k$$

and

$$f(x) = \sum_{k=-\infty}^{\infty} (g_{k+1} - g_k)(x) = \sum_{k=-\infty}^{\infty} (b_k - b_{k+1})(x).$$

From this equality we proceed as in the case $\lambda_0 \neq 0$.

The theorem implies that the set $\{f \in L_p; Mf \in L_p\}$ is contained in $H^{p,\infty} \subset H^{p,q}$ and the metric induced by Mf is equivalent to that of $H^{p,\infty}$. We thus have

$$H^{p,q} = H^{p,\infty} = \{ f \in L_p; Mf \in L_p \}$$

with equivalent metrics. We may therefore drop the q and write simply H^p . The characterization of H^p in terms of the maximal function allows us to show that H^p is a complete metric space.

THEOREM 2. H^p is complete.

Proof. Let $\{f_n\}$ be a Cauchy sequence, i.e.,

$$||M(f_n - f_m)||_p^p \to 0.$$

Then $\{f_n\}$ is a Cauchy sequence in L_p . Let f be its L_p -limit. We will show that $f_n \to f$ in H^p .

First of all, for f, f_n , L, x and ε fixed, there exist k(x), i = i(x) such that

$$M(L)(f-f_n)(x) \leqslant \Big|\sum_{j=-k(x)}^{k(x)} (f-f_n)(T^{i-j}x) \Psi_{k(x)}(j)\Big| + \varepsilon,$$

Ergodic H^p spaces

which means that

$$\int_X M(L)(f-f_n)(x) dz \leq \int_X \left| \sum_{j=-k(x)}^{k(x)} (f-f_n)(T^{i-j}x) \Psi_{k(x)}(j) \right|^p dx + \varepsilon^p.$$

But since

$$\sum_{j=-k(x)}^{k(x)} (f-f_n)(T^{i-j}x) \Psi_{k(x)}(j) \stackrel{L_p}{=} \lim_{m \to \infty} \sum_{j=-k(x)}^{k(x)} (f_m - f_n)(T^{i-j}x) \Psi_{k(x)}(j),$$

we have

$$\int_{X} |M(L)(f-f_n)(x)|^p dx \leq \lim_{m \to \infty} \int_{X} \left| \sum_{j=-k(x)}^{k(x)} (f_m - f_n)(T^{i-j}x) \Psi_{k(x)}(j) \right|^p dx + \varepsilon^p \\
\leq \lim_{m \to \infty} \int_{X} |M(f_m - f_n)(x)|^p dx + \varepsilon^p \leq \widetilde{\varepsilon}$$

if n is big enough. This shows that f is in H^p and $f_n \to f$ in H^p .

Dual spaces. In this section we will show that the dual of H^1 is the space of functions of bounded mean oscillation (BMO), while the dual of $H^p(p < 1)$ is trivial.

For p=1 the result was first proved by Coifman and Weiss [2], while for p<1, in a different setting, Muhly [6] proved that $(H^p)^*$ is trivial. We present a very simple proof based on the atomic decomposition, which gives both cases and explains the reason for the sharp differences. We recall that for any integrable function f one can define f^* as

$$f^{*}(x) = \sup_{n} n^{-1} \sum_{i=0}^{n-1} |f(T^{i}x) - T_{n}f(x)|$$

where

$$T_n f(x) = n^{-1} \sum_{i=0}^{n-1} f(T^i x).$$

A function is said to belong to BMO iff f^* is bounded. We norm BMO by

$$||f||_{\text{BMO}} = ||f||_1 + ||f^*||_{\infty}.$$

We start by showing that any BMO function "is" a linear functional in H^1 .

PROPOSITION. Let $f \in BMO$. Then for any $h \in H^1$ of the form $h = \sum_{i=1}^{N} \lambda_i a_i$,

$$\langle f, h \rangle \equiv \int f h$$

satisfies

$$|\langle f, h \rangle| \leqslant ||f||_{\text{BMO}} \sum_{i=1}^{N} |\lambda_i| \leqslant ||f||_{\text{BMO}} ||h||_{H^1}$$

Therefore f induces a linear functional in H^1 with norm at most $||f||_{BMO}$. Proof. It is enough to show that if a is a $(1, \infty)$ atom, then

$$\left| \int fa \right| \leq ||f||_{\mathrm{BMO}}.$$

If a is a type 2 atom then

$$\left| \int fa \right| \le \int |f| \le ||f||_{\text{BMO}}$$

since $||a||_{\infty} \le 1$. If a is a type 1 atom supported in the rectangle $R = \bigcup_{i=0}^{k-1} T^i B$, then

$$\left| \int_{X} f(x) a(x) \right| = \left| \int_{R} f(x) a(x) \right| = \left| \int_{B} \int_{i=0}^{k-1} a(T^{i} x) f(T^{i} x) \right|$$

$$= \left| \int_{B} \int_{i=0}^{k-1} a(T^{i} x) \left(f(T^{i} x) - T_{n} f(x) \right) \right|$$

$$\leq \int_{B} \int_{i=0}^{k-1} |a(T^{i} x)| \left| f(T^{i} x) - T_{n} f(x) \right|$$

$$\leq k m(R)^{-1} \int_{B} k^{-1} \sum_{i=0}^{k-1} |f(T^{i} x) - T_{n} f(x)|$$

$$\leq k m(R)^{-1} m(B) \|f\|_{BMO} = \|f\|_{BMO}.$$

It follows that BMO $\subset (H^1)^*$. For p < 1 it is trivial that any constant produces a continuous linear functional on H^p .

Let now L be an element of $(H^p)^*$. Fix any q, $1 < q < \infty$. Then if h is in L_n , we have

$$||Mh||_q \leqslant C_q ||h||_q$$

and therefore

$$\left(\int |Mh|^p\right)^{1/p} \leqslant ||Mh||_q \leqslant C ||h||_q,$$

and this means that L defines a linear functional in L_q , and so it can be represented by a function f in $L_{q'} \subset L_1$. Let now a be a (p, ∞) atom of type 1. Then

$$|\langle L, a \rangle| = \Big| \int_{R} fa \Big| \leqslant ||L||.$$

Let us now fix an ergodic rectangle $R = \bigcup_{i=0}^{k-1} T^i B$, and let us write, for any $y \in R$,

$$T_k f(y) = k^{-1} \sum_{i=0}^{k-1} f(T^i x)$$
 where $x \in B$, $y = T^j x$, $0 \le j \le k-1$.

Eraodic Hp spaces

We observe that

$$||f - T_k f||_{L_1(R)} = \sup_{\|g\chi_R\|_{\infty} \le 1} |\int_R (f - T_k f) g|.$$

But

$$\left| \int_{R} (f - T_k f) g \right| = \left| \int_{R} (f - T_k f) (g - T_k g) \right|$$

since

$$\int_{R} (f - T_{k} f) T_{k} g = \int_{B} \sum_{i=0}^{k-1} (f - T_{k} f) (T^{i} x) T_{k} g (T^{i} x),$$

but $T_k g(T^i x)$ is independent of i and

$$\sum_{i=0}^{k-1} (f - T_k f)(T^i x) = T_k f(x) - T_k f(x) = 0.$$

The same argument shows that

$$\int\limits_R (T_k f)(g - T_k g) = 0$$

and therefore

$$\left| \int_{R} (f - T_k f) g \right| = \left| \int_{R} f (g - T_k g) \right|$$

$$= \left| \int_{R} f \frac{g - T_k g}{(km(B))^{1/p}} \left(km(B) \right)^{1/p} \right| \le 2 \left(km(B) \right)^{1/p} \left| \int_{R} f a \right|$$

with

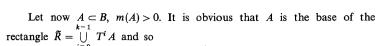
$$a = \frac{g - T_k g}{2(km(B))^{1/p}} \chi_R,$$

which is a (p, ∞) atom. Therefore

$$||f - T_k f||_{L_1(R)} \le 2m(R)^{1/p}||L||.$$

This can be written as

$$\frac{1}{m(B)} \int_{R} k^{-1} \sum_{i=0}^{k-1} |f(T^{i}x) - T_{k}f(x)| \leq 2m(R)^{(1/p)-1} ||L||.$$



$$\frac{1}{m(A)} \int_{A} k^{-1} \sum_{i=0}^{k-1} |f(T^{i}x) - T_{k}f| \leq 2||L|| m(\tilde{R})^{(1/p)-1} \leq 2||L|| m(R)^{(1/p)-1}.$$

Since A is arbitrary, this implies that for almost all x in B we have

$$k^{-1} \sum_{i=0}^{k-1} |f(T^i x) - T_k f| \leq 2 ||L|| m(R)^{(1/p)-1}.$$

If p = 1, this means that

$$k^{-1} \sum_{i=0}^{k-1} |f(T^i x) - T_k f| \le 2||L||$$
 a.e.

If p < 1, by choosing small rectangles one gets

$$k^{-1} \sum_{i=0}^{k-1} |f(T^i x) - T_k f| = 0$$
 a.e.,

i.e. f is constant on orbits, and since T is ergodic, f is constant.

We have thus shown that for p < 1, f must be constant, while for p = 1 we have $f \in BMO$ and

$$||f^*|| \leq 2||L||.$$

Furthermore, since any function g such that $||g||_{\infty} \le 1$ is a $(1, \infty)$ atom, we have $|\int fg| \le ||L||$ for any such g. Therefore $||f||_1 \le ||L||$ and finally

$$||f||_{\text{BMO}} = ||f||_1 + ||f^*||_{\infty} \le 3 ||L||_1$$

Interpolation. In this section we will show that one can interpolate between H^p , $1/2 and <math>L^q$, q > 1.

DEFINITION. We will say that a sublinear operator T is of weak type $(H^p, p), p \leq 1$ if

$$m\{x; |Tf(x)| > \lambda\} \leq (M/\lambda)^p |f|_{p,\infty}.$$

We will prove that if an operator T is of weak type (H^{p_1}, p_1) and (p_2, p_2) with $1/2 < p_1 \le 1 < p_2 \le \infty$, then T is bounded in H^p , $p_1 , and also in <math>L_p$, 1 .

We will split the proof into two theorems.

THEOREM 1. Let T be a sublinear operator of weak type (H^{p_1}, p_1) and (p_2, p_2) , $1/2 < p_1 \le 1 < p_2$. Then T is bounded from H^p into L_p , $p_1 . Proof. It is enough to show that <math>||Ta||_p < C$ for any (p, ∞) atom.

If a is a type 1 atom with support in $R = \bigcup_{i=0}^{k-1} T^i B$, then it follows that

$$||a||_{p_2} \leqslant m(R)^{(1/p_2)-(1/p)}$$

and

$$(k^{-1} \sum_{i=0}^{k-1} |a(T^i x)|^{p_2})^{1/p_2} \leq m(R)^{-1/p},$$

which means that

$$b = m(R)^{(1/p)-(1/p_1)} a$$

is a (p_1, p_2) atom since

$$\left(k^{-1}\sum_{i=0}^{k-1}|b(T^{i}x)|^{p_{2}}\right)^{1/p_{2}} \leqslant m(R)^{-1/p_{1}}.$$

Since $H^{p_1,p_2}=H^{p_1,\,\infty}=H^{p_1}$ with equivalent "norms" it follows that $a\!\in\!H^{p_1}$ and

$$|a|_{p_1} \le m(R)^{((1/p_1)-(1/p))p_1} = m(R)^{1-(p_1/p)}$$

Therefore we know that

$$m\{x; |Ta(x)| > \lambda\} \le (M_1/\lambda)^{p_1} |a|_{p_1} \le (M_1/\lambda)^{p_1} m(R)^{1-(p_1/p)}$$

and

$$m\{x; |Ta(x)| > \lambda\} \le (M_2/\lambda)^{p_2} \int |a|^{p_2} \le (M_2/\lambda)^{p_2} m(R)^{1-(p_2/p)}$$

From these two estimates one obtains a bound for $||Ta||_p^p$ in the usual way: we fix a number D and write

$$\int |Ta|^{p} = p \int_{0}^{Dm(R)^{-1/p}} \lambda^{p-1} m \{x; |Ta(x)| > \lambda\} d\lambda +$$

$$+ p \int_{0m(R)^{-1/p}}^{\infty} \lambda^{p-1} m \{x; |Ta(x)| > \lambda\} d\lambda$$

$$\leq p \int_{0}^{Dm(R)^{-1/p}} \lambda^{p-1-p_{1}} M_{1}^{p_{1}} m(R)^{1-(p_{1}/p)} d\lambda +$$

$$+ p \int_{0m(R)^{-1/p}}^{\infty} \lambda^{p-1-p_{2}} M_{2}^{p_{2}} m(R)^{1-(p_{2}/p)} d\lambda.$$

Since $p_1 , the last expression is bounded by$

$$\begin{split} \frac{p}{p-p_1} \, M_1^{p_1} \, m(R)^{1-(p_1/p)} \big(Dm(R)^{-1/p} \big)^{p-p_1} + \\ + \frac{p}{p_2-p} \, M_2^{p_2} \, m\left(R\right)^{1-(p_2/p)} \big(Dm(R)^{-1/p} \big)^{p-p_2} \\ = \frac{p}{p-p_1} \, M_1^{p_1} \, D^{p-p_1} + \frac{p}{p_2-p} \, M_2^{p_2} \, D^{p-p_2}. \end{split}$$

Taking $D = (M_2^{p_2} M_1^{-p_1})^{1/(p_2 - p_1)}$, we obtain

$$||Ta||_p \le \left(\frac{p}{p-p_1} + \frac{p}{p_2-p}\right)^{1/p} M_1^t M_2^{1-t}$$

with

$$t = \frac{p_1 (p_2 - p)}{p (p_2 - p_1)}.$$

If a is a type 2 atom, i.e. if $a \in L_{\infty}$, $\|a\|_{\infty} \le 1$, then obviously $a \in H^{P_1}$ with $\|a\|_{P_1} \le 1$ and $a \in L_{P_2}$ with $\|a\|_{P_2} \le 1$, and we may write

$$\int |Ta|^{p} = p \int_{0}^{D} \lambda^{p-1} m \{x; |Ta| > \lambda \} d\lambda + p \int_{D}^{\infty} \lambda^{p-1} m \{x; |Ta| > \lambda \} d\lambda$$

$$\leq p \int_{0}^{D} \lambda^{p-1-p_{1}} M_{1}^{p_{1}} d\lambda + p \int_{D}^{\infty} \lambda^{p-1-p_{2}} M_{2}^{p_{2}} d\lambda$$

$$\leq \frac{p}{p-p_{1}} M_{1}^{p_{1}} D^{p-p_{1}} + \frac{p}{p_{2}-p} M_{2}^{p_{2}} D^{p-p_{2}}.$$

Choosing D as before, we have the same bound for $||Ta||_p$. This ends the proof of Theorem 1.

Next, we want to show that an operator of weak type $(H^1, 1)$ and (p_2, p_2) , $1 < p_2$, is bounded in $L_p(1 . The idea is, as in the Marcinkiewicz interpolation theorem, to split <math>f$ in L_p into two functions f_1 and f_2 , with f_1 in H_1 and f_2 in L_{p_2} . In order to be able to do this we need a technical lemma that will play the role of the Calderón-Zygmund decomposition.

For p > 1, let us fix p_0 , $1 < p_0 < p$, and let us consider the operator

$$\Lambda_{p_0}(f) = (|f|^{p_0*})^{1/p_0}$$

where

$$g^*(x) = \sup k^{-1} \sum_{i=0}^{k-1} |g(T^i x)|.$$

Then obviously, since $p/p_0 > 1$, we have

$$\int |A_{p_0}(f)|^p = \int (|f|^{p_0*})^{p/p_0} \le C_{p/p_0} \int |f|^p,$$

which means that Λ_{p_0} is a bounded operator in L_p , and in particular the set $O(\lambda) = \{x; \ \Lambda_{p_0}(f)(x) > \lambda\}$ has measure strictly less than 1 if $\lambda > C_{p/p_0} ||f||_p$.

LEMMA 3. Let $f \in L_p$ and $\lambda > C_{p/p_0} ||f||_p$. Then $O(\lambda) = \{x; \Lambda_{p_0} f(x) > \lambda\}$ = $\bigcup R_j$ where the R_j are ergodic rectangles, pairwise disjoint, and for each $x \in B_j$ (the base of R_j) we have

$$(j^{-1} \sum_{i=0}^{j-1} |f(T^i x)|^{p_0})^{1/p_0} \le 2\lambda.$$

Proof. As in Lemma 1, we just define

$$B_j = \{ x \in O(\lambda); T^{-1} x \notin O(\lambda), x \in O(\lambda), \dots, T^{j-1} x \in O(\lambda), T^j x \notin O(\lambda) \},$$

and it follows that $O(\lambda) = \bigcup R_j$ with $R_j = \bigcup_{i=0}^{j-1} T^i B_j$. Finally

$$j^{-1} \sum_{i=0}^{j-1} |f(T^i x)|^{p_0} \leq \frac{2}{j+1} \sum_{i=-1}^{j-1} |f(T^i x)|^{p_0} \leq 2f^{p_0 *} (T^{-1} x) \leq 2\lambda^{p_0}$$

since $T^{-1}x \notin O(\lambda)$.

THEOREM 2. Let T be a sublinear operator of weak type $(H^1, 1)$ and $(p_2, p_2), 1 < p_2 < \infty$. Then T is bounded in $L_p, 1 .$

For $p_2 = \infty$, the result holds assuming that T is bounded in L_{∞} .

Proof. We will prove the theorem only in the case $p_2 < \infty$, since the other case is similar.

Let f be an L_p function, $1 . We choose <math>p_0$, $1 < p_0 < p$, and we consider the operator Λ_{p_0} . For each $\lambda > C_{p/p_0} ||f||_p$, we use Lemma 3 to write

$$O(\lambda) = \{x; \Lambda_{po} f(x) > \lambda\} = \bigcup R_i$$

For each $y \in R_i$, we define

$$(T_j f)(y) = j^{-1} \sum_{i=0}^{j-1} f(T^i x)$$

where $x \in B_j$, $y = T^l x$, $0 \le l \le j-1$. We may then write

$$f = \sum_{j} (f - T_{j} f) \chi_{R_{j}} + \sum_{j} (T_{j} f) \chi_{R_{j}} + f (1 - \chi_{O(\lambda)}) \equiv b_{\lambda} + g_{\lambda}$$

where

$$b_{\lambda} = \sum_{i} (f - T_{i} f) \chi_{R_{j}}.$$

Since

$$|(T_j f)(y)| \le (j^{-1} \sum_{i=0}^{j-1} |f(T^i x)|^{p_0})^{1/p_0} \le 2\lambda,$$

we have for each j, and for each $x \in B_j$,

$$(j^{-1} \sum_{i=0}^{j-1} |f(T^i x) - T_j f(T^i x)|^{p_0})^{1/p_0}$$

$$\leq (j^{-1}\sum_{i=0}^{j-1}|f(T^ix)|^{p_0})^{1/p_0}+|T_jf(x)|\leq 4\lambda.$$

Therefore the function

$$a_j = \frac{1}{4\lambda m(R_j)} (f - T_j f) \chi_{R_j}$$

is a (1, p_0) atom supported in the rectangle R_j . This means that we can write b_λ as an H^{1,p_0} function, since

$$b_{\lambda} = \sum_{j} 4\lambda \, m(R_{j}) \, a_{j}$$

with norm bounded by $4\lambda \sum m(R_j) = 4\lambda m(O(\lambda))$. Since $H^{1,p_0} = H^1$ with equivalent norms, we have $b_\lambda \in H^1$ and $|b|_{H^1} \leqslant C\lambda m(O(\lambda))$. On the other hand, g_λ is in L_{p_2} since

$$g_{\lambda} = \sum_{j} (T_{j} f) \chi_{R_{j}} + f (1 - \chi_{O(\lambda)});$$

so if $y \in O(\lambda)$ we have $g_{\lambda}(y) = T_j f(y)$ for some j, and then $|g_{\lambda}(y)| \le 2\lambda$, while if $y \notin O(\lambda)$, then

$$|g_{\lambda}(y)| = |f(y)| \leq (\Lambda_{p_0} f)(y) \leq \lambda.$$

These are the type of estimates one needs to make the argument in the Marcinkiewicz interpolation theorem work.

Let us consider a constant L larger than $C_{p/p_0}||f||_p$. Then we have

$$\begin{split} \int |Tf|^{p} & \leq p \int_{0}^{L} \lambda^{p-1} \, m \, \{x; \, |Tf(x)| > \lambda \} \, d\lambda + \\ & + p \int_{L}^{\infty} \lambda^{p-1} \, m \, \{x; \, |Tg_{\lambda}(x)| > \lambda/2 \} \, d\lambda + \\ & + p \int_{L}^{\infty} \lambda^{p-1} \, m \, \{x; \, |Tb_{\lambda}(x)| > \lambda/2 \} \, d\lambda \\ & = I_{1} + I_{2} + I_{3} \, . \end{split}$$

In order to estimate I_1 , we recall that $f \in L_p \Rightarrow a = f/||f||_p$ is a (1, p) atom, and therefore f belongs to H^1 with norm bounded by $C||f||_p$. Therefore

$$I_1 \leqslant Cp \int_0^L \lambda^{p-2} ||f||_p d\lambda = C \frac{p}{p-1} ||f||_p L^{p-1}.$$

For I_3 we use the fact that $b_{\lambda} \in H^1$ with norm bounded by $C\lambda m(O(\lambda))$ to obtain

$$\begin{split} I_{3} \leqslant Cp \int\limits_{L}^{\infty} \lambda^{p-2} \lambda m \big(O(\lambda) \big) d\lambda \leqslant Cp \int\limits_{0}^{\infty} \lambda^{p-1} m \left\{ x; \ \varLambda_{p_{0}} f > \lambda \right\} d\lambda \\ &= C \int (\varLambda_{p_{0}} f)^{p} \leqslant C \cdot C_{p/p_{0}}^{p} \int |f|^{p} = C' ||f||_{p}^{p}. \end{split}$$

Finally, for I_2 we use the fact that T is of weak type (p_2, p_2) , and we have

$$\begin{split} I_{2} &\leqslant Cp \int_{L}^{\infty} \lambda^{p-p_{2}-1} \int |g|^{p_{2}} dx d\lambda \\ &= Cp \int_{L}^{\infty} \lambda^{p-p_{2}-1} \left(\int_{O(\lambda)} |g|^{p_{2}} dx + \int_{X-O(\lambda)} |g|^{p_{2}} dx \right) d\lambda \\ &\leqslant Cp \int_{0}^{\infty} \lambda^{p-p_{2}-1} \left(2\lambda \right)^{p_{2}} m(O(\lambda)) d\lambda \\ &+ Cp \int_{L}^{\infty} \lambda^{p-p_{2}-1} \int_{(A_{p_{0}}f \leqslant \lambda)} |f|^{p_{2}} dx d\lambda \\ &\leqslant C \cdot 2^{p_{2}} p \int_{0}^{\infty} \lambda^{p-1} m\{x; \ \Lambda_{p_{0}}f > \lambda\} d\lambda + \\ &+ Cp \int |f|^{p_{2}} \int_{A_{p_{0}}f}^{\infty} \lambda^{p-p_{2}-1} d\lambda dx \\ &\leqslant C \cdot 2^{p_{2}} \int (\Lambda_{p_{0}}f)^{p} dx + C \frac{p}{p_{2}-p} \int |f|^{p_{2}} (\Lambda_{p_{0}}f)^{p-p_{2}} dx \\ &\leqslant \left(C \cdot 2^{p_{2}} + C \frac{p}{p_{2}-p} \right) \int (\Lambda_{p_{0}}f)^{p} dx \leqslant C' C_{p/p_{0}}^{p} \int |f|^{p} dx. \end{split}$$

Choosing now $L=2C_{p/p_0}||f||_p$, we have obtained

 $\int |Tf|^p \leq C ||f||_p^p$

as we wanted.

Clearly Theorems 1 and 2 together imply that a sublinear operator of weak type (H^{p_1}, p_1) and $(p_2, p_2), p_1 < 1 < p_2$, must be bounded in L_p , 1 .

References

- [1] R. Coifman, A real variable characterization of H^p, Studia Math. 51 (1974), 269-274.
- R. Coifman and G. Weiss, Maximal function and H^p spaces defined by ergodic transformations, Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 1761-1763.
- -, -, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645,
- [4] C. Fefferman, Characterizations of bounded mean oscillation, ibid. 77 (1971), 582-588.
- [5] C. Fefferman, N. Rivière, and Y. Sagher, Interpolation between H^p spaces: The real method, Trans. Amer. Math. Soc. 191 (1974), 75-81.
- [6] P. Muhly, Ergodic Hardy spaces and duality, Michigan Math. J. 25 (1978), 317-323.

DEPARTMENT OF MATHEMATICS FACULTAD DE ECONÓMICAS UNIVERSIDAD DE MÁLAGA Málaga, Spain

DEPARTMENT OF MATHEMATICS FACULTAD DE CIENCIAS UNIVERSIDAD DE MÁLAGA Málaga, Spain

Received April 27, 1984

(1972)

59