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Automatic continuity, local type and causality
by
MICHAEL M. NEUMANN (Essen) and VLASTIMIL PTAK (Praha)

Abstract. Using a general gliding hump technique, the authors prove first some abstract
results of uniform boundedness type. To demonstrate the power of the abstract theory, three
concrete examples are then given of significant simplifications and improvements of earlier
results. Next, the abstract theory is applied to obtain some basic automatic continuity principles.
These results are formulated in the general context of convex operators, but they yield new
information even in the case of linear operators. In the last two sections, the basic principles are
used to prove continuity for causal operators and for operators of local type. In particular, it is
shown that some important operators from systems theory are automatically continuous. The
class of operators of local type includes differential operators, multiplication operators, and
certain singular integral operators.

Introduction. The present note arose out of several discussions the two
authors held on different occasions and represents a synthesis of the views
which they hold on the subject of automatic continuity.

The work extended over several years and proceeded over several stages:
each stage represented a significant simplification of the previous results and,
we believe, a better understanding of the basic abstract principles which underlie
the main automatic continuity results. The abstract result presented in the
present paper is the last of a series of attempts to isolate the essential factors
which make automatic continuity results possible. It seems to have reached a
degree of simplicity which greatly contributed to the decision to write this
paper. Another factor which influenced this decision was the fact that the
recent investigations of M. Neumann make it possible to formulate the
automatic continuity results for convex mappings, not only for linear ones.

The simplest case of an automatic continuity result is the following. If T
is a linear mapping of a Hilbert space H into itself which satisfies

(Tx, yp = <%, 1)

for all x, ye H, then T is continuous.

It is easy to see that this result may be obtained as an immediate
consequence of the uniform boundedness theorem. It is perhaps less obvious
that another important automatic continuity result, namely the continuity of
strictly irreducible representations of Banach algebras, admits a formulation
under which it becomes a theorem of uniform boundedness type. Indeed, if T
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is any representation of a Banach algebra A on a normed space E, we have,
for each xeE with ||x|| <1, a linear mapping S,: 4 — E given by S,(a)
:= T'(a) x for all ae A and the continuity of T: A — B(E) is then equivalent
to the equicontinuity of the family of the mappings S,. Now, this family is
certainly pointwise bounded, since ||S.(a)] <||T(a)l] for each aeA.
Unfortunately, the classical uniform boundedness theorem does not apply,
since we do not have the continuity of the S, at this stage. However, we have
a weakened condition of continuity: for a strictly irreducible T, the kernel of
each S, is closed, since it is a maximal modular left ideal.

Starting from these observations, V. Ptdk proved [20] a theorem of
uniform boundedness type, the statement of which was formulated in such a
manner that the important theorem of B. E. Johnson could be obtained from
it as a consequence. The proof was based on a gliding hump argument, the
main emphasis being on establishing a general technical result which would
yield automatic continuity results in concrete situations. The gliding hump
lemma given in the present paper is much more satisfactory in this respect.

Subsequent investigations, notably by M. Neumann and E. Albrecht,
contributed greatly towards clarifying the abstract principle underlying the
automatic continuity results. These authors established a number of
automatic continuity results for Fréchet spaces and spaces of distributions.
On leaving the framework of normed spaces one becomes aware of the dual
role played by the unit ball of a normed space: it is a neighbourhood of zero
and at the same time a bounded set. Of course, these two notions are
essentially different in the general case and a careful analysis of the gliding
hump method in Banach spaces is needed to realize in which of the two roles
the unit ball appears at the different stages of the argument. We believe that
the gliding hump lemma given in this note makes a clear distinction between
the assumptions concerning continuity and boundedness and brings out their
meaning for the proof. A careful analysis shows that completeness of the
spaces is not essential: it suffices to assume g-convexity for certain sets. E.
Albrecht and M. Neumann proved, in [1], automatic continuity results for
sublinear operators. Recently M. Neumann [17] succeeded in extending the
classical uniform boundedness and closed graph theorems to convex
operators; this makes it possible to prove our results for this larger class of
mappings as well.

The paper is divided into six sections. In the first section we prove an
abstract gliding hump theorem: it has reached now a remarkable degree of
simplicity. It assumes the form of a statement about two families of subsets ot
a vector space. To demonstrate its power, we present, in Section 2, three
examples of results where its application leads to quite simple proofs. At the
same time they are selected to show in what manner the sets occurring in the
statement of the gliding hump theorem are to be chosen in concrete
situations. In Section 3, we collect some auxiliary material on ordered
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topological vector spaces and convex operators so that the present paper can
be read independently of [17]. We then proceed, in Section 4, to the main
automatic continuity principles for convex operators. All these results are
based on the gliding hump theory from Section 1. For our present purpose,
the most important result is Theorem 4.4, which states, roughly speaking,
that a convex operator leaving invariant certain families of closed linear
subspaces has to be continuous on one of these subspaces. Actually, the
precise formulation of this abstract principle is somewhat more general and
applies both to causal operators and to operators of local type. These
applications will be carried out in the last two sections; in particular, it will
be seen that some important operators from the theory of linear systems are
automatically continuous. '

The list of publications at the end of this paper contains only papers
immediately connected with the topics discussed here. The literature on
automatic continuity is very extensive and the reader is referred to [8], [16],
[21] for a fairly complete list of references up to 1980.

The first-named author was supported by the Czechoslovak Academy of
Sciences (CSAV), the Deutsche Akademische Austauschdienst (DAAD), and
the.Deutsche Forschungsgemeinschaft (DFG). This support is acknowledged
with thanks.

1. The gliding hump. In this section, we present an abstract refinement of
the classical method known as the gliding hump construction. It is not
difficult to see that the proofs using the gliding hump method do not use
completeness of the underlying space in its full force: it is, indeed, only the
convergence of series of a certain type that is all we need. Thus it turns out .
that a weaker notion of completeness is sufficient for our considerations; it is
the notion of o¢-convexity — a notion which is more general than
completeness and which possesses, at the same time, better permanence
properties than (sequential) completeness.

For the convenience of the reader, we first recall the definition and some
useful properties of o-convex sets. Throughout this note, all topological
vector spaces are assumed to be Hausdorff, but not necessarily locally
convex. A subset K of a topological vector space X is said to be g-convex if
every countable convex combination of its elements converges to a point of
K; more precisely, if the limit

n
x:=lm Y opx
n—+ao k=1
exists in X and belongs to K whenever x,eK and o, > 0 such that o, +
+05+ ... =1. Thus the o-convex sets are exactly the CS-compact sets
in the sense of G. Jameson [11].
To illustrate the generality as well as the permanence properties of the
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notion of o-convexity, lest us mention the following facts: both the closed
and the open unit ball of a Banach space are g-convex; given a continuous
linear operator between two Banach spaces, the image of the closed unit ball
is o-convex, but fails to be complete in general except when the range of the
operator is closed.

In the following proposition, we collect some examples and results
concerning g-convex sets which are occasionally useful. The g-convexity of
all bounded convex G,-sets in a complete locally convex space was obtained
in [10]. The proof of the remaining assertions is elementary and therefore
omitted; let us also refer the reader to [10] and [11] for more information
on g-convex sets.

L.1. ProrosITION. (i) Every o-convex subset K of a topological vector
space X is convex and bounded, Conversely, a bounded comvex subset K of X
is necessarily o-convex if one o‘f the following conditions is fulfilled:

— X is finite-dimensional,

— K is sequentially complete.

— K is open, and X is a Fréchet space.

~ More generally: K is a Gsset, X is locally convex and complete.

(ii) If K is a o-convex subset of X, then the absolutely convex hull of K
and every continuous dffine image of K are o-convex as well.

(iii) If K is both o-convex and absolutely convex in X, then the linear hull
of K in X is a Banach space with respect to the Minkowski functional ||-||x
corresponding to K. Moreover, the || Hx-topology is finer than the original
topology on the linear hull of K.

It is a well-known experience in functional analysis that it may be
appropriate to reformulate certain results on linear operators as statements
about families of subsets of the underlying spaces. This holds, in particular,
whenever the Baire category theorem is involved. The same idea turns out to
be useful in automatic continuity theory. Here, we shall present a series of
abstract results concerning finite intersections of o-convex sets, which will be
applied later to various concrete situations.

For the remainder of this section, we consider a topological vector space
X and an arbitrary nonempty set I. For all acl and meN, let U@, m) = X
be a balanced subset of X, and let V' (x) = X be a o-convex subset of X. The
following gliding hump conditions will be used in the sequel:

(GHl) U(a,m)+U(a, n) = U(x, m+n) for all ael and m, neN.
(GH2) There exists an agel such that

Ve = U ) Ul m).

m=1 ael

(GH3) There exists an ne N such that V(o) = Ul(a, n) for all ael.
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(GH4) For all acl there is an n(@)e N such that V(x) = U (a, n(a).

(GH5) Given ael and m, neN, for all xe X\U («, m) there exists an ¢ > 0
such that U(a, m) and x+¢eU(a, n) are disjoint.

In concrete applications concerning families of operators, we shall see that

these conditions are fulfilled because of properties like linearity or convexity,

pointwise boundedness, and continuity.

1.2. PROPOSITION. Assume that (GH1) and (GH2) are satisfied. Then there
exist an me N and finitely many a, ..., o, I such that

0 Ve e ) W m-V@).

Proof. By condition (GH2), for every xe V' (x,) there exists a p(x)e N
such that xe U(a, p(x)) for all acl. We now assume that the assertion is
false. Then there exist an a; eI and an x,e V(o) such that x; ¢ U(x, 2)—
~Wa;). Moreover, for n>2 we may choose by induction a,el and
x,eV(og)n ... nV(a,-,) such that

X @ U (o, 2"n+2""1 P+ ... +2p (%, 1)— Via,)-

Since x,e V(ao) for all ke N, we may consider

©

=3 BFxeV ().

Now set n:= p(x) and observe that x;e V(a,) if j > n. Hence
=) & xe V)
i>n
and clearly

n—1
X, =2"x— 3 2" Fx—z.

k=1
Since xe U(a,, n) and xe U(x,, p(x,) for all k, condition (GH1) yields
+ 2P (xn—- 1))~ V(an) .

This contradiction to our inductive choice completes the proof.

1.3. ProrosiTioN. Assume that (GH1), (GH2),(GH3) are satisfied. Then there
exist an me N and finitely many «ay, ..., o,e I such that

%, U (0, 2"n4+2""1 p(x )+ ...

ﬂ Vi) =N U, m).

Proof. According to Proposmon 1.2, there exist a ge N and finitely
many oy, ..., o, such that V(y) n ... n V() = U, g)— V(o) for all ael.
By condition (GH3), the set on the right-hand side is contained in
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U, )+ U (a, n). From (GH1) it follows that m:=g+n possesses the
required property.

The preceding proposition may be viewed as our main gliding hump
lemma and will be the basis for most of the subsequent automatic continuity
results. Sometimes, however, it may be difficult to construct appropriate sets
V() and Uf(x, m) satisfying the strong condition (GH3), whereas the
considerably weaker condition (GH4) can be fulfilled easily. We therefore
supplement Proposition 1.3 with the following slight variant, where condition
(GH3) is replaced by (GH4) and (GHS).

Let us note that condition (GH3) is not at all inconvenient for the
applications we have in mind. Indeed, if (B,), is a sequence of closed,
bounded, and balanced subsets B,, of some topological vector space Y and if
T: X— Y denotes an arbitrary linear mapping, then one can check
mmmediately that condition (GHS) holds for the typical choice U(x, m)
1= T"Y(B,) = X.

1.4. ProposiTioN. Assume that (GH1), (GH2), (GH4), and (GHS) are
satisfied. Then there exist an me N and finitely many ay, ..., o, such that

A V) < () Ul m).
k=1 ael

Proof. Take me N and a4, ..., o, &l from Proposition 1.2 and define W
to be the absolutely convex hull of the set V:i=V(ug) n V()N ... nV(a,).
From Proposition 1.1 we deduce that the linear hull Z of W is a Banach
space with respect to the Minkowski functional |||l of W. We note that
W = U (a, 2m+2n()) holds for all «e . Indeed, if we W is arbitrarily given,
we have w = sx—ty for suitable x, ye V and real s, t > 0 satisfying s+1 < 1,
and from (GH4) and (GH1) we conclude that

w=sx—tyesU (a, m)—sV(x)—tU (a, m)+tV(a)
< Ufa, M)+ U (a, n(@)+U(a, m)+ U (x, n()
<= Uz, 2m+2n(x)

for all axel. Next, we claim that for all «ael, neN the intersection
Z N U(a, n)is closed with respect to the norm ||||y. To see that, consider an
xeZ\U(a, n). By condition (GHS5) there exists an ¢ > 0 for which

U, )N [x+8U (o, 2m+2n()] = Q.
Since W < U (a, 2m+2n()) we see that U(x, n) and x+e¢W are disjoint,
which proves our claim. It follows that each of the sets
Zy=Zn (U, n

ael

is closed with respect to ||'||. On the other ﬁand, from (GH1) and (GH2)

for neN
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one easily deduces that Z,1Z as n— oo. Hence, by the Baire category
theorem, there exist k, ne N and ze Z, such that z+(1/k)W < Z,,. Using
condition (GH1) again, we conclude that W « Ula, 2kn) for all ael. The
assertion follows.

In many applications, the index set I will be endowed with a canonical
order structure, and in this case a slight modification of the preceding results
will sometimes be more appropriate.

L.5. ProposiTION. Let I be endowed with some transitive relation < such
that V(B) = V(y) holds for all B, yel satisfying B <%, and assume that either
(GH1), (GH2), (GH3) or (GH1), (GH2), (GH4), (GH5) are fulfilled. Then there
exist an meN and a Bel such that

V()= U, m

Proof. We suppose again that the assertion is false and define Pii=oaq.
Proceeding by induction, we then obtain §,el such that Bi+1 < B and
V(B) & U(Bi+1, k) for all ke N. Let us consider

V) :=V(B), Uk, m:=U(B, m for all k, meN.

]Ey 1.3 or 1.4 there exist an me N and finitely many ky, ..., k,e N such that
Vk)n...nPk) =U(n,m) for all neN. But this implies V(8) <
< U(By+1, k) whenever k >k, ..., k,, m. This contradiction completes the
proof.

Sor all ael satisfying o < f.

2. Some examples. In this section we intend to collect several simple
applications of the preceding genmeral theory. Some of these results are
already known; the main point here is to exhibit a common principle from
which apparently different types of automatic continuity results may be
deduced. Moreover, the present arguments should help to understand some
more complicated constructions in the following sections. Here, we shall only
be concerned with certain linear mappings between Banach spaces. In this
context, there is a natural way to construct suitable s-convex sets so that
particularly short and easy proofs are available.

We start with an extension of the classical uniform boundedness
principle. The ancestor of this result from [20] proved to be useful for the
automatic continuity of mappings into spaces of linear operators, in
particular of representations of Banach algebras, A similar result involving
more general topological vector spaces and some further applications can be
found in [15] and [16].

2.1. ProrositioN. Let {T,: ael} be a pointwise bounded family of linear
mappings T,: X —» Y from a Banach space X into a normed linear space Y.
Suppose that each operator T, is continuous on some closed linear subspace X,
of X. Then there exist finitely many a(l), ..., a(r)el such that {T: ael} is
equicontinuous on the intersection X,qyn ... N X,,.
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Proof. For ael and meN let

Ule,m):= (xeX: 1Tl <m),  V):={xeX,: [Ix] < +ITIXI)).
Then the conditions (GH1), (GH2), and (GH3) from Section 1 correspond to
the linearity, the pointwise boundedness, and the continuity property of the
mappings T,, respectively. Hence the assertion follows immediately from
Proposition 1.3.

We next turn to the continuity of derivations. A theorem of Singer and
Wermer says that there are no nonzero continuous derivations on a
semisimple commutative Banach algebra. According to a remarkable
theorem due to B. E. Johnson [12], every derivation on a semisimple
commutative Banach algebra is continuous; it follows that there are no
nonzero derivations on such an algebra. The theorem of Johnson follows by
a closed graph argument from the following proposition, which is crucial in
the proof of his result; see also § 18 of [7].

2.2. ProrosITiON. Let D be a derivation on a semisimple commutative
Banach algebra X. Then the set of those multiplicative linear functionals ¢ on
X for which the composition @D is discontinuous on X is finite.

Proof. Suppose there is a sequence of distinct multiplicative linear
functionals ¢, on X such that @,D is discontinuous for each peN.
According to a lemma of B. E. Johnson [7; p. 93], there exists a sequence of
elements x,e X such that ¢,(x;) =0 for p<g and g,(x,) # 0 for p>gq.
Denote by U the closed unit ball of X. Replacing the x, by suitable
multiples, we may assume that x,e U and D(x; ... x))e U for geN. Define,
for all k, meN, the sets’

Uk, m):={xeX: |p D) <m} and V(K& :=x, ...xU.

Note that the sets V' (k) are oconvex and satisfy V' (k+1) = V (k) for all

ke N. Using ¢,(x) =0, we easily establish the inclusion V' (k) = U (k, 1) for

~all keN. According to Proposition 1.3, there exists an m such that

V(m) < U (k, m) for all ke N so that ¢, D(x, ... x,,) is continuous on X for
every ke N. Now, D being a derivation, we have . :

Qe D(xy ... XpyX)

= @(Xg oo Xp) QD)+ (X) 0 D(x; ... x,,) for all xeX,
Since @ (Xy ... Xp) = @ (%) ... @i(x,) is -different from zero as soon as
k>m, we conclude that ¢, D is continuous on X for all k> m. This
contradiction completes the proof.

We close with a useful continuity principle, which applies both to causal

and to local linear operators. A more sophisticated version of this result will
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be established later. Given a topological vector space X, let &(X) stand for
the family of all closed linear subspaces of X. On &(X) we consider the
order structure given by inclusion.

2.3. PrOPOSITION. Suppose we are given two Banach spaces X and Y, a
linear mapping T: X — Y, a set & endowed with a transitive relation <, and a
pair of monotone mappings &x: F - £(X) and &: F — ¥ (Y). Suppose that
the following two conditions are satisfied:

(i) T&x(F) < Ey(F) for all Fe #.

(i) N & (G)=1{0} for all Fe#.

G<F

Then T is continuous on &x(F) for some Fe %.

Proof. For Fe % and meN let

V(F):={xe&x(F): IIx| <1}, U(F, m:={xeX: |lny T(x)|| < m}
where 1Y — Y/&y (F) denotes the canonical quotient map. Then conditions
(GH1) and (GH2) from Section 1 are obviously fulfilled if I := #. It follows
from assumption (i) that n; TV (F) = {0} for all Fe#, so that condition
(GH3) is satisfied as well. Thus condition (i) alone guarantees, by Proposition
1.5, the existence of an Fe# and an meN such that V(F) c U(G, m)
whenever G satisfies G < F. It follows that ng T|&x(F): £x(F)— Y& (G) is
continuous for all Ge # with G < F. From the additional assumption (ii)
one easily deduces that the restriction T|&x(F): &x(F)— Y is closed and
hence continuous by the closed graph theorem.

The preceding result is related to the automatic continuity theory for
generalized local operators from [2], but the technicalities are somewhat
different. Moreover, the present approach includes the case of certain causal
operators. To indicate a typical example, let us consider a linear operator
T: L¥(R)— L?(R) for some 1 < p < co. Recall that T is said to be causal if
for all fe LP(R) and te R we have: .

suppfc[t, of = supp Tf = [t, «c[.

It follows from a construction in [1; p. 2697 that causal operators on L”(R)
need not be continuous. However, the following positive result holds:

24 COROLLARY. For every causal linear operator T on LP(R) there exists
a te R such that T is continuous on the subspace {f e L*(R): supp f = [t, o[}

Proof Let X:=Y:=L°(R), endow the family # of all intervals
ft, o[ for te R with the transitive relation given by inclusion, and for each
teR define &x([t, o) := & ([t, oD :={feL?(R): suppf <= [t, wo[}. The
assertion is then an immediate consequence of Proposition 2.3.
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Continuity on the whole space may be obtained if causality is replaced
by a certain stronger condition which makes sense for an arbitrary open
subset G of R": A linear mapping T: LP(G)— L?(G) is called local if

supp Tf csuppf for all feL?(G).
The following easy consequence of Proposition 2.3 is also contained in a
recent somewhat more involved result from [3; p. 351]. Later we shall
examine a considerably more general situation.

2.5. CoroLrary. Every local linear operator T on LP(G) is continuous.

Proof. First, let & be the family of all open subsets F of G such that
G\F is compact, with the order relation given by inclusion. Then
Proposition 23 applies to X:=Y:=LP(G) and d&y(F):= & (F)
1= {fel”(G): suppf < F~} for all Fe&. Hence T is continuous on the
linear subspace X(o0):={feX: suppf K = Q} for a suitable compact
subset K of G. Next, for every teG, let &, be the family of all compact
neighbourhoods of ¢, ordered again by inclusion. Then another application of
Proposition- 2.3 yields some U (t)e &, such that T is continuous on the
subspace X (t) := {fe X: supp f = U(t)} for every te G. As K is compact, we
obtain finitely many points ¢,...,t,eK and continuous functions
@1, ..., ,€C(G) such that suppe; cU(t) forj=1,...,rand ¢, + ... +¢,
=1 on some neighbourhood of K. Let ¢o:=1—@,— ... ~0, M,
1=||TIX(c0)|| and M;:=||T| X (t;)|| for j=1,...,r. Then

1771, =[S Tl < 3, Mlleilalfly
i= i=

for all feIf(G), so that T is continuous on L?(G).

3. Preliminaries on convex operators. We start by recalling some notions
from the theory of ordered topological vector spaces; see for instance [19] or

[23]. Given an ordered vector space Y, a subset A of Y is said to be full if for

all u, we A and ve Y satisfying u < v < w it follows that ve 4. We denote by
[4] the full hull of an arbitrary subset 4 of Y; clearly [4] = {ve Y: there
exist u, we A such that u<v<w} If Y is endowed with a vector space
topology, then the positive cone Y, of Y is called normal if there exists a
_neighbourhood-base at O consisting of full sets. Many standard spaces from
analysis are ordered by a normal cone. For example, the usual cone of
nonnegative functions is normal for quite a lot of function spaces, including
the spaces LP(y) for an arbitrary .positive measure u and any 0 < p < o0.

Now, let D be a convex subset of a vector space X, and consider an
ordered vector space Y. Then an operator T: D— Y is said to be convex if
T(su+(1—5)v) < sT(W)+(1~5) T(v) holds for all u, veD and all real
0 <s< 1. It is shown in [17] that some basic principles of linear functional
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analysis remain valid for convex operators, provided the positive cone of the
range space is normal. Here, we shall only need the following three results
from [17]. The first assertion generalizes an elementary property of real-
valued convex functionals, the second statement is the principle of uniform
boundedness for convex operators, and the last result is a version of the
closed graph theorem which is well suited for our present purpose.

Let us note that the trivial cone Y, = {0} is normal for every vector
space topology. Hence the following results apply to affine operators and, in
particular, to linear operators without any order-theoretic restriction on the
range space. :

3.1. TreoreM. Let X and Y be topological vector spaces, let D denote an
open convex subset of X, and suppose that Y is ordered by a normal cone.

(i) If a convex operator T: D~ Y is continuous at some point of D, then
T is continuous on D.

(i) Assume that X is ulirabarrelled, resp. barrelled if X and Y are locally
convex. Then every pointwise bounded family of continuous convex operators
from D into Y is equicontinuous on D.

(iii) Assume that X is a Baire space and that Y is countably boundedly
generated, boundedly summing, and sequentially complete. 't hen every convex
operator T: D— Y having a closed graph in D x Y is continuous on D.

Recall that a topological vector space Y is said to be countably
boundedly generated if it is the union of some countable family of bounded
subsets, and Y is called boundedly summing if for every bounded subset B of
Y there exists another bounded set C and a sequence fo real o, > 0 such that
g, B+ ... +0, B < C for all ke N. It is well known and easily seen that the
metrizable, the almost convex, and the locally pseudoconvex spaces are all
boundedly summing; see [5; p. 76]. To give a concrete example, let us note
that the spaces LP(u) for any 0 < p < oo satisfy all the assumptions of the
preceding theorem.

We close with a useful technical characterization concerning the
continuity of convex operators between certain topological vector spaces.

3.2, LemMa. Let X and Z be topological vector spaces, and suppose that
X is a Baire space and that Z is countably boundedly generated and ordered
by a normal cone. Moreover, choose a sequence of balanced bounded subsets
H,, of Z such that

Hy+H, < Hyyy for al meN. and H,12Z
Finally, let D<= X be open and convex, and consider a convex operator

S: D— Z. Then the following assertions are equivalent;

(i) S is continuous on D. )
(i) For every xeD there exist an open neighbourhood U = U (x) of x in
D and an integer m = m(x) such that S(U) < [H,].

as - m-—» 00,
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(iiiy There exist a nonempty open subset U of D and an me N such that
S(U)<[H,].

Proof. (i) = (ii). Given an arbitrary xeD, let W be a closed balanced
neighbourhood of zero in X such that x+W+ W < D and define

Ci:={weW: S(x+2w)eS(x)+H;} for all keN.
These sets are closed and satisfy
o0 00 .
X=1 U JG.
J=1k=1

Since X is a Baire space, there exist a keN, a veCy, and a balanced
neighbourhood of zero U « W such that v+U < C,. Now, given any ue U,
we shall show that

S(x+u) = S(x)+[F(H; +Hy)].
Since u+v, veC,, we have S(x+2(u+v))=S(x)+h and S5(x—2v)
= 8(x)+h, for suitable h;, h,e H; . This implies by convexity
S(x+u) = S (x+2(u+1)+4(x~20))
SES(x+2(u+v))+48(x—~20) = S(x)+4 (hy + hy).
Applying the same argument to —ue U, we obtain
S(x—u) < S()+4(hs+hy)
for suitable h;, h,e Hy . Since U < W, we have
S(x) =SGE(x+u)+3(x—u) <IS(x+u)+1S(x—u),
.whence S(x)—8(x—u) < S(x+u)—S(x). We conclude that
—3(ha+he) < S(x+u)—S(x) < $(hy +hy),

which proves our claim. Let I > k+1 such that S(x)e H,. Then it follows that
S(x+U) = [H{ (], so that U(x):= x+ U and m(x) := I+ 1 have the required
property.

(i) = (iii) is immediate.

(ifi) = (i). By assumption, there exist an xe D, an me N, and a balanced
neighbourhood of zero U in X such that x+U < D and S(x+U) [Hy].
By the first assertion in Theorem 3.1, it suffices to prove the continuity of §
at the point x. Let V' be an arbitrary balanced neighbourhood of zero in Z.
Then there exists an ¢ > 0 such that e([HpJ+[H,; D V. If e > 1 we have
§(x+U)—S(x) « V. Now suppose that 0 <g < 1, Then

S(x) = S(3(x+eu)+3(x—ew) < S(x+6u)+4 8 (x—eu),
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whence S (x)—S(x~e&u) < S(x+eu)—S(x). Furthermore, we have
S(x+eu)—S(x) = S(e(x+u)+(1~e) x)—S(x)
<eS(x+u)+(1—e) S(x)—~S5(x)
= & (S (x+u)— 8 (x)).
Replacing # by —u, we obtain
S(x—eu)—S(x) < e(S(x—u)—S(x)).
Combining all these estimates, we arrive at
~&(S(x—u)~S(x)) < S(x+eu)—S(x) < (S (x+u)—S (x)),

so ‘that S(x+¢U)~S(x) <= [V]. This implies the continuity of S at the point
x, since the positive cone of Z is normal. The assertion follows.

Note that the implication (iif) = (i) of the preceding lemma does not
depend on the assumption that X is a Baire space; it corresponds to the
well-known fact that a linear mapping between topological vector spaces is
necessarily continuous if it is bounded on some neighbourhood of zero. In
the sequel, we shall sometimes use the following simple observation.

33. Remark. Let T: D— Y be a mapping from a topological space D
into a topological vector space Y, and let {ny: Fe#) be a family of
continuous linear mappings 7y ¥ — ¥ from Y into topological vector
spaces Yp. Suppose that this family is separating in the sense that the
intersection of the kernels of the =y is zero, If the composition np T: D — Y
is continuous for each Fe.#, then the graph of T is closed in D x Y.

Indeed, if xe D and ye Y are such that (x, y)¢ G(T), then y— Tx s 0, so
that there exists an Fe & with np y # mp Tx. Since n; T is continuous, there
exist a neighbourhood U of x in D and a neighbourhood V of 7y in Yy
such that (Ux V) G(nz T) = @. It follows that (U x5 * V) A G(T) = @, so
that (x, y)¢ G(T)".

4. Some general principles of automatic conmtinuity. We first extend a
fundamental continuity result from [1; p. 254] to the case of convex
operators. From the technical point of view, this situation is considerably
more involved than the former one; the present proof will be based on a
suitable combination of our results 1.3 and 3.2. We regret that Theorem 4.1
does not look very attractive at first glance, But even the more restrictive
and complicated version of this principle from [1; p. 254] has already proved
to be very useful for various types of automatic continuity problems
including, for instance, the case of tramslation-invariant and causal linear
‘operators between spaces of functions or distributions [1]. And we shall
present some consequences of Theorem 4.1, which are still quite useful and
which are much easier to understand and to handle. To formulate this
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theorem, we assume the following situation, which generalizes the essential

features of the standard situation given in [1; p. 254]; ’

(a) Let A be a nonempty set endowed with a transitive relation <.

(b) Consider a topological vector space X and, for each oe A, continuous
linear operators S,: X, - X and Q,: W, » X from (F)-spaces X, and W,
into X such that S5 (Xp) = Q. (W) holds for all a, fc A satisfying « < f.

{¢) For each ue4, let Y and Y, be ordered topological vector spaces such

that the positive cone of Y, is normal, and consider a continuous

positive linear operator n,: ¥ — ¥Y,.
Let us note that, in most’ applications, X,=W, and S, =Q, for all xeA.
Moreover, the condition on the ranges in (b) is fulfilled whenever the
following factorization property holds: for all o, Be A satisfying o < f§ there
exists a linear mapping S,;: Xy — W, such that S; = Q,8S,,.

4.1. THEOREM. Suppose that Y is countably boundedly generated, and

consider an open convex subset D of X such that OeD. Moreover, let T: D
~ Y be a convex operator such that

m, TQ, is continuous on Q; (D)
Jor all B, ye A with y < B. Then there exists an ae A such that
n, TS,
Jor all ye A with o < y.

Proof. Replacing Tby T—T(0) if necessary, we may assume T'(0) = 0.
Since 'Y is countably boundedly generated, we may choose a sequence of
balanced bounded subsets B,, of ¥ such that B,+B, = B,., for all meN
and B, 1Y as m— co. Now assume that the assertion is false. Then we
construct, by induction, a sequence of indices a(k)e A satisfying o (k) < a(k
+1) for all ke N such that the convex operator

is continuous on S; (D)

Tag+1) TSaqry: Sa_(kl) D)— Yorn

is discontinuous for each ke N. For brevity, we write k for «(k). Given an ‘

arbitrary keN, we choose an (F)-norm |"lc on W, which generates the
topology of the metrizable space W. By assumption, we know that the
convex operator

T TQpp g2 Ql:»flx D) - Y

is continuous, so that Lemma 3.2 may be applied to this operator and to the
sets H,, :=m (B,) for all meN. Hence there exists a d4+y >0 and an
m(k)e N such that the 0-neighbourhood Nevyi={ze Wiyt l2lis; < Sy41} in
Wi+ satisfies

Qui1(Niv) =D and

L TQk+1(Nk+l) & [(m Bpgy) ™ 1.
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On the other hand, the convex operator . 1 TS, is known to be
discontinuous on S; *(D). Using Lemma 3.2 again, we conclude that

w1 TS (U) & [(myr Bkm(k+1))—]

for every O-neighbourhood U = S; ' (D). Now, for j=1, ..., k—1 we endow
the range Q;(W)) with the (F)-space topology coming from W, so that Qj(Wj)
is isomorphic to the quotient Wj/Ker();. Since S,: X, — X is continuous
with respect to the original topology of X and satisfies S, (X,) = Q;(W)), it
follows that Si: Xy — Q; (W) is closed with respect to the (F)-space topology
on Q;(W)) and hence continuous by the classical closeq graph theorem‘. Thus
5¢*(Q;(M)) is a O-neighbourhood in X, for every O-neighbourhood M in W
Hence we obtain an x,& S5 * (D) and wye W, forj =2, ..., k—1 such that the
following conditions are fulfilled:

1 -
Tyeny TSy (iﬁ xk) & [t 1 Bim+ 1)) "1,

1
Sk = Qy(wy),  Iwal; < 5’;;51

forj=2,..., k—1. Now, let ne N be arbitrarily given. Then it is easily seen
that all the o-convex combinations exist in the (F)-space W,., for any
sequence of vectors =w,.;; where k > n+2. Denote the set of all these o-
convex combinations by

Zyiy =000 {EWypp k= n+2).

Obviously Z,.., is contained in N,.,. Moreover, it is not hard to. gheck that
Z,4, is o-convex, a fact which can also be deduced from Proposition 2 and
Theorem 3 in [11]. Being the continuous affine image of a o-convex set,

Vin):=Qy1(Zye1) =D
turns out to be o-convex as well. Furthermore, by our construction we have
V(1) = g-co { £ S, (x): k = n+2}.
Hence V(n+1) < V(n), and it is clear that
7 T(V () = 7y TQy i1 (Zyi 1)  [(n Bia) "]
for all neN. We finally introduce the sets
Un, p)i=2"""{xeX: +xe&D, n, T(=x)&[(®, Bomw) 1}

for all n, pe N and claim that the conditions (GH1), (GH2), (GH3) from
Section | are satisfied in this situation, Certainly we have V(n) < U(n, 1) for
all ne N, so that (GHB3) is fulfilled. Since «, T is convex with 7, T(0) =0, one
easily verifies that the sets U(n, p) are balanced and satisfy U(n, p)
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=U(n, p+1) for all n, pe N. In order to check condition (GH2), we fix an
arbitrary xeV(1). Then there exists a peN such that T(+x)eB,,
which implies xeU(n, p) for all ne N. It remains to show that (GH1) fs
fulfilled. Let n, pe N and consider x,, x,&X such that

txeD and m, T(+x)€[(7, Bymn)™1 for j=1, 2.
Then x:=4(x, +x,) satisfies +xeD as well as
U< =3, T(=x)—4m, T(~x;) < —m, T(—X)

S T() <5m, T(xy)+4m, T(x)) < v
for a suitable pair of elements

u, ve (7!?,, (Bpm(n) + Bpm(nj))“ < (75,, Bpm{n) + 1) o
We conclude that

7[,, T( ix) € [(71',, B(p+ 1)m(n))_] .

This implies U(n, p)+ U (n, p) = U(n, p+1) and hence by monotonicity
U(n, p)+U(n, q) < U(n, p+g) for all n, p, geN. Now we are in a pbsition
to apply the gliding hump lemma 13. Using again the monotonicity
properties of the families of sets V(n) and U(n, p), we thus arrive at a pe N
such that V(p) = U(n, p) holds for every neN. In particular, it follows that

1
n, TS (EE JC},>G [(m, Bymm) ]

for all k> p+2 and all n Take an arbitrary k > p+2 and set n:=k-+1.
Then we obtain

1
Tev 1 TSy (ka)e [(nk-f-lBkm(k-i-l))-]'

This contradiction to the choice of X, completes the proof.

) I‘,et us note that some parts of the preceding proof can be considerably
ilmphﬁed in tt;e case of a linear mapping T: X — Y, For instance, in this case
It appears to be quite natural to choose X, in a suitable nei
zeror so that m; TS,(x)¢(mes, By~ ankd to consider thgehggtusrh((}(ﬁ‘%

:==.~,xe X: 7, T(x)e(n,B,)"} for all n, peN. Then one easily arrives at the
desired contradiction by means of Proposition 14. We now state
illuminating special case of the preceding result. .

4.2. TueoreM. Consider a sequence of (F)-spaces X, for n=0, 1, 2
and continuous linear operators S, X w=> Xy—y for all ne N, Moreou,er , f();n
=0, 1, 2,...let Y, be ordered topological vector spaces such that,'Yo is
countably boundedly generated and the positive cone of Y, is normal for each
neN, and consider continuous positive linear operators m,: Yo—Y, for all

an
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neN. Finally, let D be an open convex subset of X with Oe D, and let T: D
— Y, denote a convex operator. Assume that

Ty T8y oo Syt (Sy ... S)~1(D) =~ ¥,
is continuous for all ne N. Then there exists an ne N such that
TSy ... 8, (Sy...8,) " {(D)= ¥,

is continuous for all ke N.

Proof. Endow A4 := N with the usual order relation < and consider the
spaces X, 1= W,:= X, and operators §,:={,:= S, ...'S, for all ne N. Then
the assertion follows from Theorem 4.1.

4.3, Remarks. (i) It is interesting to, observe that the continuity
assumption of Theorem 4.2 means exactly the continuity of the operators
m, TSy ... S, for all k, ne N satisfying k < n. And the conclusion states that,
for a suitable n, the operators m, TSy ... S, are continuous for all k> n.

(ii) The theorem ensures for some n the continuity of the convex
operator TS; ... S, with respect to the projective topology on Y, generated
by the mappings n, for keN. Under certain additional assumptions, this
forces TS;...S, to be continuous with respect to the (finer) original
topology on Y. Indeed, in the situation of Theorem 4.2 suppose, in addition,
that the following two conditions are fulfilled:

1° The intersection of the kernels of the linear operators =, for ke N is
zero. ‘

2° Y, is boundedly summing and sequentially complete, and its positive
cone is normal. :

Then it follows from 3.3 that TS, ... §, is closed and hence continuous
for the original topology on Y, by the closed graph theorem for convex
operators stated in Theorem 3.1. For applications to concrete spaces of
analysis, the assumptions on Y, are not very restrictive, whereas the
construction of suitable mappings =, turns out to be crucial.

(iii) Theorem 4.2 is the natural convex extension of Satz 1.4 in [1] and
can be applied in a similar fashion; see [1] and [16] for a discussion of the
topological assumptions and for several applications. If one specializes
Theorem 4.2 to the case of linear operators between Banach spaces, then the
result can be seen to be equivalent to a basic stability theorem due to K. B.
Laursen [13]; see also [1; p. 2597, where this stability theorem is generalized
to the case of (F)-spaces.

~ (iv) Theorem 4.2 provides a common generalization of Propositions 2.2
and 23 in [22] concerning the continuity of certain linear mappings on
Banach algebras. Moreover, we also obtain a positive answer to a conjecture
of J. D, Stein stated in [22; p. 196]; it turns out that the continuity ideals
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considered there cannot be disjoint. The details are very easy and therefore
omitted.

(v) By a suitable combination of Theorem 4.2 and part (ii) of Theorem
3.1, one may extend the uniform boundedness principle given in Proposition
2.1 to the case of convex operators mapping an open convex subset of an
(F)-space into a topological vector space which has a fundamental sequence
of bounded sets and is ordered by a normal cone. We omit the proof which
is sufficiently similar to the corresponding argument for linear operators
given in [16; p. 274].

We close this section with another useful application of Theorem 4.1,
which generalizes our previous result 2.3 and which will be seen to be basic
for the continuity properties of causal operators and of operators of local
type.

We consider the following situation. Let & be a nonempty set endowed
with a transitive relation <, consider an (F)-space X, and let Y denote a
topological vector space which is countably boundedly generated, boundedly
summing, sequentially complete, and ordered by a normal cone. Moreover,
consider a pair of monotone mappings &x: F — ¥ (X) and &: F — F(Y),
and for each Fe & let np: Y — ¥ be a continuous positive linear mapping
from Y into a topological vector space ¥; which is ordered by a normal
cone. Then we have the following basic principle:

4.4. THEOREM. Let D be an open convex subset of X satisfying Oe D, and
consider a convex operator T: D — Y. Assume that the following conditions are
Culfilled:

(BP1) The restriction ng T|Ex(F) D is continuous for all F, Ge # with

F <G.
(BP2) The kernel of ny is contained in &y (F) for every Fe #.

BP3) ) & (G)=/{0} for every Fe #.
G<F

Then the restriction T|&x(F) D is continuous for some Fe %.

Proof. We endow A:= with the transitive relation inverse to the
given relation < and consider the spaces Xp:= W := &(F) for all Fe &,
Moreover, for Fe # we define S; and O to be the inclusion operator from
&x(F) into X. By Theorem 4.1 there exists an Fe # such that the restriction
nig T|€x(F) " D: &x(F)n D — Y is continuous for every Ge & with G- < F.
According to Remark 3.3, it follows from our assumptions (BP2) and (BP3)
that the convex operator T|&y(F) " D: &x(F) D — Y has a closed graph.
Hence the version of the closed graph theorem given in Theorem 3.1 finishes
the proof.

In the preceding result, there is a natural choice for the spaces Y and
operators mg: ¥ — Y;. Indeed, one may take n; to be the canonical quotient
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mapping from Y onto the quotient space Y/&y(F) provided that the
canonical positive cone mp(Y.) in Y/&y(F) is normal with respect to the
quotient topology. This condition is certainly fulfilled for the case Y, = {0},
which is relevant to the theory of affine operators. In general, however, the
positive cone of the quotient space need not be normal again: there are
elementary examples of closed linear subspaces of Banach lattices such that
the corresponding positive cone in the quotient space is closed and pointed,
but fails to be normal. The authors are grateful to Peter Greim for providing
them with a simple example of this type involving sequence spaces. On the
other hand, in most cases of practical interest the positive cone of the
quotient space will be normal. This is due to the well-known fact that for
every ideal of a locally solid Riesz space the corresponding quotient space is
again a locally solid Riesz space, so that its positive cone turns out to be
normal; see for instance Theorem 5.9 in [6].

5. Causal operators. The automatic continuity problem for causal linear
operators on L”(R) was already studied in Section 2. Here, we shall
investigate some considerably more general situations.

First, let (G, o) be a locally compact group endowed with a left-invariant
regular Haar measure 4, let M denote an arbitrary closed subset of G, and
consider a commutative subsemigroup 4 of G. We assume that for each
te M the following compatibility conditions are fulfilled:

awoteM for all aeA; a"'otéM for some ae A.

Further, given any 0 <p< oo, let X = X?(M) denote the space of all
feLP(G) vanishing on the complement M°:= G\ M, and for each xe 4 let
X, consist of all felL’(G) vanishing on (xoM). Because of the first
compatibility condition on M and A4, the spaces X, are closed linear
subspaces of X. For each xe 4, let S, denote the corresponding shift operator
on X given by S, f () :=f{a""o1) for all fe X and te G. We finally consider
a convex operator T: D— X, where D is an open convex subset of X
satisfying OeD. Clearly, T is said to be causal with respect to the
subsemigroup A if

© T(X,nD)c X,

The present situation naturally arises in the general theory of systems; see
[1] and the references given there for the relevant background information
including a discussion of the compatibility conditions, Note that (C) is
fulfilled whenever S; (D) =D and TS, =S, T on S;'(D) for every aeA.

We now exhibit a remarkable continuity property of causal convex
operators on X?(M), thus extending Theorem 4.2 of [16]; see also [1] for
several closely related results, but observe that the present approach is
somewhat different. It should be obvious that the assertion remains valid for

for all aeA.
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other spaces of functions and distributions including, for instance, the case of
certain vector-valued bounded or continuous functions.

5.1. THEOREM. Let D be an open convex subset of X = X?(M) satisfying
OeD, consider a causal convex operator T: D— X, and assume that the
compatibility conditions are fulfilled. Then there exists an o.c A such that the
restriction T|X, nD is continuous. Moreover, if T satisfies in addition TS,
=S,T on D S;Y(D), then T is necessarily continuous on D.

Proof. In order to apply Theorem 4.4, we endow F :={aoM: xeA)
with the order relation given by inclusion and consider the spaces X :=Y
1= X"(M) and &x(aoM):= &y(aoM):= X, for all xe A. Then the assum-
ptions (BP1) and (BP2) of Theorem 4.4 are certainly fulfilled if we define m,,
to be the canonical quotient mapping from Y onto ¥/& (o M) for each
ac A. It follows from Theorem 5.9 in [6] and can also be easily verified
directly that the natural positive cone of these quotient spaces is normal.
Hence it remains to check condition (BP3) of Theorem 4.4. To this end, let
o€ A be arbitrarily given and consider an feY satisfying f ¢ 0. Then there
exists a compact subset K of M such that A(K)> 0 and f(t) # 0 A-almost
everywhere on K. Since one may easily deduce from the compatibility
conditions (6) that

N aofoM =0,

Bed

we obtain by compactness finitely many B, ..., Bme A such that
K< | (xofjoMy.
j=1

As A is commutative, it follows that B:=pf,0...08,c4 satisfies
K c(xofoMy and hence f¢&y(xofoM). We have shown that

) Sy(@ofoM) = {0} for all aecd,
Bed

so that condition (BP3) is fulfilled. By Theorem 4.4 there exists an ae 4 such
that the restriction T|X, D is continuous. Finally, if T commutes with the
shift operator corresponding to this particular o, it is immediate that T is
continuous at 0 and hence on D by Theorem 3.1.

We next turn to causal operators in the sense of V. Dolezal [9], which
requires the notion of a scale in R". The following definition of a scale is
slightly more restrictive than the original motion from [9], but it is general
enough to include the most interesting examples.

5.2. DeFiNITION. A family {S,: ac R"} consisting of subsets S, of R" is

said to be a scale in R" if for every ae R" the following four conditions are
fulfilled:
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(a) (IntS,)” =8, # Q.

(b) There is an x,e R" such that §¢™ —tx, = S for all ¢ > 0.

(c) beS8, implies that S, = §,.

(d) aeds,.

5.3. ExampLs. (i) Let K be a closed convex cone in R" such that R #K
and R" = K—K, and define S,:=a+K for all ac R". Then it is easily seen
that {S,: ae R"} is a scale in R"

(ii) Fix a real 4 > 0, and for each xe R* let S R be given by X:= ||x|}*
—Xi—pXy, Wwhere |[-|| denotes the Euclidean norm on R". Let S,
i={xeR" X< a} for every ac R Again, it is not hard to see that the
family {S,: aeR"} is a scale in R".

The following result will be crucial for the continuity of causal operators
in the sense of V. Dolezal,

54. Lemma. Let {S,: aeR"} be a scale in R". Then () S, =@ holds for
every ae R". e

Proof. Let S denote the intersection on the left-hand side and suppose
that § is nonempty. Given an arbitrary xe S, we have S, < S, for all beS, by
condition (c) and therefore S, = S. On the other hand, condition (d) implies
that xe S, and hence S = S,. Thus S, = S for all xeS. Again by condition
(d), we conclude that xedS, = 85 for all xeS and hence IntS = @. But
(IntS)™ = S, + @ for all xe$§ by condition (a). This contradiction completes
the proof.

5.5. Remark. There is only one difference between the definition of a
scale in [9] and the present one: instead of condition (d) in 5.2, V. Dolezal
requires only ae$, for every ac R" In this more general situation, Lemma
54 ceases to be true. To give an easy counterexample, let

S.:= {xeR": x; = min{a;, 0} for j=1,..., n} .

- for a,ﬁ acR'. Then {S,: ac R} is certainly a scale in the sense of [9], but

con}{ition (d) is not fulfilled. Moreover, we have R’ < §, for all aeR", so
that Lemma 54 does not bold for this situation.

Similarly to [9], we now consider the following situation. Let X and Y
be sequentially complete locally convex spaces such that X is metrizable and
Y is countably boundedly’ generated, and assume that X and Y are both
continucusly embedded in %' (R"). For instance, one may take X as the space
(R of all rapidly decreasing test functions and Y as the space &'(R") of
all tempered distributions on R". Moreover, let {S,: ac K"} be a scale in R,
and for each agR" endow the space X,:={feX: suppfcS§,} with the
topology inherited from X. Then we have:

5.6, THEOREM. Let ae R and consider a linear operator T: X, — Y which

6 ~ Studin mathematicn LXXXII, 1
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is causal in the sense that supp f < S, implies that supp Tf < S, for all fe X,
and beS,. Then there exists a beS, such that thé restriction T|X, is
continuous.

Proof. We endow the family & :={S,: beS,} with the transitive
relation given by inclusion and consider the spaces &x(S,):=X, and
similarly & (Sy):={feY: suppf <= §,} for.all beS,. Since the inclusion
mappings from X and Y into 9’'(R") are supposed to be continuous, it is
clear that these spaces are closed linear subspaces of X, and of Y,
respectively. Now the assertion follows immediately from Theorem 4.4 in
combination with Lemma 5.4,

Of course, a similar result holds for causal convex operators whenever
the order structure of the range space is reasonably related to its topology.
Moreover, if the given causal operator commutes with appropriate
translation operators, one may deduce the continuity on the whole domain
space. In this connection, let us mention that the main examples of operators
causal with respect to a scale are given by certain convolution-type operators

o1

6. Operators of local type. To formulate the main proposition it will: be
convenient to describe the general situation and introduce the notation to. be
used in this section.

We shall consider an (F)space X and a topological vector space Y
which is countably boundedly generated, boundedly summing, sequentiall
complete and ordered by a normal cone. '

Furthermore, G will denote a regular Hausdorff topological space and
ZF (G) stands for the family of all closed subsets of G. We are given two
monotone mappings :

bx: F(O) > F(X), & F(G)— F(Y)

‘éuch that the following conditions are fulfilled:
‘ 1° & (@)= {0} and if # is a family of closed subsets of ¥, then
&(N F)= () &(F);
FeH FeM
2° if U and 'V are two open subsets of G such that U V = G, then
X =8x(UT)+&x(V7);
3° if teG is an isolated point of G then &y ({t}) is finite-dimensional; if

teG is not isolated then &y({t}) = {0}.

For each Fe #(G), a continuous positive linear mapping mz: ¥ — Y
from Y into a normally ordered topological vector space Yy is given such
that: ,

4 Kernp ¢ &y (F) for all Fe #(G).
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6.1. PROPOSITION. Let D be gn open convex subset of X such that OeD,
and let T: D— Y be a convex operator which is of local type in the sense that
the following condition is satisfied:
(LT) The operator my TIx(F) A D is continuous for all F, He #(G) with

F cIntH.

Then T is continuous on D.

Proof. (i) We begin by proving the following assertion:
For any te G there exists an open neighb '
" ghbourhood U (t) of t h that
- TEx(U®)7)nD is contimous. O o ¢ such tha
Acgording_ to 3° it suffices to take U (O = {t} if t is an isolated point of
G If t is not 1so]aFed, denote by # the family of all closed neighbourhoods
of t with 'tl.le relation: F < H if and only if F < Int H, and apply Theorem
44. Conditions (BP1) and (BP2) are satisfied in view of (LT) and 4°. The

space G being Hausdorff, every point is the intersection of all its closed
neighbourhoods. :

Thus we have, for each Fe F,
HQF éy(H) = é”y(HQF H)= &y ({t}) = {0}, .

so that (BP3) is satisfied. Our assertion then follows immediately from 4.4. -
(i) The second step consists in proving an assertion which is, in a sense
dual to the preceding one. ’

For any te G there exists an open neighbourhood W of t such that rs, T
is continuous on D. o

' Consider a p<_>int te G; according to what we have already proved, there
exists an open neighbourhood U of ¢ such that T|6x(U™) is continuous on

D. Now let ¥V and W be two open neighbourhoods of ¢ such that

teWc W™ c VoV~ cU. The existence of such neighbourhoods follows
from the regularity of the space G. ‘ '

Now V* < W™ and W~ is nothing more than the interior of W*. Thus
Tavw T|Ex (G\V) "D
is continuous by our assumption (LT). At the same time
g TEx(U™) A D

is contirluous as well Since G=UuV" and V™" <V we have X
= &y (U)+ Ex(V°). An application of the closed graph theorem yields the

contipuity of new T on D: for brevity, let us introduce the following
notation

Tow T=S5, &x(U™)=X,, &x(V)=X,.

Let.xeD and a balanced O-neighbourhood ¥V in Y be given. There exist
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balanced neighbourhoods of zero U; in X such that §(x+2U)) = Sx+V for
© j=1, 2. The open mapping theorem yields the existence of a neighbourhood
of zero U in X such that U cU;+U,. If ueU we have

S{x4u) =S (x+ug+us) =G (x+2u)+3(x+2u3)) < S(x)+5(v; +0vy)
for suitable u, e Uy, u,eU,, vy, v,€V. In a similar manner, we obtain
' S(x—u) < S(x)+4 (v} +v3)
for suitable v, vhe V. Since
S(x+u) > 28 (x)—S(x—u) = S(x)—§vi —4v,

we have S(x4u) = S(x)+[V+V]. The continuity of ngy T on D is thus
established.

(iif) To complete the proof, it suffices to use Remark 3.3 to show that
the graph of T is closed in DxY. For each teG we have an open
neighbourhood W (z) of t such that 7y, T is continuous on D. Consider the
family & of all complements G\ W (z), te G; clearly the intersection of this
family is empty. The corresponding family of mappings np, Fe% is
separating since

N Kernp = () &y (F)=&( F)=1{0}.
Fe¥F FeF FeF
Now the closed graph theorem 3.1 applies.

In the following application of Proposition 6.1, let u be a regular Borel
measure on some locally compact Hausdorff space G, and for any 0 < p < o0
consider the locally bounded (F)-space L?(u). For each closed subset F of G,
the operator on L?(u) given by multiplication with the characteristic. function
of F will be denoted by pr. Then the continuity of a convex operator on
L?(p) may be characterized as follows.

6.2. THEOREM. Assume that u has no point atoms, and consider a convex

operator T: D — LP(u), where D is an open convex subset of L?(u) with O D.
Then T is continuous on D if and only if py Tpy is continuous on pg * (D) for all
compact K < G and all closed F < G satisfying KNF =@,

Proof. For the sufficiency of the condition, we begin by proving the
following assertion:

For every compact K < G, the operator pg T is continuous.

We shall use Proposition 6.1. For that purpose, we set X = Y = [7(G),
Ex(F) = 6y (F) = {fe X: suppf < F} for Fe % (G). Furthermore, we define
for each closed F <G a mapping my as the multiplication by the
characteristic function of G\Int F. It is easy to verify conditions 1°, 2° and 4°.
Condition 3° follows from the fact that u has no point atéms. For each
compact K < G let Ty be the operator py T. If F, H are two closed sets such
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that F < Int H then
g Tgl6(FYnD = Pxuna TPrl € (F)n D

and K\Int H is a compact set disjoint from F. Thus (LT) is satisfied, so that
Tg is continuous by 6.1.

To complete the proof, we apply the principle of uniform boundedness
given in Theorem 3.1 to the family {Tx: K = G compact} of continuous
convex operators Tg: D - L(y) to obtain the equicontinuity of this family at
the point 0. We next observe that, for every feL’(y), the (F)-norm |f],
equals the supremum of |pg f|,, where K ranges over all compact subsets of
G. Thus T is continuous at 0. By the first assertion in 3.1, we arrive at the
continuity of T on D.

The necessity of the condition being obvious, the theorem is established.

The condition of the preceding result is certainly fulfilled if the operator
T is local in the sense that supp Tf < supp f holds for all feD. Thus the
algebraic conditions of being convex and local force an operator on LP(u) to
be continuous whenever u has no point atoms. Without this additional
assumption, the result ceases to be true even for linear operators. A counter-
example was recently given in Remark 4.7 of [3]. Let us note that typical
examples of local linear operators on LP(y) are given by multiplication
operators.

If G is a compact Hausdorff space, a linear mapping T: L7 (y) - L? () is
said to be an operator of local type if py Tpp is a compact operator on L? (w0
for all disjoint closed K, F < G. This notion naturally arises in the general
theory of singular integral operators; see for instance [14]. In fact, the class
of these operators contains all singular integral operators of the Calderén— -
Zygmund type and, of course, all local linear operators on LP(u). Now,
Theorem 6.2 confirms that every operator of local type on LP(y) is
automatically continuous, provided that g has no point atoms. This result
was also obtained in Theorem 4.6 of [3], but the present approach is
somewhat different and actually more general than the former one.

Let us describe an application of Theorem 6.2 in a somewhat more
concrete situation. Let 1 <p, g <oo with 1/p+1/g=1, and consider a
measurable function f: R'xS$"— C satisfying the Calderén-Zygmund
condition

sup [ |f(x, v)dv < o0,

xe: sn

where 5" denotes the unit sphere in R". According to a remarkable theorem
of Calderén and Zygmund [14; p. 288], in this situation the formula

(T () := [ llx=ylI7"f (x, (x—y)lbx—yl " )u(y)dy
»
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for ue LP(R") defines a continuous linear operator T from LP(R") into itself.

Now, the continuity of this mapping can also be deduced from our general

theory as soon as Tu is known to belong to L”(R") for every ueL”(R).
Indeed, it is easily seen that pg Tpy is then continuous on LF(R") whenever
K <R is compact and F < R" is closed with KnF = Q. Hence the
continuity of T follows from Theorem 6.2.

We next turn to the natural counterpart of Theorem 6.2 for spaces of
continuous functions. Let C(G) consist of all continuous functions on the
locally compact Hausdorff space G. Note that we do not assume G to be
countable at infinity, so that the compact-open topology of C(G) is not
necessarily metrizable. By C.(G) and C,(G) we denote the spaces consisting
of all those continuous functions on G which are, respectively, zero and
constant outside some compact subset of G. On C,(G) we consider the
natural inductive limit topology. For every ¢e C(G), the multiplication by ¢
defines a continuous linear mapping on C(G) and on C,(G), which will be
denoted by M,. For operators on spaces of continuous functions, we have
the following two characterizations of continuity.

6.3. THEOREM. Let T: D — C(D) be a convex operator on some open
convex subset D of C(G) with 0eD. Then T is continuous on D if and only if
M, TM, is continuous on M;*(D) for all ¢eC.(G) and all YyeC,(G)
satisfying supp ¢ Nsuppy = Q.

6.4. THEOREM. Let T: D — C,(G) be a convex operator on some open
convex subset D of C.(G) with Oe D. Then T is continuous on D if and only if
M, TM, is continuous on My;'(D) for all peC,(G) and all YeC,(G)
satisfying supp @ Nsuppy = Q.

In these results, the necessity of the respective condition is obvious. For
the sufficiency, we first prove the subsequent lemma. Note that both
Theorem 6.3 and Theorem 6.4 follow immediately from this lemma if the
underlying space G is compact. Let us point out that, in Theorem 6.3, it is
not sufficient to require the continuity of M, TM, for all ¢, yeC,(G)
satisfying supp ¢ Nnsuppy = @, as can easily be inferred from the special case
G = N. A similar remark holds for Theorem 6.2.

6.5. LeMMmA. Let G be a locally compact Hausdorff space, and K a
compact subset of G. Let X be the subspace of C(G) consisting of those
fe C(G) whose support is contained in K. Let T: D—+C(K) be a convex
operator on some open convex subset D of X with 0e D such that the following
condition is satisfied: M, x TM, is continuous on M (D) for all pairs g,
Y e C,(G) with supp @ nsuppy = @.

Then T is continuous on D.

Proof. We shall apply Proposition 6.1 in the following situation. The

underlying locally compact space will be K, we shall consider our space X
and take Y = C(K), so that both X and Y are Banach spaces. For Fe # (K)

icm°®
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we set

Ex(F) ={feX: suppfc F},
&y (F) = {feY: supp f = F},
Y = C((K\F))

and define mp: Y — Y; as the restriction operator to (K\F)~.

The monotonicity of &y and &, as well as condition 1° are obvious, To
prove 4° consider an feKerny. Since f is zero on K\IntF, its support is a
subset of F, so that fedy(F). If teG then #x({t})) is at most one-
dimensional; for a nonisolated ¢ we have &y ({t}) = {0}. Thus 3° is satisfied.
To verify 2° consider two sets U and V relatively openin K with UuV = K.
There exist sets U, P open in G such that U=U0 K and V= VAK;
furthermore, there exist ¢, e C,(G) with suppo < U, suppy < ¥, Q+y =1

on K. Given any feX we have f = gf+yf and ofe&x(U™), Yre &y (V™).

To prove condition (LT) consider two closed subsets F, H of K such
that F is contained in the relative interior H; of H with respect to K. Then F
and K\ H; are two disjoint compact sets, so that there exist two functions ®,
Y e C,(G) with disjoint supports such that ¢ =1 on K\H; and y =1 on F.
Now we have on M, *(D)

ny T| 8y (F) =7y M¢|x TMVIWX(FL
which is continuous by our assumption.
Proof of Theorem 6.3. Without loss of generality, we may assume
T(0) = 0. In view of the definition of the topology on C(G), it suffices to
prove the continuity of Ry T: D — C(K), where K is an arbitrary compact

subset of G and Ry stands for the restriction operator from C (G) into C(K).
The proof will be divided into three steps.

(i) We first show that, for each compact K < G, the operator
Ry T|8(K)nD: &(K)nD— C(K)

is continuous, where &(K) consists of all fe C(G) whose support is contained
in K. To prove this assertion, we use Lemma 6.5; thus we have to prove the
continuity of M,x Rx TM, on &(K)~ My *(D) for all pairs ¢, yeC,(G)
with disjoint supports. Now we note that Mg xRy = Ry M, and that
Cy(G) = C,(G), so that the assumptions of Lemma 6.5 are satisfied.

(i) Given a compact K < G, we choose a compact L such that

Kclnt L, and a ¢ C,(G) such that ¢ =1 on a neighbourhood of K and

supp¢ < L. Then ¢ = 1—¢ is an element of C,(G) and suppy nK = @,
Now take a ¢eC,(G) such that £ =1 on K and supp ¢ nsuppy = @. Then

RK TMW = RK M‘: TMW

is continuous on M * (D) by our assumption. On the other hand, in view of
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the inclusion supp¢ < L assertion (i) yields the continuity of Ry TM, on
M7 (D).

(iii) Take an arbitrary convex neighbourhood of zero ¥ in C(K). Since
D is open and Ry TM,, Ry TM, are continuous, there exists a balanced
neighbourhood of zero U in C(G) such that U < D and

2M,(U) =D, RyT2M,(U)<V;
M, (U) =D, Ry T2M,(U)c V.
Now suppose feU. Then
Ry Tf < $Rx TQM, f)+5 R T(2M,f)€e V.
In a similar manner we obtain
Ry Tf2 —Rx T(=Ne ~V,
since T(0) = 0. This proves the continuity of Ry T at 0 and hence on the

whole of D by the first assertion in 3.1,

Proof of Theorem 6.4. We shall prove the sufficiency in three steps.
For each compact subset K of G, consider the Banach space X
:={feC(G): suppf < K} and the restriction operator Rg: C,(G)~ C(K)
given by Rg f:=f|K for all feC.(G). Then Lemma 6.5 yields the continuity
of the convex operator

Ry TIX¢gnD: XynD— C(K) for all compact K = G.

Since C,(G) is endowed with the inductive limit topology of the spaces Xy, it
is easy to derive the continuity of the composition

Ry T: D~ C(K)

The proof will be completed by means of a uniform boundedness argument.
To this end, let M consist of all g e C,(G) satisfying 0 < ¢ < 1, and for each
@€ M consider the convex operator T,: D — C.(G) given by T, := M, T. It is
easily. seen that the family {T,: peM} is pointwise bounded on D.
Moreover, each of the operators T, is continuous on D. Indeed, given any
@eM, we choose a compact subset K of G satisfying supp ¢ < K. By the
preceding result,

for all compact K = G.

RgM, T=M,xRxT: D—C(K)

is continuous, which immediately implies the continuity of T, = M, T. By the
principle of uniform boundedness given in Theorem 3.1, the family
{T,: pe M} turns out to be equicontinuous. Hence, given an arbitrary
neighbourhood of zero ¥ in C,(G), there exists a neighbourhood of zero
U <D in C,(G) such that

M, TU)=T,(UycV for all peM.
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Now let feU. Then Tf e Xy for some compact K < G and hence Tf=T,f
for some pe M. We conclude that T(U) = ¥, so that T is continuous at 0.
By the first assertion in 3.1, we finally arrive at the continuity of T on D.
It should be obvious that similar results can be obtained for further
spaces of functions, including for instance the case of locally p-integrable
functions. Moreover, it is also possible to derive from our basic principle 4.4
certain continuity results for operators of local type and, in particular, for
local operators between spaces of differentiable functions and distributions.
In this context, however, one has to face certain difficulties whenever the
range of the operator contains nontrivial distributions with finite support.
Actually, the best one can prove in this case is the continuity of the given
operator of local type outside some discrete subset of the underlying space;
see [2], [3], [4] for some counterexamples and for several positive results in
this direction. These results can aiso be subsumed under the present general
theory, but we omit the details. The investigation of local operators in the
context of distribution theory dates back to J. Peetre [18], who characterized
differential operators by the algebraic condition of being local. A similar
characterization of ultradifferential operators was given in [4].
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Some combinatorial and probabilistic inequalities
and their application to Banach space theory

by
STANISLAW KWAPIEN (Warszawa) and CARSTEN SCHUTT (Kiel)

Abstract. Some combinatorial and probabilistic estimates are proved. As applications they
are used to study invariants of Banach spaces, such as the projection constant, '

Introduction. We consider here for x, ye R, 1<p< o0

>

Ave [i(x; Vewli=1ll;
n

and give the order of this expression in terms of the vectors x and y. For
special vectors x or y this was already considered by E. D. Gluskin [4] and,
independently, in [7].

It seems that the estimates that we obtain are, in a sense, crucial if one
wants to compute projection constants of symmetric Banach spaces and
related invariants.

We give some examples and applications. We characterize the symmetric
sublattices of I'(co) and the symmetric subspaces of I'. We compute the
positive projection constant of a (nnite-dimensional) Orlicz space and show
that it is, up to a universal constant, the same as the one of the dual space.
For symmetric spaces this is in general not true.

The order of the projection constant of the Lorentz space 121, ne N, is
estimated. The result seems to be rather peculiar.

We are grateful to J. Lindenstrauss and G. Schechtman for discussions.

0. Preliminaries. In this paper we are mainly concerned with finite-
dimensional Banach spaces that have a 1-symmetric basis, i.e. a basis {e}t=y
such that for all ;e R, &, = +1,i=1,..., n and all permutations # we have

n . n
12 aell = || Y & aien-
{m] iml

The projeétion constant of a finite-dimensional Banach space E is given by

Y (E) = inf {||P||| P is a projection from I® onto E}.
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