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Interpolation of Banach lattices
by
PER NILSSON (Stockholm)*

Abstract. For couples of Banach lattices we describe the interpolation spaces generated by
the + method and by Ovchinnikov’s upper method in terms of the Calderén-Lozanovskii
spaces.

0. Introduction. In this paper we study the effect of certain interpolation
methods on (quasi-) Banach lattices. More specifically, we consider the “4-
method” (X, ¢> of Gustavsson—Peetre [10], Ovchinnikov’s upper method
{X»? (see [20]), as well as a variant (XD, of Ovchinnikov’s lower method.
Some results are also obtained for the complex method [X], of Calderén
[6]. In fact, we wish to put these interpolation methods in the case of a
couple X of quasi-Banach lattices in relation to the Calderén—Lozanovskii
constructions ¢ (X).

Not all of our results are new: closely related results may be found in
Ovchinnikov [21], [22] as well as in Berezhnoi [2]. However, in contrast to
[21], [22], the methods used here are elementary and are similar to those of
Gustavsson—Peetre .[10].

The plan of the paper is as follows. Section 1 contains definitions and a
technical Lemma. In Section 2 we study in the case of a couple X of quasi-
Banach lattices the connection between ¢(X), (XD, and <X, ¢). As an
application we obtain a new proof and an extension of the following theorem
of Pisier [25]: a Banach lattice X is p-convex and p’-concave, 1 <p <2, 1/p
+1/p=1, if and only if there exists a Banach lattice X, such that X
=[Xgo, L*]y, 0 =2/p. In Section 3 we then extend our considerations to
include ¢<X®, in the Banach case only. Section 4 is on the Gagliardo closure
of [XJe. Section 5 is concerned with various applications of the previous
results.

Finally, 1 acknowledge stimulating dicussions with J. Peetre on the
topics of this paper.

* This work was partially supported by the Swedish Natural Science Research Council,
contract no. F-FU 4537-101.
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1. Preliminaries. Let us recall some notation from interpolation theory.

Let 4, and A4, be two quasi-Banach spaces. We say that 4 = (4,, 4,) is a

quasi-Banach couple if both 4, and A, are continuously imbedded in some
Hausdorff topological vector space. We let

AA) =don A,

and  I(A)= Ayg+4,.

Further for aeZ(4) and for t >0 we define

K(t, a: A) = inf {lagll 4 + ¢ laslla,: @ = ao+ay)

(K-functional).

A quasi-Banach space A4 is called an intermediate space with respect to 4
if and only if 4(4) = A < £(4) with continuous imbeddings. If this is the
case, we denote by A4° the closure of 4(A4) in 4. The Gagliardo closure of A
with respect to X (A), written 4™, is defined as follows: aue 4™~ if and only if
there exists a sequence (4;)fe 4 such that ¢,—a as i— oo in X(4) and
llajl4 < A for some 1 < co. Put llall, . =inf A. If 4 is a quasi-Banach couple
we write A% = (4§, A9). If A= A4° 4 is called a regular couple. For details
and any other unexplained notation concerning interpolation see [4].

Let 7 denote the set of all positive functions ¢ on R, such that both
@(t) and te(1/t) are nondecreasing. We let %, denote the subset of
consisting of all ¢ with min(1, 1/) () =0 as t— 0, c0. On & we define an
involution by ¢*(1) = 1/p(1/r) and we put 2* = P, N (#,)*. Sometimes we
will regard ¢ as a function on R, xR, by putting ¢(s, ) = s¢(t/s).

We now define the interpolation methods whose study this paper is
devoted to.

Dermvirion 1.1. Let 4 be a quasi-Banach couple and let ¢e 2%
(i) Then ae{d), if there is a sequence (a)®, <4 () such that 4
o0

= Y & (with convergence in X () and for any bounded sequence (5)®,

i=—a

@0
Y &29a/p(2) is convergent in A,7j=0,1. We

i==

of complex numbers

further require that
=]
| X &2Yaip2),, < Csuple
i 4 iez

for some constant C and for j=0,1. As a quasi-norm we use [!all<g>w
=inf C. .

(1) (the + method) Then ae <4, ¢ if there is a sequence (a)® e 4 (A)

icm°®
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G

such that a = ) a; (convergence in X(4)) and such that for any finite

subset F of Z and any bounded sequence (&)®,eC,
(1.1) ”Z & 2ijai/‘/’(2i)”41 < C suplg|
ieF ieZ

for j=0, 1, with C independent of F. Put llall¢z,45 = inf C.

Remark 1.2. One easily sees that condition (1.1} is equivalent to
demanding that for some '

o0
12 (3 Eizijai/(/’(zi)”/{j <C
i=—ow
whenever ¢ = ()% e c, and lelle, < 1.

Remark 1.3. These interpolation methods can be traced back to the
work of Gagliardo. The (- ,-method was introduced in this form by Peetre
in [23]. The first paper on the + method is Gustavsson—Peetre [10]. See
also [2], [9], [20], [21], [22], [28].

Let w =(w)®, be a -sequence of positive real numbers and let
1 < p< oo. We denote by [,(w) = I,(w;) the space of all sequences o = ()%

such that the norm lloll e =(X |cxiwl-]")1lp is finite. Let I, denote the
couple (1,, 1,(29).
We now give the definition of Ovchinnikov’s upper method (see [20]).

DeFinTion 1.4. Let A be a couple of Banach spaces and let ge 2. The
space {A)* consists of all acX(A) rendering the norm

i=—w

el zye = 58P {ITall op—sy: I Tllr, = 1)

finite.

Ifo(t)=1" 0 <0 <1, we simply write (4>, <A, 0, respectively (A>°.
In the sequel we will need the following result, implicit in Janson [11],
Theorem 8, as well as in Ovchinnikov [22].

Lemma 1.5. Let A be a couple of p-normed quasi-Banach spaces and let
peP* If ac A(A), then there exists an integer N and a;e A(A), |i| < N, such
N .

that a= Y a; and

i=~N
N P -
(1.3) | ¥ &2’a/o@), <2774 o ledl l1all 2.0
i=-N i<

for j=0,1.
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Proof. We may assume that |lall;z,, =1. Take & >0 and choose

b A(A), ieZ, such that a= Y b, and if ¢ = ()2, e, then

i==o

(1.4) [ Z e2”b,/<p(2‘“,,

=~ o0

A+ llelleg,  J=0, L.
Fix a positive 1nteger N and put
f=3Yb and a =

Since ¢(2)/2' >0 as i— co, (14) implies that

ol = | 5 22 Zon] <avaonr
Further,
N-1
Na*llag <217 (lalag | 5 bllag)

N-1
<20 (lallag + X 0@)b/o@lar)

< 277 (lallag +(1+6) (2M)
since ¢(2)—0 as i— — —oo. Similarly

a7l SA+8) @27, lla™lls, < 2" (lalla, +(1+8) @ (27Y)2V).

If we put a_y=a", ay=a’

and a;=b, f ~N<i<N,
estimates imply that if |g] <

1, li < N, then

then these

22(1 - (” NZN:- 1

i=-

N .
| ¥ &29a/o@),, < 8270/ (24, +
i=~N

+2Ye_wl/o (27 lla” |l 2V lenlle (M lla*]lay),

J=0,1. By using (14) and the above estimates this expressmn is in turn
dominated by

2202 (14.6)(3+max(1/g(2Y), 27 V/p (2" "l )-
Since pe #*, the lemma will follow if N is chosen sufficiently large.

Let A be a couple of quasi-Banach spaces and let @e&?* From

Definition 1.1 it is evident that {A>, = <A, ¢). On the other hand, Lemma
1.5 shows that in fact

(1.5)
See also [11], Theorem 8.

(A, =<4, @)°.

icm

Interpolation of Banach lattices 139

Let now A be a Banach couple and let 0€(0, 1). Denote by [A], and
[4]° Calderén’s two complex methods of interpolation (see [6] and [4],
Chapter 4). One then has the following chain of inclusions:

(A =[4]y = [A)° = [Aly = <A)°
and
(A, 0> <[4
More generally, if pe Z* one can show that
(1.6) (A S <4, @) S (A)y = A",

Proofs may be found in Janson [11] and in Ovchinnikov [20], [22]. Let us
remark that the inclusion (A, < <A)® (or rather a slightly sharper version
of it) was originally proved by Ovchinnikov by using Grothendieck’s
inequality. Subsequently an elementary proof was found by Janson [11]. We
also refer to Peetre [24].

Concerning duality one has the following results.

LemMa 1.6. Let A be a regular Banach couple and let o #*. Denote by
A* = (A%, A¥) the dual couple. Then

1.7 Ak = (A%,
(18) (KD?)°)* = (A*, p*>.

Proofs may be found in [11] or [22]. See also [19], Section 4.3 for a
different approach to (1.8).

‘Let (2, X, u) be a complete o-finite measure space and denmote by
L0 =1°%(Q, X, u) the space of all equivalence classes of u-measurable real-
valued functions, equipped with the topology of convergence in measure. We
will say that a quasi-Banach space X is a quasi-Banach lattice (on (2, Z, p)) if
X is a quasi-Banach subspace of L° with the property that if fe X and ge L°
are such that [g| <|f| p-a.e. then ge X and ||g|lx <||f]|x. Note that if X, and
X, are any two quasi-Banach lattices (on (@, 2, w) then X = (X,, X,) forms
a couple of quasi-Banach spaces.

Let X be a couple of quasi-Banach lattices and let @& 9’* We denote by
@(X) = @(X,, X;) the space of all measurable functions x such that for some
x e X;, Hx.'Hx,- <1,i=0, 1, and for some 1 < co we have |x| < A@(xq|, |x4])
ae. We put {x||,x = inf A. )

We note that ¢(X) is a quasi-Banach lattice as well as an intermediate
space with respect to X. In particular, if we take @(t)=1% 0 <8 <1, we
obtain in this way the spaces X§~°X} introduced by Calderén [6]. The
properties of ¢(X) have been studied in depth by Lozanovskii (see [15] and
the references given there).

3 — Studia Mathematica, T, LXXXIT
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Let X be a quasi-Banach lattice and let 1<p<o. The p-
convexification of X, denoted by X', is defined as follows: xe X” if and
only if [x[Pe X. We put |[x||,, = |[Ix|]|¥?. Observe that if 1—0 = 1/p then
X = X1=2(L*=y. Similarly we define the p-concavification of X, written X
by demanding that xe X, if and only if |x]*?e X. As a quasi-norm we use
I, = [lx17%.

Let 0 < p < co. Recall that a quasi-Banach lattice X is called p-convex,
respectively p-concave, if there exists a constant M < oo such that if
Xy, X35 +..y X,€ X then

n n

ICZ el il < MCE Il

i=1

. respectively
O IRES M“(Z ,xi|")]/ﬂHx-
=1 i=1

The smallest possible value of M is denoted by M (X), respectively M, (X).
We will also need the following

DermniTION 1.7. A quasi-Banach lattice X is said to be of type % if there
exists an equivalent lattice quasi-norm.on X such that, for some p > 1, X®
is a Banach lattice in this norm.

2. On the interpolation properties of ¢ (X). Let X be a couple of Banach
lattices and let e #*. The interest of the Banach lattice ¢ (X) mainly stems
from the fact that it is often computable. For examples we refer to-Section §
as well as to [22]. Hence one is interested in describing the interpolation
properties of ¢(X). The first general result in this area is due to Shestakov,
who in [26] showed that if ¢(f) =%, 0 <0 <1, then ¢(*)° and @ ()"~ are
interpolation methods on the category of couples of Banach lattices. Later he
supplemented these results by showing that in fact (X}5~°X%)° = [ X6 (see
[27] and [3]). If X, and X, have semicontinuous norms then a theorem of
Lozanovskii [16] asserts that (X5~°X?%)~ =[X]% In this section we wish
to extend these results to the case of a general pe #* as well as to couples
of quasi-Banach lattices of type %.

Treorem 2.1. Let X, and X, be two quasi-Banach lattices of type 4 and
let pe P*. Then

@1
(2.2

<X>(p =@ (X)O’
p(X)s{X, 0> =0(X).

The proof of Theorem 2.1 is based on the following lemma, generalizing
Carlson’s inequality (cf. [107, p. 38, for the case e P*7).
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Lemma 22, Let @e.2*. Then there exists a sequence of disjoin; sets
Iy=Z, heZ, two sequences (e)®,, j=0, 1, of real numbers with |el] < 1,
ieZ,j=0,1, such that

i 2,1/2 i 1/2
Zxo@) < Co(Z]X e x)"™ (C|T & 2x/4)")
i h iely h el
Jor any finite sequence (x;)eR.
Proof. Put a, = (¢(2))*,, and choose ne X (L) such that

oty <K n: L)<, K(t, [P Ty <cso@

for some constants ¢,, ¢, and c; (see [4], p. 117). By Theorem 2 in Cwikel
(8] we may find T:T,—T, such that T(s)=a, and ITlz,7, < C. An
analysis of the proof of Theorem 2 in [8] in this special case shows that we
may write T= Y T; where

|kl <p

o0

(23) L) = % a1, < Ao e dn 1Kl <B.

Here (1,)2,, and (G,)®,, are two sequences of pairwise disjoint subsets of Z
whose union is Z in both cases, &,, heZ, is a sequence of positive real
numbers and I, he Z, are linear functionals on X (7,) such that one has the
estimates .
(24) e, 3 sup () < C,

Jelp

25) Ul 1,00 SUP (22 < C
Jjely

for some constant C.
For feX(l,)* we now have

1< A ey K (S W1y 12 T < 3 001 iy 151 -
(see [4], p. 32, 54). Hence, for any finite sequence (x;)e R,

26) [T %02 = [<x, a,)] = ¢x, Tl = [KT* (), )
‘ < T KB DI<es T olIT s 1T ()
k|sp <

For jel, put ¢} = @(2/)/sup @(2') and note that 0<e)<1. Then (2.3)
iely

implies that

ITEGE = X Gul<xs 2, apdHllXey s, Wl

h=—w

o0

< X (sup o ()8l )’ | T & x|

h=—o iely iel},
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and by (2.4) this expression is in turn dominated by

CYIT et

iely

Similarly with &f = ¢ (2/)27//supp(2)27%, jel,, one infers from (2.5) that
iely

Il < C (|3 2 x[).

icly
If one inserts these estimates in (2.6), the conclusion of the lemma follows.

Remark 23. If ¢(t) =%, 0 <6 < 1, one may take I, = {h}. Hence in
this case one has the estimate

IZ x; 2i9| < C(Z lxilz)l—f)/z(zlzi xilz)ﬂ/z,
i i i
ie. the classical Carlson inequality. Further one can easily prove analogues
to Lemma 2.2 with 2 replaced by any other power pe[l, o] (cf. [10], p. 38).

The existence of the operator T'in the proof of Lemma 2.2 is well-known
and goes back to the work of Peetre. The main point here is that we have an
explicit expression for T which permits us to make the appropriate estimates,
The construction of Tis based ultimately on the K-divisibility techniques of
Brudnyi-Kruglyak (see [5], [8]).

We now give the

Proof of Theorem 2.1. We claim that it suffices to show that (1)
o(X) = (X, ¢) and (ii) if xed(X) then Xy < Clixll¢x,, - Indeed, since
4(X) is dense in <X, (ii) will imply that (X Y € @(X)° and from (i) it
follows that ¢(X)° < <X, ¢>°. Since (X, ¢>° = (X, (see (1.9), (2.1) will
follow. On the other hand, we have (X, ¢> = (¥ Y» and hence (ii) implies
that (X, 0> < o (X)~, ie. (2.2).

Let us begin with the more complicated casé (ii). If xe4(X) we may
choose, in view of Lemma 1.5, an integer N, x;e 4(X), —N <i < N, such

N
that x= Y x; and (1.3) holds. Choose sets Iy, he Z, and sequences (g)%, j

N
=0, 1, as in Lemma 2.2. Take p, > 1, i =0, 1, such that X* are Banach

lattices. Put g; = 1/p,. Then Khintchine’s inequality implies that for any finite
sequence (y;)eX; we have ae.

1 1
Cu i) < ( [n @[ )™,

Here r;, ie Z ., denote the Rademacher functions, Using the fact that XE" D s
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a Banach lattice, we obtain

L 9 1/g;|
@7 Cal EY < (I @ 2" 2",

= [{IEr@y " i
0 i t

1 .
<(IZn @y 4™
< sup “Z 1 () .V.‘”Xi-

O<t<l

Now put yj = Y &/27x,/p(2). If n is chosen sufficiently large then (2.7)
iel
implies the estim;te

Coy ) llx; < sup [Sraeald) 3 el 27 xi/0 2)x,
= O<t<1 x iel,

iely

and this expression is-in turn dominated by c||x| |<X>q, (see (1.3)). On the other
hand, Lemma 2.2 implies that

b =¥ x| < Co (AR (1A ™),

and hence xe¢(X).

The proof of (i) is essentially the same as the proof of Lemma 8.2.1 in
[22]. Fix £ > 0 and take xe ¢ (X). Write |x] = no(|x,|, |x,|) where [Ixdlx; = 1,
i=0,1, and || < (1+¢&)|x|px. Without loss of generality we may assume
that x is nonvanishing a.e., and hence so are x, and x, . If we interpolate the
identity map

L (L2 (1/1%o]), L= (1%, D) = (X0, X4),

we find that
I L= xo]), L=(1/1x4]), 03> — <X, ).
Since _
L= (1/@ (1xol, Ixal)) = L= (1/1xol), L= (1/1x4), @)

(see [9], Theorem 2.3) and xeL®(1/¢(jxy|, |%,])), it follows that xe (X, @).
Hence ¢(X) < (X, ¢)> and the proof of Theorem 2.1 is complete.

It is evident from the proof of Theorem 2.1 and Remark 2.3 that the
assumption that X;,j=0,1, are of type ¥ may be replaced with the
following assumption: there exists a constant M < oo -such that if
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Xy, X3, ..., X,€ X; then
n
(%) || max Ixilllxj <M sup ||Y r,-(t)x,-“xj.
1<isn 0<t<1 =

Since any Banach lattice is of type %, Theorem 2.1 applies to any couple of
Banach lattices and we recover a theorem of Ovchinnikov [22] (see also
Berezhnoi [2] as well as Shestakov [28]). In [21] Ovchinnikov proved the
inclusions in (2.2) for a certain class of quasi-Banach lattices, using
techniques different from ours. In particular, Ovchinnikov’s class containg
any quasi-Banach lattice of type % but its relation to condition (%) is not
clear. Let us remark that we do not know of any quasi-Banach lattice which
is not of type %.

We now give as an application of Theorem 2.1 a characterization of q-
concave K&the function spaces. Recall that given a K&the function space X,
X' denotes its Kothe dual (see [13]). By M(X, L% we denote the Banach
lattice of all pointwise multipliers from X to L? endowed with the operator
norm.

THEOREM 2.4. Let X be a Kothe function space such that X" = X and let

0<0<1. If X is g-concave, 1 < g < o0, then there exists a quasi-Banach
lattice X such that, with g, = 0g,

X ={X,, L' 0)

up to the equivalence of norms. If in addition X is p-convex where 1/p = 1-0
+0/qq, then X, can be chosen to be a Banach lattice.

In order to prove this result we need the following factorization result
due to Maurey [18].

Lemma 2.5. Let X be a p-convex Banach lattice with MP(X)=1. If
he X' then there exist fe L”, I/p+1/p' =1, and ge M(X, L) such that h =fy.
Furrher,

Welle = 50 71 gl B =}

Proof If he X' then he M(X, L!). Since X is p-convex, Theorem 8 in

[18] implies that there exist ge L” and a linear operator V- X — L? such
that for any xeX we have gV(x) = hx. Hence V may be chosen as a
pointwise multiplication operator and the lemma is proved,

Proof of Theorem 24, We may assume that M, (X) =1. We claim
that as X, we may take M (LY, X);, 1/ = 1—0. In order to see this, observe
that X' is g¢'-convex with 1/9+1/q' = 1. Hence Lemma 2.5 implies- that

X" =M(X', L) L2,
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By duality it follows that
X =X"=M(L%, X)L
By taking appropriate powers this expression is in turn equal to
X = (M(L4 X))~ (L) = X401y,
Since the quasi-Banach lattice X, is of type %, we may apply (2.2) and infer
that
X = {X,, L' 0.

If in addition X is p-convex we may assume that M (X) Mgy (X)=11t
is easy to check that M (L% X) is then p-convex with constant equal to one
and hence X, is a Banach lattice. The proof is complete.

If M®(X) M (X) =1, the above proof and Shestakov’s theorem [27]
imply that the equalities .

X = X370 (L = [X,, LY,

hold isometrically and we obtain Pisier’s theorem [25]. It is not clear if the
assumption that X” = X is necessary. Observe that if X is a sequence space
with a monotone unconditional basis this assumption may be dropped. This
is a consequence of Corollary 3.2 in [12] which implies that one has the
equality

X=M(, X)],
whenever X is g-concave.

3. Connections between <{X),, <X, ¢> and {(X)?. In this section we
obtain a description of (X)¢ whenever.pe #* and X is a regular couple of
Banach lattices.

TueoreM 3.1. Ler X be a regular couple of Banach lattices and let pe P*.
Then

3.1) Xy = 0(X)° = (X7

and
(3.2) Xy = o(X)" =X,

As a corollary we have
COROLLARY 3.2. Let X* be a dual couple of Banach lattices and let
Qe #* Then
(X*, @) = o(X¥) = (X*)°.
Proof. Since ¢(X*)~ = ¢(X*), this is a consequence of (3.2) applied to
X with ¢@* Lemma 1.6, (1.7) and Theorem 2.1, (2.2).
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The proof of Theorem 3.1 is based on the following two lemmas. The
first one is due to Lozanovskii [15].

Lemma 3.3. Let X be a regular couple of Banach lattices and let pe P,
Then

(@(X)0)* = o*(X*).
Proof. See [15], Theorem 1.
We further require the following result due to Aronszajn-Gagliardo [1].

LemMA 34. Let A be a dense Banach subspace of the Banach space E.

Then, with the usual canonical identifications, we have
A~ =E n((4%°)*.

Proof. See [1], Section 10.V.

We now have the

Proof of Theorem 3.1. From (1.6) we infer that we have the dense
inclusions <X}, =((X)*)°. Consequently to establish (3.1) it is sufficient in
view of Hahn-Banach to show that the two Banach spaces (X, and
(¢X>*)° have the same dual. By Lemma 1.6 we have ((KX>90)* = (X*, .
On the other hand, Theorem 2.1 implies that (X Y = @(X)® and hence by
Lemma 3.3 we have (X>* = ¢*(X*). Since ¢p*(X*)~ = ©*(X*), Theorem 2.1
asserts that (X* ¢*) = o*(X*), implying now that (X b =(KX>")*
Hence (3.1) is proved.

Let us now prove (3.2). Take x,e (X)? with lIxoll gyp = 1. We wish to
show that xoe {(X),. In order to do this we consider finite rank operators
T: X - p, of the form

N
T()= ZN<‘, xtHe;.

i=—

Here x¥eA(X*) and e, ic Z, denote the canonical unit vectors in ly. We
observe that T has norms less than one if and only if

N
T 2100 3 <l

for j =0, 1. Hence, whenever |ef <1, —N <i< N, we have
N
|<x, Z g 24 x:k>l < ”x“qu
i=-N
implying that

N
(33) [ siZUx;“”x;g 1.
i==N
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Since T'(xo)el; (1/¢(2Y), we similarly have

N
34 REND) ax¥e)) <1
i=—N
whenever |e] <1, |if < N. Now fix a sequence (¢%)"y of numbers with
modulus less than one and put

N
x*= 3 & xF/e7.
i=—N
Then (3.3) asserts that x*e (X*},. and, in fact, [lx*|| g, , <1. Further, (3.4)
implies that |{xo, x*»| < 1 for this particular x*. But the argument may be
reversed. Indeed, if x*e A(X*) we use Lemma 1.5 to find N, xFted(X*),

lii < N, such that
N

x¥= 3 x¥e7),

i=—-N
N s
|3 a2xtx; <4 sup el I1x*liceey .
i=-N lilsN

Hence the associated operator T maps X -7, with norms less than
4|]x*]]<p>w. By the above argument we may now conclude that

(3-5) <%0, X*MI < 411x*| e,

for every x*ed(X*).
Next we apply Lemma 3.4 with 4 = (X Y and E = X (X). Since Lemma
3.3 and (1.7) implies that (<X)%)° = o*(X¥%)° = <X*>¢*’ we infer that

Xy =Z(X)n(X*H%.

Now (3.5) implies that xge (X *Dae and since trivially xoeX(X), it follows
that xoe <X, . Hence the inclusions (X)® = (X>; < ¢(X)"~ are proved. To
prove the converse note that trivially ((X)>*)~ = ¢(X)»*. Hence (1.6) implies
that (XD, < ¢(X)~ = <X)*. This completes the proof of Theorem 3.1.

In [20] Ovchinnikov showed that the equality ¢(X)= (X)>*® holds
whenever both X, and X, have the Fatou property. He further coined the
term “weakly tame” for a Banach couple satisfying (1), = (A)* for every
@€ &* (see also [22]). Hence Theorem 3.1 and Corollary 3.2 state that large
classes of couples of Banach lattices are weakly tame.

When @() =1, 0<6 <1, it is known that @(X)° =[X], for any
couple of Banach lattices (see [27] or [3]). Since trivially (XY= (X°D,,
Theorem 3.1 implies that we also have (X}, =[X], for any couple of
Banach lattices. Now Theorem 7 of [11] and Theorem 1.C.4 of [13] imply
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that if either X, or X, is weakly sequentially complete then
<X>e = 0?, 0> = [X]u =X%J‘0X‘;-
It is not known if the restriction in Theorem _3.1 to regu_lar couples_ is
necessary. Note, however, that trivially <X>; = (X°)? and (<X°)*)° = (X},
since we have (X}, = (X%),. . .
Theorem 3.1 also implies reiteration theorems for our mterpolatlon
methods when restricted to regular couples of Banach lattices. For instance

let us prove
TueoreM 3.5. Let X be a regular couple of Banach lattices and take

Po, @1, e P*. Put @ =14(@o, ¢1). Then
P (ZYM Y = (X,
Proof. It is known (see [11], Theorem 13) that we have
X = (X, D <Xy,
X 2 XY™ (X 2 (XD,
Since Theorem 3.1 asserts that (X, = (X)?, it follows that X~ = (X ). As
trivially X~ = X, the theorem is proved.
4. On the Gagliardo closure of [ X],. Denote by .# L* (w) the space of all

sequences 7 = (y;)¥ such that for some function he L™ (0, 2) we have
2n

yo;=(2m)"" [ exp(iif) h(0)d0,
b

Take 0¢(0, 1) and put

jeZ.

Put |3 = [IHl|

L%(0,2m) "

FL® =(FL(29), FLe(27 -0,

FL%(w)

Let X be a couple of Banach spaces. The interpolation space [X, 67 then
consists of all xeZ(X) such that the norm
Ixller.e = sup TN gyt T2 X = FL®, (| Tl g7 = 1}

is finite. This interpolation method was introduced by Janson in [11], who
showed among other things that

. [X1y = (X, 01)°.
- In analogy with Theorem 3.1 we now have the following
THEOREM 4.1. Let X be a reyular Banach couple and let 6¢(0, 1). Then
[X1y =[X,01.

Since the proof is completely analogous to the proof of (3.2), we will
leave the details to the reader. Let us only remark that it is mainly based on
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the discrete definition of [X], due to Cwikel [7]. One also needs an
analogue of Lemma 1.5 for the complex method. This may be found in [11]
(see the proof of Theorem 23 there). With these tools one analyzes finite rank

operators T: X — #L* in a way similar to that followed in the proof of
Theorem 3.1.

S. Applications. The main interest of the quasi-Banach lattice ¢(X) is
that one is often able to compute it. Let us give some examples of this and
also illustrate Theorem 2.1. We begin by treating interpolation of couples of
quasi-normed Orlicz spaces. Previous treatments of this topic may be found
in [10], [20], [21], [22].

ExAMPLE 5.1. Let @ be an increasing function on R, such that lim D (1)
t—=0
= @(0). The Orlicz space L3 is defined to be the subspace of 1.°(y) consisting
of all feL°(u) such that

[eUfl/Adu < =

]

for some 4 < oo. Clearly L% is a vector space and a topology is obtained by
taking as neighborhoods of O the sets

Uep = f: feL%(n) and [O(f|fe)du < B}
e}

with 0 <o, f < oo, Let us further assume that this topology ‘is locally
bounded, ie. LY is a quasi-Banach space. By a theorem of Matuszewska—
Orlicz [17] we may then assume that @ is of the form w(t?) where 0 < ¢ < 1
and w is a convex function. Hencé with p = 1/g we have isometrically (Lx)»
=L and it follows that L} is of type %. The theory of Section 2 thus
applies to any couple (L$y, LE,) of quasi-normed Orlicz spaces. We now
claim that
@ Loy L3,) = Lj

for ge#, where @7'(1)=o(®y' (1), &7'(1)). Indeed, if feL¥  and
[®(/1/Adp <1 then with g = @ (|f|/2) we have |f] = Ap(®; ' (g), 7 (g)).
gince |7t (g)”%i < 1, it follows that fep (LY, L3,)- Assume conversely that
|f1 < 4@ (| fol.l f1]) where “f':“’%f <L i=0,1 Putg, = &(f) and define h by h
= max (g, ¢;). We note that _

D11/ < (0 (D5 (go), D7 (92) < (0 (5 (W), &7 (W) = h.
Hence

J2Uf/)du < [hdu< 2
@ )

and we conclude that fe L5,
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Since trivially L%~ = L%, Theorem 2.1 now implies that
5= (Lsg, Ls,, @,

ie. L} is an interpolation space with respect to (L3, L ). Let us remark
that this result has previously been obtained by Ovchinnikov [21] (see also
[20], [22] as well as [10]).

ExampLE 5.2. Other examples of quasi-Banach lattices of type % are
weak L? spaces, 0 < p < oo, which we denote by L”*®. Let us show that, for
instance, L!**® is of type %. If g < 1 it is known (see [4]) that the quasi-norm

111 = sup r““l(gf*w)“ds)”"

. is an equivalent lattice quasi-norm on LY*, With this quasi-norm and p
= 1/q it follows that (L**)" coincides isometrically with the Banach lattice
L»®. Hence L* is of type %.

ExampLE 5.3 (Interpolation of weighted L” spaces). If w is a positive
measurable function on a ¢-finite measure space (22, Z, y), we denote by L7,
=L%(u), 0 <p < oo, the space of all feL® rendering the quasi-norm

1

(1 feol? dp)™*

2
finite. Let (LS, L) be a couple of weighted L? spaces. In the Banach case,
ie. 1< pg, py < o0, Stein—Weiss [29] showed essentially that

j2 P _TPONL=0 P10
. [Lcu%’ Lail]a - (Lmoo) (Lmll)o - Lg) .

where 1/p=1-0/p,+0/p; and o =w} o] (see [4]). In [9] Gustavsson
extended this result to the full range 0 < py, p; < 00 of parameters using the
+ method. Let us here treat the case of general ¢e P*.

Take peP* and 0 < po < p, < 0. We claim that fe (L2, L7, o) if
and only if ’

(5.1) [¥ (@10 wg "y f1/A) @ofws Y du < 1
o

for some A < co. Here 1/g = 1/po—1/p, and Y~ (t) = t'/70 (¢~ 1),
In order to show this put = (w0, wg ™Y, ¢ = (we/x)"™ and v = op.
For feL®(u) put T(f)=1f and note that

' TN 5 = ”f”L‘If,‘l
for i =0, 1. It follows that

T({Leys Lat, @) = <L°0), L (), 0.

LPi(y)
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The latter space may be computed by using Example 5.1. In fact, one sees
that Fe (L™ (v), L™ (v), ¢ if and only if

[w(Fypydv <1
Q2

for some 4 < 0. Hence, with F = tf, f L°, dv = ody, this expression equals
(5.1) as claimed. )

Let us remark that this proof is based on ideas found in Stein-Weiss
[29] (see also Lizorkin [14], in particular Besov’s comments on p. 231). In
the special case ¢(1) =1% 0 <0 <1, (51) simplifies to the assertion that
fellay, Lo}, 6> if and only if fe Ly, with p and w as above.

One may note that the results in Section 2 and Section 3 do not solely
apply to couples of Banach lattices. In fact, if a Banach couple X is
isomorphic to a complemented subcouple of a couple of Banach lattices one
may extract from Theorem 2.1 and Theorem 3.1 information concerning e.g.
(X, ¢). Let us give an example of this.

ExaMmpPLE 5.4 (Bernstein-Szasz type inequalities). This example will be
concerned with estimating the Fourier transform of functions from

appropriate Besov spaces. Pick ¢ % (R") such that
supp & = {{eR: $<E <2}, BH>01if $<|f <2

and
i SR =1 if E£0.

Put ¢,(-) = 2" (2-), ieZ. Let seR, 1 < g < co. The homogeneous Besov
space B3? is defined to be the space of all fe %' (R" such that ||f llsg < 00
where

Wleg=( 3 @*16,7120)"

i=— o

For integer k > 0 and fe #(R") put
wh(t.f) = lSh}lp N45f 1l 2
<t

(kth order modulus of continuity). Let s >0, 1 < g < oo and pick k > s. As is
well known, B§? coincides with the completion of $(R" in the norm

©

(] (ke fye) defe)'

0

(see [4], p.144). We further recall that Bj? is isomorphic to a complemented
subspace of (L?). Indeed, if for fe (R") we put T(f)=(®;*f)®,, then
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T: By — [;(L?). For f = (£)Z € ¢ (R") we similarly define S: (LY — B%" by
S(f)=z Z q)i-i-j*jx:'
i st
Then ST =id and the claim is proved (see also [4], p. 151).

For fe % (R") denote by .7 =f the Fourier transform of f. Now, by
Parseval’s formula and Bernstein’s theorem,

71 (BY2, BY» ) (L2 LY.
Let us interpolate these estimates using the + method. We claim that the

following holds: there exist two positive constants ¢; and ¢, such that if
fe Z(R" and

h (&o’é (t, f) "2/ 2) dtfe"* L = ¢,
0

for some A < oo then

U (/)2 )de < 1.
R?

Here k > n/2, Yy~ (1) = t*? o (t~Y?) and e #*

In order to show this we need to compute (B2, BY%! ¢d. Using the
above two operators T and S we see that this space is isomorphic to a
complemented subspace of (J, (L%, [*(L?), @), which in turn clearly equals
(L, 12, > (L?). In Example 5.3 we computed I, [¥2, ) for o #*. If we
fix u>1 we infer that (f)®,e <, (L%, IY*(LY, ¢ if and only if

3 i —i
S Tl < 1
k== k= 1cain2g,k
for some constant A < co. If we take u=2"? and f; = &, «f we infer that
fe<BY? BY>!, @) if and only if

2 22T |@ xSl /A < 1
i=—a
for some A < co. Take k > /2 and observe that ||®; xf||, , < Coo§ (2%, f) (see
[4], p. 161). This estimate inserted in (5.2) now implies that if

)

[ (o, f)A) i/t < ey
0

then fe<BY?% BY>! ¢>. On the other hand, if fe(L?, LY, @> then by
Example 5.3 we have

(5.2

fw(f©nade <t
R”
for some A < co. This completes the proof of the claim.
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On the splitting of twisted sums,
and the three space problem for local convexity

by
PAWEL DOMANSKI (Poznan)

Abstract. We characterize all pairs of topological vector spaces (tvs) (¥, Z) such that Yis
semimetrizable (resp. locally bounded) and for every relatively open and continuous map ¢q with
ker g > Y and im g ~ Z there is a section (resp. a homogeneous section) continuous at zero (ie.,
a map s with gos =id).

A twisted sum of two tvs Y and Z is a tvs X with a subspace Y, ~ ¥ such that X/¥, ~ Z.
All twisted sums of an arbitrary pair of tvs are described.

A tvs Z belongs to S(Y) (resp. to the class of TSC-spaces) iff every twisted sum of tvs ¥
and Z is a direct sum (resp. is locally convex whenever so is Y). We examine hereditary
properties of the classes S(Y) and TSC-spaces. As an application we get: (1) all locally convex
spaces (lcs) with a weak topology belong to S(Y) for the one-dimensional Y (i.., they are -
spaces [15]); (2) all nuclear Ics and all metrizable locally convex 2 -spaces are TSC-spaces. The
classes of TSC-spaces and locally psendoconvex spaces are closed under twisted sums.

We remove the assumption of local boundedness from the following results: (1) Kalton’s
[14] description of ali twisted sums of Ics; (2) p- and g-convexity of Yand Z resp. (0 <p # g < 1)
implies min (p, g)-convexity of their twisted sum.

0. Introduction, A twisted sum of two topological vector spaces (tvs) ¥
and Z is a diagram of tvs and linear relatively open continuous mappings:

(%) 0-Y5x5%7-0,

such that () is a short exact sequence, ie., j(Y) = ker ¢g. Sometimes we will
simply say that X itself is a twisted sum of Y and Z.

There are two main problems concerning twisted sums.

The first one is the so-called three space problem. We say that a
property (P) is a three space property if every twisted sum of Y and Z has (P)
whenever Y and Z have (P). Now, the question is: what properties are three
space properties.

We say that the twisted sum (*) splits if there is a continuous linear
mapping T: Z— X for which goT =id,;. The second main question
concerning twisted sums is the problem what pairs (Y, Z) of tvs have only
splitting twisted sums. There are numerous papers related to these problems:
[5], [6], [8]-[14], [16], [211, [25]-[32], [34], [37], [40] (the three space
problem) and [1], [2], [10], [13]-[15], [17]-[21], [24], [28], [29], [35],
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