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A general description of the Bergman projection

by Macies SKwARCZYNsK1 (Warszawa)

Franciszek Leja in memoriam

Abstract. Let D c CV be the union of domains D, i=1,2,....,m. We shall apply a
theorem of 1. Halperin to describe the Bergman projection P: I>(D) — [ H(D) in terms of the
Bergman projections in domains D;. This yields a more constructive description of distances
related to the Bergman function. A number of related recent results is reported.

1. Orthogonal projections. The following theorem is due to 1. Halperin
[2]. A very elegant proof, given by Amemiya and Ando, can be found in
Helgason book (3], p. 55.

THEOREM 1. Let H be a Hilbert space, and P; the orthogonal projection
onto the closed linear subspace F;, i=1,2,...,m. Then for every fe H
lim (P, Ppy_, ... P)"f = P,

n— @

where P denotes the orthogonal projection onto F = [\ F;.
i=1
From the above result easily follows that the sequence of alternating
projections

fl"—‘Plf’ f2=P2fIa ceey fm= mfm—lafm+l=P1fms

converges in H to Pf. We shall also need a well-known theorem:
THeorReM 2. Let H be a Hilbert space, and P;: H—F;, j=1,2,... a
seqitence of orthogonal projections, such that F, > F, > Fy > ... Then for
every fe H
lim P;f = Pf,

j=o

[ o]
where P denotes the orthogonal projection onto F = (\ F;.
j=1

For the proof see M. H. Stone [14], p. 74.
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2. Consequences for the Bergman projection. We shall consider the
following cases

1° D < CV is a finite union of domains D, cCV, i=1,2,...,m;

2° D = C" is the union of an increasing sequence of domains G; = C",
j=1,2,...

In the first case we can prove

THEOREM 3. Let D <=CN be the wunion of domains D, c C"
i=1,2,...,m. In the Hilbert space H = I?(D), consider for each i the closed
linear subspace F; of functions which are holomorphic in D; and arbitrary in
D\D;. Let Q;: I(D;)— I H(D,) be the Bergman projection in D;. Then the
orthogonal projection P;: H — F; is given by

(Q; f|D,-) (2), zeD,

(1 (PN = (2), ze D\D,,
and for every f e I?(D)
2) lim (P, P,_,...P)'f = Pf,

where P is the Bergman projection in D.
Proof. The right-hand side of (1) is obviously in F;. Let us denote it by
g. The difference f—g is in F;. Indeed, it vanishes on D\D;, and on D; it is
orthogonal to I? H(D;). Hence, for every heF,,
[(f-ah= | (f—9)h+ [ (f-g)h=0.
D D;

D\D;
This proves (1). By Halperin’s theorem (2) holds where P is defined as the

orthogonal projection onto F = ) F,. Since F = I? H(D), we see that P is
i=1

the Bergman projection in D. m

In the second case we can state

THEOREM 4. Let D = CV be the union of an increasing sequence of
domains G, = C", j=1, 2,... Denote by F; the closed linear subspace in H
= I*(D) consisting of functions which are holomorphic in G;, and arbitrary in
D\G;. Let P;: H— F; be the corresponding orthogonal projection. Then for
every f e 2(D) )
(3) lim P; f = Pf,

J—@

where P is the Bergman projection in D.

Proof. Note that subspaces F;, j =1, 2,..., form a decreasing sequence.
By Theorem 2 we have (3) with P defined as the orthogonal projection onto

F= (\ F;. Since F =I?>H(D), we see that P is the Bergman projection
i=1
inD. m
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Theorems 3 and 4 show that “in principle” we can determine the
Bergman projection in an arbitrary domain D < CV. Indeed, it is easy to
represent D as a union of an increasing sequence of domains G;, where every
G, is a finite union of open balls. The Bergman projection in each ball is
known explicite. Therefore by Theorem 3 we can determine the Bergman
projection in every G;. Then using Theorem 4 we can determine the
Bergman projection in D. (It may be convenient sometimes to replace balls
by other domains for which the Bergman function is known explicite.)

The Bergman projection P: I?(D) — I? H(D) can be applied to determine
the Bergman function Kj(z,t), z,teD. (A standard reference for the
Bergman function is [1].) For an arbitrary point te D we can find a ball
B = D with center at t. Then ¢ = (vol B)™ ! xge I*(D) has the reproducing

property
[f@e@)ydm(z)=f(t), feLlH(D).
) .

It follows that P has the same reproducing property. Since Poe I? H(D),
we conclude that Pp = K, (-, t). If we know that a sequence of operators P,
in I?(D) converges pointwise to P we can conclude that the sequence ¢,
= P,¢ converges in I>(D) to K,(-, t). Conversely, the Bergman function
determines the Bergman projection by the formula

(P)() = l])f(Z) Kp(z, )ydm(z).

It should be noted that Theorem 4 is essentially equivalent to a theorem
of I. P. Ramadanov, proved by different method in [7].

The results of this section indicate a part of the borderland in the theory
of operators in Hilbert space, and the theory of several complex variables,
which, in the authors opinion, will be important for the future development
of both the subjects.

3. The orthogonality condition. Unfortunately we are so far not able to
obtain new expressions for the Bergman function in a closed form using the
procedure of Theorems 3 and 4. Nevertheless, since the procedure is both
constructive and general, we shall study it for its own sake. As a very simple
example we can consider the decomposition of C as a union of domains D,,
D, such that the sets int D, int D are nonvoid. We shall say that D, and D,
satisfy the orthogonality condition if

4 [ hihy=0 for every hye ? H(D,) and h,e I’ H(D,).
DinDy
It was observed in [13] that all computations required in Theorem 3
can be carried out explicitely in two simple cases: 1° domains bounded by
concentric circles (D, is a disc and D, is the exterior of a smaller concentric
disc); 2° domains bounded by paralle! lines (D, and D, are halfplanes, which
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intersect along a strip). Since the subspaces F,, F, in I?(C) (notation of
Theorem 3) intersect only at 0, we may introduce the angle ae[0, 4n] such
that

|<fl’f2>|
FANIVAY

Let us associate with every domain G = C¥ and every measurable subset
T <= G the biholomorphic invariant

(5) cosa = sup{ ; ie FA{O}, i=1, 2}.

pe(T) --sup{::—:—:{i; heLzH(G)\{O}}-
Obviously, pg(T)e[0, 1]. Write p, = pp, (D,\D3), p; = pp,(D,\D,). It was
proved in [9] that (4) implies cosa = max(p,, p,). It follows that a« > 0 if
domains are bounded by concentric circles, and « =0 if domains are
bounded by parallel lines. The situation where a = 0 is “not favourable” for
Theorem 3. (This can be understood by looking at Halperins theorem in a
finite dimensional space.) It is therefore remarkable that the convergence in

case 2° is still satisfactory (comparable with ) n~?).

n=1

4. Distances related to the Bergman function. The invariant distance

= Kp(z, )Kp(t, 2) 1/2\1/2
(6) ep(z, t) = (1—(](,,(2, 2)Kp(t, t)) )

explicitely expressed by the Bergman function in a domain D =« = CV was
discovered by the author and investigated in [10]. (See also [1], p. 193.) The
direct connection of g, with the Bergman function K, is important for
applications ([10], [11], p. 31). (See also [11], p. 25, Theorem III.15, and
[6]) In a less explicite form, the distance g, has appeared already in [4]. In
a special case of the unit disc the distance gp (in still another form) was
considered by Tsuji [15].

Expression (6) defines the distance function also for some unbounded
domains. A complete characterization of such domains for n > 1 remains an
open problem. For n = 1 it is known [12] that g, defines a distance function
in D if and only if C\D is not polar. (See also [9])

The results of Section 2 can be used to determine g, (D = < C for
simplicity) in the following way:

COROLLARY 1. Assume that Y, n=1,2,..., converges in I*(D) to
Kp(',2), and that ¢,, n=1,2,..., converges in I2(D) to Kp(, t). Then

ARG
o (1) = ,"f‘L(I 7 -u<p,.||) ‘
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Let us remark, that g, is related to the Bergman metric

ds? = i (62 log K;(z, 2) *logKp(z, 2)
> PR &z, 0z,

dz;®@dz, + dzj@)dzk)

Jk=1
in the following way. Denote by /5(y) the length of a C! curve y: [a, b]— D
with respect to the Bergman metric. Let us introduce the gp-length of y by
the formula
n—1

IaD('}’) = sup i @p (‘Y(ti)s P(tis 1))

i=1

where a =1y <t; <... <t, = b are arbitrary points on the segment [a, b].
It was proved recently [5] that lz(y) = 2] (7).
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