On the growth of proper polynomial mappings

by A. PŁOSKI (Kielce)

Abstract. Let $F = (F_1, ..., F_n)$: $C^n \to C^n$ be a proper polynomial mapping. The exponent h(F) of F is the greatest number q such that $|F(z)| \ge C|z|^q$ with C > 0 for sufficiently large |z|. The aim of this paper is to give the estimation of h(F) dependent on the geometric degree d(F) of the mapping F and the degrees deg F_1 .

1. The main theorem. Let us introduce some notation. If $P: \mathbb{C}^n \to \mathbb{C}$ is a nonzero polynomial, we denote by deg P its degree, by P^+ the unique homogeneous form such that deg $P^+ = \deg P$ and $\deg(P^+ - P) < \deg P$. By definition, we put deg $0 = -\infty$, $0^+ = 0$.

If $F = (F_1, ..., F_p)$: $\mathbb{C}^n \to \mathbb{C}^p$ is a polynomial mapping, we set deg $F = \max_{j=1} (\deg F_j)$, $F^+ = (F_1^+, ..., F_p^+)$. For any $z = (z_1, ..., z_n) \in \mathbb{C}^n$ we put |z|

 $= \max_{i=1} |z_i|$. The expression "for almost every $a \in C^n$ " will mean: "there exists a Zariski open subset $U \subset C^n$ such that for every $a \in U$ ".

It is easy to check the following characterization of the degree:

(1.1) LEMMA. Let F be a nonzero polynomial mapping. Then there exist a positive constant C such that $|F(z)| \leq C|z|^{\deg F}$ for $|z| \geq 1$. If $|F(z)| \leq D|z|^q$ with q, D > 0 for sufficiently large |z|, then $\deg F \leq q$.

Now, let us suppose that $F = (F_1, ..., F_n)$: $\mathbb{C}^n \to \mathbb{C}^n$ is a dominating polynomial mapping. Then the field $\mathbb{C}(Z)$ of rational functions in indeterminates $Z = (Z_1, ..., Z_n)$ is a finite extension of the field $\mathbb{C}(F) = \mathbb{C}(F_1, ..., F_n)$.

We define the geometric degree of F by putting d(F) = (C(Z); C(F)). Recall that the geometric degree d(F) is equal to $\# F^{-1}(w)$ for almost every $w \in C^n$ (see e.g. [6]).

This characterization of d(F) and the Bezout's theorem imply (cf. also A. Ostrowski [7]) the

(1.2) PROPOSITION. Let $F = (F_1, ..., F_n)$: $C^n \to C^n$ be a dominating polynomial mapping. Then $d(F) \leqslant \prod_{i=1}^n \deg F_i$. The equality holds if $(F^+)^{-1}(0) = \{0\}$.

Let us consider a proper polynomial mapping $F = (F_1, ..., F_n)$: $C^n \to C^n$ (i.e., such that inverse images of compact sets are compact). Since the mapping F is proper and polynomial, it is surjective, hence it is dominating. The converse is not true, however, we shall prove in Section 3 of this paper the following:

(1.3) Proposition (cf. J. Chądzyński [2] for the case n=2). Let $F=(F_1,\ldots,F_n)\colon \mathbb{C}^n\to\mathbb{C}^n$ be a dominating polynomial mapping such that $d(F)>\prod_{i=1}^n\deg F_i-\min_{i=1}(\deg F_i)$. Then F is proper. Obviously the mapping $F\colon \mathbb{C}^n\to\mathbb{C}^n$ is proper if and only if $\lim_{i\to\infty}|F(z)|$

Obviously the mapping $F: \mathbb{C}^n \to \mathbb{C}^n$ is proper if and only if $\lim_{|z| \to +\infty} |F(z)| = +\infty$. In fact, the polynomial mappings have a much stronger property due to L. Hörmander (cf. [3], [4]).

(1.4) PROPOSITION. Let $F: \mathbb{C}^n \to \mathbb{C}^n$ be a proper polynomial mapping. Then there exist positive constants C, R, q such that $|F(z)| \ge C|z|^q$ for $|z| \ge R$.

Inequality (1.4) allows us to make the following:

(1.5) Definition. Let $F: \mathbb{C}^n \to \mathbb{C}^n$ be a proper polynomial mapping. The exponent h(F) of F is the least upper bound of the set of all q which satisfy the condition: there exist positive constants C, R such that $|F(z)| \ge C|z|^q$ for $|z| \ge R$.

In Section 2 we shall prove the

(1.6) Proposition (cf. [3]). The least upper bound from (1.5) is attained, i.e., there is a constant C > 0 such that $|F(z)| \ge C|z|^{h(F)}$ for sufficiently large |z|. The exponent h(F) is a rational number.

Now we shall discuss some simple examples.

(1.7) Example. For any proper polynomial mapping $F = (F_1, ..., F_n)$ we have $h(F) \leq \min_{i=1}^n (\deg F_i)$. If $(F^+)^{-1}(0) = \{0\}$, then $h(F) = \min_{i=1}^n (\deg F_i)$.

Proof. Let $H: \mathbb{C}^n \to \mathbb{C}$ be a polynomial of positive degree. From (1.1) and the first part of (1.6) we have

$$|H(F(z))| \le C|F(z)|^{\deg(H\circ F)/h(F)}$$
 with $C > 0$ for large $|z|$.

Hence $|H(w)| \le C_1 |w|^{\deg(H \circ F)/h(F)}$ for large |w| and $\deg H \le \deg(H \circ F)/h(F)$ by (1.1). Applying this inequality to the polynomials $H(w) = w_i$ (i = 1, ..., n) we get the first assertion. Now, let $F = (F_1, ..., F_n)$ be a polynomial mapping such that $(F^+)^{-1}(0) = \{0\}$. Put $m = \min_{i=1}^n (\deg F_i)$. Replacing $F_1, ..., F_n$ by their suitable powers we may assume that $\deg F_1 = ... = \deg F_n = m$. Therefore $\deg (F^+ - F) < m$ and we have

$$|F(z)| \ge |F^{+}(z)| - |F^{+}(z) - F(z)|$$

$$\ge \left(\min_{|z|=1} |F^{+}(z)| - |F^{+}(z) - F(z)| |z|^{-m}\right) |z|^{m} \ge C |z|^{m}$$

with C > 0 for large |z|.

As an immediate corollary of (1.1) we obtain

(1.8) Example. If $F: \mathbb{C}^n \to \mathbb{C}^n$ is a polynomial automorphism, then

$$h(F) = 1/\deg(F^{-1}).$$

(1.9) Example. For any rational number r > 0 there exists a proper polynomial mapping $F: \mathbb{C}^2 \to \mathbb{C}^2$ such that h(F) = r.

Proof. Take positive integers a, b, c > 0 such that r = b/a, c > r. Set $F(z) = (F_1(z), F_2(z)) = (z_1^c, z_1^{ac} + z_2^b)$ for $z = (z_1, z_2) \in C^2$. Therefore we have $z_1^c = F_1(z)$, $z_2^b = F_2(z) - F_1(z)^a$, hence $|z_1| \le 2|F(z)|^{a/b}$, $|z_2| \le 2|F(z)|^{a/b}$ if $|F(z)| \ge 1$. Then F is a proper mapping and $h(F) \ge b/a = r$. Now take positive numbers C, R, q > 0 such that $|F(z)| \ge C|z|^q$ for $|z| \ge R$, then

$$|F(z)|^b \ge C^b |z_2^{bq}| = C^b |(F_2(z) - F_1(z)^a)^q| \quad \text{for } |z| \ge R.$$

Hence there exist constants C_1 , $R_1 > 0$ such that

$$|w|^b \ge C_1 |(w_2 - w_1^a)^q|$$
 for $|w| = \max(|w_1|, |w_2|) \ge R_1$.

This gives $qa \le b$, so $h(F) \le b/a = r$.

Now we shall present the main result of this paper. The expression [x] denotes the greatest integer which does not exceed the real number x.

(1.10) THEOREM. Let $F = (F_1, ..., F_n)$: $\mathbb{C}^n \to \mathbb{C}^n$ be a proper polynomial mapping. Then

$$h(F) \geqslant \begin{cases} \frac{1}{\prod\limits_{i=1}^{n} \deg F_{i} - d(F) + 1} & \text{if } \frac{\prod\limits_{i=1}^{n} \deg F_{i} - d(F) + 1}{\min\limits_{i=1}^{n} (\deg F_{i})} \geqslant 1, \\ \frac{d(F) - \prod\limits_{i=1}^{n} \deg F_{i} + \min\limits_{i=1}^{n} (\deg F_{i})}{\min\limits_{i=1}^{n} \deg F_{i} - d(F) + 1} & \text{if } \frac{\prod\limits_{i=1}^{n} \deg F_{i} - d(F) + 1}{\min\limits_{i=1}^{n} (\deg F_{i})} \leqslant 1. \end{cases}$$

The proof of (1.10) will be given in the last section. Now, let us mention two results which inspired our theorem. P. Tworzewski and T. Winiarski obtained in [12] an estimation of the growth of algebraic set ([12], Theorem 3). Applying this estimation to the graph of a proper polynomial mapping F

$$=(F_1, \ldots, F_n)$$
: $\mathbb{C}^n \to \mathbb{C}^n$ we get the inequality $h(F) \ge 1/(\prod_{i=1}^n \deg F_i - d(F) + +1)$. On the other hand, J. Chądzyński proved in [2] the second part of (1.10) in the case $n=2$.

(1.11) Example. Let $d_1, \ldots, d_n, d \ge 1$ be integers such that $d_1 \ldots d_n - 7 - \text{Ann. Polon. Math. XLV.3}$

300 A. Ploski

 $-\min_{i}(d_{i}) < d \leq d_{1} \dots d_{n}$. Then there exists a polynomial mapping F $=(F_1,\ldots,F_n): \mathbb{C}^n \to \mathbb{C}^n$ such that $\deg F_i=d_i$ for $i=1,\ldots,n,$ d(F)=dand $h(F) = d - \prod_{i=1}^{n} d_i + \min_{i=1}^{n} (d_i)$.

Proof. We may assume that $d_1 \le d_2 \le \ldots \le d_n$. Let us define for every

 $n \ge 3$ a polynomial mapping F by the formula:

$$F(z) = (z_1^{d_1} + z_2^{d_1-s}, z_3 z_2^{d_2-1}, F_3(z), \dots, F_n(z))$$

where $F_i(z) = z_i^{d_i} + z_{i-1} z_2^{d_{i-1}}$ for 2 < i < n,

$$F_n(z) = z_n^{d_n} + z_1 z_2^{d_n-1}$$
 and $s = d_1 \dots d_n - d$.

In the case n=2 we put $F(z_1, z_2)=(z_1^{d_1}+z_2^{d_1-s}, z_1z_2^{d_1-s})$. The mapping F is dominating because $F^{-1}(0) = \{0\}$.

To find the geometric degree of F we attach a weight $v(Z_i)$ (cf. Section 3) to each of the indeterminates Z_i (i = 1, ..., n) by the formulae

$$v(Z_1) = (d_1 - s) d_3 \dots d_n, \quad v(Z_2) = d_1 d_3 \dots d_n,$$

$$v(Z_3) = d_1 d_3 \dots d_n - s$$
, $v(Z_{i+1}) = d_i v(Z_i) - (d_i - 1) v(Z_2)$ if $2 < i < n$

Thus the polynomial F_i is isobaric of weight $v(F_i) = d_i v(Z_i)$ for $i \neq 2$, $v(F_2)$ $= d_1 \dots d_n - s = d$. Now, it is easy to check using Proposition (1.2) that

$$d(F) = \frac{v(F_1) \dots v(F_n)}{v(Z_1) \dots v(Z_n)} = d.$$

Since $d > d_1 \dots d_n - d_1$ the mapping F is proper in view of (1.3). Theorem (1.10) yields $h(F) \ge d - d_1 ... d_n + d_1$, on the other hand, $F(0, z_2, 0, ..., 0) = (z_2^{d_1-s}, 0, ..., 0)$ so $h(F) = d-d_1...d_n+d_1$.

Remark. I don't know if the first part of (1.10) gives the sharp estimation of h(F) for given deg $(F_i) = d_i$ (i = 1, ..., n) and d(F) = d.

(1.12) COROLLARY. Let $F = (F_1, \ldots, F_n)$: $\mathbb{C}^n \to \mathbb{C}^n$ be a proper polynomial mapping such that $\deg F_1 = \ldots = \deg F_n = m > 1$ and $d(F) = m^n - 1$. Then h(F) = m-1.

Proof. Let $a \in \mathbb{C}^n \setminus (0)$ be such that $F^+(a) = 0$ (cf. Proposition (1.2)). Thus the polynomial mapping $t \to F(at)$ is of degree at most m-1, so $h(F) \le m-1$. Indeed, it is easy to check that $h(F) \le \deg_{x} F(p(t))/\deg_{x} p(t)$ for every polynomial mapping $C \ni t \to p(t) \in C^n$. On the other hand, we have by (1.10) the inequality $h(F) \ge m-1$.

(1.13) Corollary. For any proper polynomial mapping $F = (F_1, ..., F_n)$:

 $C^n \to C^n$ we have $h(F) \ge \min_{i=1}^n (\deg F_i) / \prod_{i=1}^n \deg F_i$. If $h(F) = \min_{i=1}^n (\deg F_i) / \prod_{i=1}^n \deg F_i$,

$$h(F) = \min_{i=1}^{n} (\deg F_i) / \prod_{i=1}^{n} \deg F_i,$$

then F is a polynomial automorphism.

Proof. By our theorem we have

$$h(F) \geqslant \frac{\min\limits_{i=1}^{n} (\deg F_i)}{\prod\limits_{i=1}^{n} \deg F_i - d(F) + 1} \geqslant \frac{\min\limits_{i=1}^{n} (\deg F_i)}{\prod\limits_{i=1}^{n} \deg F_i}.$$

If $h(F) = \min_{i=1}^{n} (\deg F_i) / \prod_{i=1}^{n} \deg F_i$, then the above estimation gives d(F) = 1, so F is an automorphism $(F^{-1}]$ must be polynomial since it is a rational, locally bounded mapping cf. [11]).

Now, suppose that F is a polynomial automorphism. By (1.8) and (1.13) we obtain $\deg(F^{-1}) \leq \prod_{i=1}^n \deg F_i / \min_{i=1} (\deg F_i)$. This implies the well-known inequality $\deg(F^{-1}) \leq (\deg(F))^{n-1}$ (cf. [1], [10]). In the case n=2 we then have $\deg(F^{-1}) = \deg(F)$ and we may state the following:

(1.14) COROLLARY. For any proper polynomial mapping $F: \mathbb{C}^2 \to \mathbb{C}^2$ we have $h(F) \ge 1/\deg F$. The equality holds if and only if F is an automorphism. If $h(F) > 1/\deg F$, then $h(F) \ge 1/(\deg F - 1)$.

The second part of (1.14) follows from the observation: if $d_1 \le d_2$, $1 < d \le d_1 d_2$, then $\left[\frac{d_1 d_2 - d + 1}{d_1}\right] \le d_2 - 1$.

2. A formula for the exponent of a proper polynomial mapping. The aim of this section is to prove Proposition (2.3) from which we infer Propositions (1.4) and (1.6) and a formula for h(F) which generalizes Example (1.8).

For any monic polynomial $P(W, T) = T^d + a_1(W) T^{d-1} + ... + a_d(W)$ (d > 0) in indeterminates $(W, T) = (W_1, ..., W_n, T)$ we set

$$\delta(P) = \max_{i=1}^{d} \{ \deg_w(a_i)/i \}.$$

Then, by definitions, $\delta(P) = -\infty$ if and only if $P = T^d$. We put $r^{-\infty} = 0$ for r > 0. The number $\delta(P)$ is the degree of the "multiple-valued function of variables w" defined by equation P(w, t) = 0. To be precise:

(2.1) Lemma (cf. [9]). There exists a constant C > 0 such that if $(w, t) \in C^{n+1}$ with $|w| \ge 1$ and P(w, t) = 0, then $|t| \le C|w|^{\delta(P)}$. Suppose that there exist constants q, D, R > 0 such that $\{(w, t): P(w, t) = 0, |w| \ge R\}$ $\subset \{(w, t): |t| \le D|w|^q, |w| \ge R\}$. Then $\delta(P) \le q$.

Proof. By Lemma (1.1) there exists a constant $C_1 > 1$ such that for i = 1, ..., d we have $|a_i(w)| \le C_1 |w|^{\deg(a_i)}$ if $|w| \ge 1$. Hence $|t| \le 2 \max |a_i(w)|^{1/i}$ $\le 2C_1 |w|^{\delta(P)}$ if P(w, t) = 0. Next let us suppose that $\{(w, t): P(w, t) = 0, |w| \ge R\} \subset \{(w, t): |t| \le D |w|^q, |w| \ge R\}$ with q, D, R > 0.

Fix $w \in \mathbb{C}^n$ such that $|w| \ge R$ and write $P(w, T) = \prod_{i=1}^d (T - t_i)$. Then

 $|t_i| \leq D|w|^q$ for i = 1, ..., d and we obtain the evaluation

$$|a_k(w)| = \Big| \sum_{1 \leq i_1 \leq \dots \leq i_k \leq d} t_{i_1} \dots t_{i_k} \Big| \leq {d \choose k} D^k |w|^{q^k}.$$

Since $w \in C^n$, $|w| \ge R$ is arbitrary, we conclude that $\deg(a_k) \le kq$ for k = 1, ..., d and $\delta(P) \le q$.

Let us assume that $F = (F_1, ..., F_n)$ is a dominating polynomial mapping. For any $G \in C[W]$, deg G > 0 we denote by $P_G(W, T)$ (resp. $Q_G(W, T)$) then unique monic polynomial from C(W)[T] such that $P_G(F, T)$ (resp. $Q_G(F, T)$) is the characteristic polynomial of G (resp. the monic minimal polynomial of G) with respect to C(Z)/C(F). Then $P_G = (Q_G)^{d/d_G}$, where d = d(F) = (C(Z): C(F)) and $d_G = (C(F, G): C(F))$.

(2.2) LEMMA. Let $F: \mathbb{C}^n \to \mathbb{C}^n$ be a dominating polynomial mapping. Then for each polynomial G, $\deg G > 0$ there exists a Zariski open set $U \subset \mathbb{C}^n$ such that the coefficients of $P_G(W, T)$ are regular in U and for any $w \in U$ we have:

$$P_{G}(w, T) = \prod_{z \in F^{-1}(w)} (T - G(z)).$$

Proof. Let $\tilde{Q}_G = \tilde{Q}_G(W, T) \in C[W, T]$ be a polynomial such that $\tilde{Q}_G(F, T)$ is a minimal polynomial of G with respect to C(Z)/C(F). Then \tilde{Q}_G is uniquely determined except for a constant factor; moreover, we have $\tilde{Q}_G(W, T) = c(W)Q_G(W, T)$ with nonzero $c(W) \in C[W]$.

Obviously, the mappings

$$(F, G): C^n \ni z \to (F(z), G(z)) \in \{(w, t) \in C^{n+1}: \tilde{Q}_G(w, t) = 0\}$$

and

$$\operatorname{pr}_1: \{(w, t) \in \mathbb{C}^{n+1}: \ \widetilde{Q}_G(w, t) = 0\} \ni (w, t) \to w \in \mathbb{C}^n$$

are dominating of degree d/d_G and d_G respectively. By well-known properties of dominating regular mappings we conclude that there exists a Zariski open set $U \subset \mathbb{C}^n$ such that:

- (a) for any $w \in U$: $\# pr_1^{-1}(w) = d_G$,
- (b) for any $(w, t) \in \operatorname{pr}_1^{-1}(U)$: $\# (F, G)^{-1}((w, t)) = d/d_G$.

By (a) $c(w) \neq 0$ for $w \in U$ so the coefficients of Q_G and P_G are regular in U. Conditions (a), (b) imply $\# G(F^{-1}(w)) = d_G$, $\# (F^{-1}(w) \cap G^{-1}(t)) = d/d_G$ for $(w, t) \in \operatorname{pr}_1^{-1}(U)$.

Now, we have for any $w \in U$:

$$\prod_{z \in F^{-1}(w)} \left(T - G(z) \right) = \left(\prod_{t \in G(F^{-1}(w))} \left(T - t \right) \right)^{d/d_G} = Q_G(w, T)^{d/d_G} = P_G(w, T). \quad \blacksquare$$

- (2.3) PROPOSITION. Let $F: \mathbb{C}^n \to \mathbb{C}^n$ be a proper polynomial mapping. Then for each polynomial $G: \mathbb{C}^n \to \mathbb{C}$, deg G > 0 we have the following:
 - (i) the polynomial $P_G(W, T)$ has coefficients in C[W].

- (ii) There exists a constant C > 0 such that $|G(z)| \le C|F(z)|^{\delta(P_G)}$ if $|F(z)| \ge 1$.
- (iii) Suppose that there exist constants q, D, R > 0 such that if $|F(z)| \ge R$, then $|G(z)| \le D|F(z)|^q$. Then $\delta(P_G) \le q$.

Proof. (i) Take a Zariski open set $U \subset C^n$ as in (2.2). Then $P_G(w, T) = T^d + \sum_{i=1}^d a_i(w) \, T^{d-i} = \prod_{z \in F^{-1}(w)} \left(T - G(z)\right)$ for $w \in U$. Given M > 0 there exists $M^* > 0$ such that $|F(z)| \leq M$ implies $|z| \leq M^*$. Now, fix $w \in U$, $|w| \leq M$. A simple calculation like that from the second part of the proof of (2.1) yields

$$|a_i(w)| \leq {d \choose i} C^i (1 + (M^*)^{\deg G})^i$$
 with $C > 0$.

Then the coefficients of P_G are polynomials as locally bounded rational functions.

- (ii) By the definition of P_G and by (i) we have $P_G(F(z), G(z)) = 0$ for all $z \in \mathbb{C}^n$. Hence and from Lemma (2.1) we obtain the assertion.
- (iii) From (2.2) we conclude that the conditions $P_G(w, t) = 0$, $|w| \ge R$ and $w \in U$ imply the inequality $|t| \le D|w|^q$.

The set U being dense in C^n , the inequality $|t| \le D|w|^q$ holds for all $(w, t) \in C^{n+1}$ such that $|w| \ge R$ and $P_G(w, t) = 0$. Now, from the second part of Lemma (2.1) we get $\delta(P_G) \le q$.

Let us suppose that $F: \mathbb{C}^n \to \mathbb{C}^n$ is a proper polynomial mapping. We write $P_i = P_i(W, T) = P_G(W, T)$ if $G = Z_i$ (i = 1, ..., n). Then $P_i \in \mathbb{C}[W][T]$ by (2.3) (i). Now, let us make the following observations:

(2.4) PROPERTY. There exist constants C > 0, $R_1 > 0$ such that if $|z| \ge R_1$, then $|z| \le C |F(z)|^{i=1}$

Proof. By (2.3) (ii) there is a constant C > 0 such that $|z_i| \le C|F(z)|^{\delta(P_i)}$ for i = 1, ..., n if $|F(z)| \ge 1$. It suffices to take $R_1 > 0$ such that $|F(z)| \ge 1$ for $|z| \ge R_1$.

(2.5) PROPERTY. If there exist constants R, D, q > 0 such that $|F(z)| \ge D|z|^q$ for $|z| \ge R$, then $q \le 1/\max_{i=1}^n (\delta(P_i))$.

Proof. We may suppose that $R \ge 1$. Let $A \ge 1$ be a constant such that $|F(z)| \le A |z|^{\deg F}$ for $|z| \ge 1$. Then obviously the inequality $|F(z)| \ge A R^{\deg F}$. $(1 + \max_{|z| \le 1} |F(z)|)$ implies $|z| \ge R$, so by hypothesis we have $|F(z)| \ge D |z_i|^q$ for $i = 1, \ldots, n$ and by (2.3) (iii) applied to $G = Z_i$ $(i = 1, \ldots, n)$ we get $\delta(P_i) \le 1/q$ $(i = 1, \ldots, n)$.

Evidently (2.4) and (2.5) imply Propositions (1.4), (1.6) and the following formula:

(2.6) Corollary. With the notation introduced above:

$$h(F) = 1/\max_{i=1}^{n} (\delta(P_i)).$$

Let us note a simple corollary of (2.6) and of the definition of $\delta(P)$:

(2.7) COROLLARY. The exponent h(F) is of the form a/b, where a, b are integers such that $1 \le b$, $1 \le a \le d(F)$. In particular $h(F) \le d(F)$.

Remark. Using Puiseux expansion one can prove in the case n=2 the evaluation $h(F) \deg F \leq d(F)$.

- 3. Algebraic dependence of polynomials. For any polynomial $G(Z) = \sum a_{k_1...k_n} Z_1^{k_1} ... Z_n^{k_n}$ we set $\sup_{x \in \mathbb{Z}} G(G) = \{(k_1, ..., k_n) \in \mathbb{N}^n : a_{k_1...k_n} \neq 0\}$. A weight v of the ring C[Z] is a mapping of $C[Z] \setminus \{0\}$ into N satisfying the following conditions:
- (a) $v(\sum (G_i) = \max (v(G_i)))$, where (G_i) is a finite family of nonzero polynomials such that supp $G_i \cap \text{supp } G_i = \emptyset$ if $i \neq j$.
 - (b) v(GG') = v(G) + v(G').
 - (c) If $a \neq 0$ is an element of C, then v(a) = 0.

We assign to zero element of C[Z] the value $-\infty$. Obviously if v is a weight of C[Z], then $v(G) = \max(k_1 v(Z_1) + \ldots + k_n v(Z_n))$, where $(k_1, \ldots, k_n) \in \text{supp } G$.

Suppose that $\min_{i=1}^{n} (v(Z_i)) > 0$, then $\deg G \leq v(G) / \min_{i=1}^{n} (v(Z_i))$ and obviously $\deg G \leq [v(G) / \min_{i=1}^{n} (v(Z_i))]$.

The aim of this section is to prove Proposition (3.3). First we recall a theorem from the classical algebra which is basic for our considerations.

- (3.1) THEOREM (O. Perron [8], Theorem 57). Let $F_1(Z), \ldots, F_n(Z), F_{n+1}(Z) \in C[Z]$ be polynomials of positive degree, in n indeterminates $Z = (Z_1, \ldots, Z_n)$. Let v be the weight defined by conditions $v(W_i) = \deg F_i$ for $i = 1, \ldots, n+1$. Then there exists a nonzero polynomial $R \in C[W_1, \ldots, W_{n+1}]$ such that $R(F_1(Z), \ldots, F_{n+1}(Z)) = 0$ in C[Z] and $v(R) \leq \prod_{i=1}^{n+1} \deg F_i$.
- (3.2) Lemma. Let $P_0(W)$, $P_1(W, A)$, ..., $P_d(W, A)$ be polynomials in n+N indeterminates (W, A) such that $P_0(W) \neq 0$ in C[W]. Suppose that the above polynomials are relatively prime in C[W, A]. Then for almost every $a \in C^N$ the polynomials $P_0(W)$, $P_1(W, a)$, ..., $P_d(W, a)$ are relatively prime in C[W].

Proof. We may assume that $\deg(P_0) > 0$. Let $P_0(W) = \prod_i P_{0i}(W)$ be a factorization of P_0 into irreducible polynomials P_{0i} . By the assumption for each P_{0i} there is a polynomial $P_{k_i}(W, A)$ such that $P_{0i}(W)$ does not divide $P_{k_i}(W, A)$. Then by Hilbert's Nullstellensatz there exists $w^{(i)} \in C^n$ such that

 $P_{0i}(w^{(i)}) = 0$ and $P_{k_i}(w^{(i)}, A) \neq 0$ in C[A]. It is easy to see that for any $a \in C^N$ such that $\prod_i P_{k_i}(w^{(i)}, a) \neq 0$ the polynomials $P_0(W)$, $P_1(W, a)$, ..., $P_d(W, a)$ are relatively prime in C[W].

- (3.3) PROPOSITION. Let $F = (F_1, ..., F_n)$: $C^n \to C^n$ be a dominating polynomial mapping (we identify F and the sequence of polynomials $F_1, ..., F_n$ in indeterminates $Z = (Z_1, ..., Z_n)$). Let d be the degree of finite extension C(Z)/C(F). Then for any polynomial $G = G(Z) \in C[Z]$ of positive degree there exists a polynomial $\tilde{P}_G(W, T) = P_0(W) T^d + P_1(W) T^{d-1} + ... + P_d(W) \in C[W][T]$ in indeterminates $(W, T) = (W_1, ..., W_n, T)$ such that
 - (i) $\deg_T(\tilde{P}_G) = d$;
 - (ii) $\tilde{P}_G(F(Z), G(Z)) = 0$ in C[Z];
- (iii) $P_0(F(z))^{-1} \tilde{P}_G(F(Z), T) = P_G(F(Z), T)$ (the characteristic polynomial of G with respect C(Z)/C(F));
- (iv) Let v be the weight of C[W, T] defined by $v(W_i) = \deg F_i$ for i = 1, ..., n, $v(T) = \deg G$. Then $v(\tilde{P}_G) \leqslant \prod_{i=1}^n \deg F_i \deg G$. Let us suppose in addition that G is integral over C[F]. Then the characteristic polynomial $P_G(W, T)$ has the coefficients in C[W] and $v(P_G) \leqslant \prod_{i=1}^n \deg F_i \deg G$.

Proof. Let us fix an integer l > 0. We will prove (3.3) for all polynomials G(Z) of degree less than l. Let $A = (A_{j_1, \dots, j_n})_{j_1 + \dots + j_n} \leq l$ be indeterminates, $N = \# \{(j_1, \dots, j_n) \in \mathbb{N}^n : j_1 + \dots + j_n \leq l\}$ their number. Let $G(A, Z) = \sum_{j_1, \dots, j_n} Z_{j_1}^{j_1} \dots Z_{j_n}^{j_n}$.

Then each polynomial $G(Z) \in C[Z]$ of degree less than l is of the form G(a, Z) with suitable $a \in C^N$.

Obviously the ring C(Z)[A] is a free C(F)[A]-module of rank d = (C(Z): C(F)). Multiplying the characteristic polynomial of G(A, Z) with respect to this module by a suitable element from C(F) we get a polynomial $P(W, A, T) \in C[W, A, T]$ with the following properties:

- (a) $P(W, A, T) = P_0(W) T^d + P_1(W, A) T^{d-1} + ... + P_d(W, A) \in C[W, A, T]$ with $P_0(W) \neq 0$ in C[W].
- (b) The polynomials $P_0(W)$, $P_1(W, A)$, ..., $P_d(W, A) \in C[W, A]$ are relatively prime.
 - (c) P(F(Z), A, G(A, Z)) = 0 in C[A, Z].

For any $G(Z) = G(a, Z) \in C[Z]$ we define $\tilde{P}_G(W, T) = P(W, a, T) = P_0(W) T^d + P_1(W, a) T^{d-1} + \ldots + P_d(W, a)$. Obviously $\tilde{P}_G(W, T)$ has properties (i) and (ii). In order to check (iii) let us take a Zariski open set $U \subset C^n$ such that for any $w \in U$: $\# F^{-1}(w) = d$ and $P_0(w) \neq 0$. Then by (c) we get $P(w, A, T) = P_0(w) \prod_{z \in F^{-1}(w)} (T - G(A, z))$. Upon substituting $a \in C^n$ for A we

get for $w \in U$: $P_0(w)^{-1} \tilde{P}_G(w, T) = P_0(w)^{-1} P(w, a, T) = \prod_{z \in F^{-1}(w)} (T - G(z))$. Then by Lemma (2.2) we have $P_0(W)^{-1} \tilde{P}_G(W, T) = P_G(W, T)$ which proves (iii).

Now let $D(W, A) = \operatorname{disc}_T P(W, A, T)$ be the discriminant of the polynomial $P(W, A, T) \in C[W, A][T]$. Obviously $D(W, A) \neq 0$ in C[W, A]. Hence and from Lemma (3.2) there exists a Zariski open set $\Omega \subset C^N$ such that:

- (d) for every $a \in \Omega$ the coefficients $P_0(W)$, $P_1(W, a)$, ..., $P_d(W, a)$ are relatively prime.
 - (e) For every $a \in \Omega$: $D(W, a) \neq 0$ in C[W].

Let us fix $a \in \Omega$. From properties (d), (e) and (iii) it follows that the polynomial P(W, a, T) is irreducible in the ring C[W, T].

Then P(W, a, T) is a generator of the ideal determined by $F_1(Z), \ldots, F_n(Z), G(Z)$ over C. According to (3.1) there is a nonzero polynomial R(W, T) = C[W, T] such that R(F(Z), G(Z)) = 0 in C[Z] and $v(R) \leq \prod_{i=1}^{n} \deg F_i \cdot \deg G$. The polynomial P(W, a, T) divides R(W, T) then we have $v(P(W, a, T)) \leq \prod_{i=1}^{n} \deg F_i \cdot \deg G$. Since the set Ω is open in C^N this estimation holds for every $a \in C^N$. This proves the first part of (iv). If G is integral over C[F], then the characteristic polynomial $P_G(W, T)$ divides $P_G(W, T)$ in C[W, T] so we have $v(P_G) \leq \prod_{i=1}^{n} \deg F_i \deg G$.

Now we will prove two corollaries of (3.3). Corollary (3.4) is an algebraic equivalent of (1.3).

(3.4) COROLLARY. If $d(F) > \prod_{i=1}^{n} \deg F_i - \min_{i=1}^{n} (\deg F_i)$, then the ring C[Z] is integral over C[F].

Proof. It suffices to check that every polynomial of degree 1 is integral over C[F]. Let $G \in C[Z]$ be a such polynomial and let $P_0(W)$ be the leading coefficient of $\tilde{P}_G(W, T)$. From property (iv) it follows that $v(P_0 T^d) \leq v(P)$

$$\leq \prod_{i=1}^{n} \deg F_i$$
 hence $v(P_0) \leq \prod_{i=1}^{n} \deg F_i - d(F)$ and $\deg_{W}(P_0) \leq (\prod_{i=1}^{n} \deg F_i - d(F))/\min_{i=1}^{n} (\deg F_i) < 1$. Consequently $P_0(W)$ is a nonzero constant so G is

(3.5) Corollary (cf. [13], Proposition 6.2, p. 197). For any polynomial $H(W) \in C[W]$:

integral over ring C[F].

$$\deg(H) \leqslant \frac{\prod_{i=1}^{n} \deg F_{i} \cdot \deg(H \circ F)}{\min_{i=1} (\deg F_{i}) d(F)}.$$

Proof. Let us put G(Z) = H(F(Z)). Then obviously $P_G(W, T) = (T - H(W))^{d(F)}$. By (3.3) we get $d(F)v(H) \le \prod_{i=1}^n \deg F_i \deg (H \circ F)$ hence follows (3.5).

Remark. In all propositions of this section one may replace the field C of complex numbers by any field of characteristic zero.

4. Proof of the main result. We need a preliminary lemma.

(4.1) Lemma. Let p, d, m be integers such that d, $m \ge 1$ and $p \ge d$. Let

$$\delta = \max_{j=1}^{d} \left\{ \frac{1}{j} \left\lceil \frac{p-d+j}{m} \right\rceil \right\}.$$

Then

$$\delta = \frac{1}{d-p+m} \quad \text{if} \quad \frac{p-d+1}{m} \leqslant 1 \quad \text{and} \quad \delta = \left\lceil \frac{p-d+1}{m} \right\rceil \quad \text{if} \quad \frac{p-d+1}{m} \geqslant 1.$$

Proof. Suppose that

$$\frac{p-d+1}{m}\leqslant 1,$$

i.e., d-p+m > 0. Put $j_0 = d-p+m$, then

$$\frac{p-d+j}{m} = \frac{m-j_0+j}{m}.$$

If $j < j_0$, then

$$\left\lceil \frac{m - j_0 + j}{m} \right\rceil = 0.$$

For $j \ge j_0$ we have

$$\frac{1}{j} \left[\frac{m - j_0 + j}{m} \right] \leqslant \frac{m - j_0 + j}{mj} \leqslant \frac{1}{j_0}$$

with equality for $j = j_0$. Consequently $\delta = 1/j_0$.

Now, let us consider the case $\frac{p-d+1}{m} \ge 1$. We will check that for every

$$j > 1$$
: $\left[\frac{p-d+1}{m}\right] \geqslant \frac{1}{j} \left[\frac{p-d+j}{m}\right]$.

It is obvious if m = 1, then we assume m > 1. We have

$$\frac{1}{j} \left[\frac{p - d + j}{m} \right] = \frac{1}{j} \left(\left[\frac{p - d + 1}{m} + \frac{j - 1}{m} \right] \right)$$

$$= \frac{1}{j} \left(\left[\frac{p - d + 1}{m} \right] + \left[\frac{j - 1}{m} \right] + \varepsilon \right), \quad \varepsilon \in \{0, 1\}.$$

Hence it suffices to show that for every j > 1

$$\left[\frac{p-d+1}{m}\right] \geqslant \frac{1}{j-1} \left(\left[\frac{j-1}{m}\right] + \varepsilon\right), \quad \text{where } \varepsilon \in \{0, 1\}.$$

It is obvious if j = 2, so let j > 2.

Therefore

$$\frac{1}{j-1} \left(\left[\frac{j-1}{m} \right] + \varepsilon \right) \leq \frac{1}{j-1} \left(\frac{j-1}{m} + 1 \right) \leq 1 \leq \left[\frac{p-d+1}{m} \right]$$

since $m \ge 2$, $j-1 \ge 2$ and $\frac{p-d+1}{m} \ge 1$.

Now, let $F = (F_1, ..., F_n)$: $C^n \to C^n$ be a proper polynomial mapping of degree d = d(F), and let $G \in C[Z]$, deg G = 1 be given. Then the characteristic polynomial $P_G(W, T) = T^d + P_1(W) T^{d-1} + ... + P_d(W)$ has the coefficients in C[W] and by Proposition (3.3) we have

$$v(P_j T^{d-j}) \leqslant v(P) \leqslant \prod_{i=1}^n \deg F_i$$
.

Hence

$$v(P_j) \leqslant \prod_{i=1}^n \deg F_i - d + j$$

and

$$\deg_{W}(P_{j}) \leqslant \left[\frac{\prod\limits_{i=1}^{n} \deg F_{i} - d + j}{\min\limits_{i=1}^{n} (\deg F_{i})} \right]$$

for j = 1, ..., d. By definition of $\delta(P_G)$ we get

$$\delta(P_G) \leqslant \max_{j=1}^d \left\{ \frac{1}{j} \left[\frac{\prod\limits_{i=1}^n \deg F_i - d + j}{\min\limits_{i=1}^n (\deg F_i)} \right] \right\}.$$

Now, Lemma (1.4) and the above estimation imply

$$\delta(P_G) \leqslant \left[\frac{\prod\limits_{i=1}^n \deg F_i - d + 1}{\min\limits_{i=1}^n (\deg F_i)} \right] \quad \text{if} \quad \frac{\prod\limits_{i=1}^n \deg F_i - d + 1}{\min\limits_{i=1}^n (\deg F_i)} \geqslant 1$$

and
$$\delta(P_G) \leqslant \frac{1}{d - \prod\limits_{i=1}^n \deg F_i + \min\limits_{i=1}^n (\deg F_i)}$$
 if $\frac{\prod\limits_{i=1}^n \deg F_i - d + 1}{\min\limits_{i=1}^n (\deg F_i)} \leqslant 1$.

Hence and from (2.6) follows the theorem.

References

- [1] H. Bass, F. H. Connell, D. Wrigt, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287-330.
- [2] J. Chądzyński, On proper polynomial mapppings, Bull. Acad. Polon. Math. 31 (1983), 115-120.
- [3] E. A. Gorin, Asymptotic properties of polynomials and algebraic functions of several variables, Uspehi Mat. Nauk (N.S.) 16, No. 1 (1961), 93-119. (Russian: English translation in Russian Mathematical Surveys).
- [4] L. Hörmander, On the division of distribution by polynomials, Ark. Mat. 3 (1958), 555-568.
- [5] S. Łojasiewicz, Remarque sur les biholomorphismes polynomials, Bull. Acad. Polon. Math. 27 (1979), 675-676.
- [6] D. Mumford, Algebraic Geometry I Complex Projective Varieties, Springer-Verlag, 1976.
- [7] A. Ostrowski Über ein algebraisches Ubertragungsprinzip, Abh. Math. Sem. Univ. Hamburg 1 (1922), 281-326.
- [8] O. Perron, Algebra I (Die Grundlagen), Göschens Lehrbucherei, Berlin und Leipzig
- [9] A. Płoski, Une évaluation pour les sous-ensembles analytiques complexes, Bull. Acad. Polon. Math. 31 (1983), 259–262
- [10] K. Rusek, T. Winiarski, Polynomial automorphisms of Cⁿ, Univ. Iagellon. Acta Math. 24 (1984), 143-149.
- [11] J. P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1956), 1-42.
- [12] P. Tworzewski, T. Winiarski, Analytic sets with proper projections, J. reine angew. Math. 337 (1982), 68-76.
- [13] J. C. Tougeron, Idéaux de fonctions différentiables, Springer-Verlag, 1972.

INSTYTUT MECHANIKI STOSOWANEJ POLITECHNIKA ŚWIĘTOKRZYSKA KIELCE, POLAND

Reçu par la Rédaction le 17.05.1984

