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Abstract. Let F =(F,, ..., F,): C" - C" be a proper polynomial mapping. The exponent
h(F) of F is the greatest number g such that |F(z) = C|z|* with C > 0 for sufficiently large |z|.
The aim of this paper is to give the estimation of h(¥) dependent on the geometric degree d(F)
of the mapping F and the degrees deg F,.

1. The main theorem. Let us introduce some notation. If P: C"—> C is a
nonzero polynomial, we denote by deg P its degree, by P* the unique
homogeneous form such that deg P* = deg P and deg(P* — P) < deg P. By
definition, we put deg 0 = — o0, 0" =0.

If F=(F,,...,F,): C"—>C” is a polynomial mapping, we set deg F

P
= max(deg F)), F* =(F{, ..., F}). For any z =(z,, ..., z,)e C" we put |z|
j=1

= max |z;|. The expression “for almost every ae C"” will mean: “there exists a
i=1
Zariski open subset U = C” such that for every aeU”.

It is easy to check the following characterization of the degree:

(1.1) LeMMA. Let F be a nonzero polynomial mapping. Then there exist
a positive constant C such that |F(z)| < C|z|*%F for |z| > 1. If |F(z), < D|z|?
with g, D > 0 for sufficiently large |z|, then deg F < q.

Now, let us suppose that F =(F,,..., F,): C"—>C" is a dominating
polynomial mapping. Then the field C(Z) of rational functions in indeter-
minates Z =(Z,,...,7Z,) i1s a finite extension of the field C(F)
=C(F,,..., F,).

We define the geometric degree of F by putting d(F) =(C(Z): C(F)).
Recall that the geometric degree d(F) is equal to # F~'(w) for almost every
we C" (see e.g. [6]).

This characterization of d(F) and the Bezout’s theorem imply (cf. also
A. Ostrowski [7]) the

(1.2) ProrosiTioN. Let F =(F,, ..., F,): C"— C" be a dominating poly-
nomial mapping. Then d(F) < [] deg F;. The equality holds if (F*)™'(0)

. i=1
= ‘101-
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Let us consider a proper polynomial mapping F = (F,, ..., F,): C"->C"
(e, such that inverse images of compact sets are compact). Since the
mapping F is proper and polynomial, it is surjective, hence it is dominating.
The converse is not true, however, we shall prove in Section 3 of this paper
the following:

(1.3) ProrposiTioN (cf. J. Chadzynski [2] for the case n=2). Let

=(F TR F,): C"—> C" be a dominating polynomial mapping such that

d(F) > n deg F,— mm(deg F,). Then F is proper.
0bv1ously the mappmg F: C"— C"is proper if and only if lim |F(z)|

|z| ++ a0

= + 0. In fact, the polynomial mappings have a much stronger property
due to L. H6rmander (cf. [3], [4]).

(1.4) ProrosiTION. Let F: C" — C" be a proper polynomial mapping. Then
there exist positive constants C, R, q such that |F(z)] = C|z|? for |z| = R.

Inequality (1.4) allows us to make the following:

(1.5) DerFiniTiON. Let F: C" — C" be a proper polynomial mapping. The
exponent h(F) of F is the least upper bound of the set of all g which satisfy
the condition: there exist positive constants C, R such that |[F(z)| = C|z|? for
Izl =2 R

In Section 2 we shall prove the

(1.6) ProposiTiON (cf. [3]). The least upper bound from (1.5) is attained,
i.e., there is a constant C > 0 such that |F(z)| = C|z|"" for sufficiently large
|z|. The exponent h(F) is a rational number.

Now we shall discuss some simple examples.
(1.7) ExampLE. For any proper polynomial mapping F = (F,, ..., F,) we

have h(F) < m'in(deg F). If (F*)"'(0) = {0}, then h(F) = n:in(deg F).
i=1 i=1

Proof. Let H: C" - C be a polynomial of positive degree. From (1.1)
and the first part of (1.6) we have

|H(F (2))] < C|F (z)*s®PH*®  with C > 0 for large |z].
Hence |H(w) < C, |w/isHFYMEY  for  Jarge |w| and deg H
< deg(H o F)/h(F) by (1.1). Applying this inequality to the polynomials H (w)
=w; (i=1,...,n we get the first assertion. Now, let F =(F,, ..., F,) be

a polynomial mapping such that (F*)~!(0) = {0}. Put m=;rli:1(deg F).

Replacing F,, ..., F, by their suitable powers we may assume that
deg F, = ... =deg F, = m. Therefore deg(F* —F) <m and we have

IF (@) =2 |F* (2 =IF" (z)-F(2)|
> (n?f} IF* () —IF* (2)=F (2}l |z2I™)|zI™ > Clz|"

with C > 0 for large |z|. =
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As an immediate corollary of (1.1) we obtain
(1.8) ExampLe. Il F: C" - C" is a polynomial automorphism, then
h(F) = 1/deg (F~1).

(1.9) ExampLe. For any rational number r > 0 there exists a proper
polynomial mapping F: C* — C? such that h(F) =r.

Proof. Take positive integers a, b, ¢ > 0 such that r = b/a, ¢ > r. Set
F(2) = (F1(2). F5(2)) = (&%, 2§ +25) for z = (z,, z,) € C2. Therefore we have 2§
= F,(2), 25 = F3(z)—F,(2)%, hence |z,| < 2|F(2)|*", |z3] < 2|F (2)*" if |F(2)|
> 1. Then F is a proper mapping and h(F) > b/a =r. Now take positive
numbers C, R, g > 0 such that |F(z)] > C|z|? for |z| > R, then

IF(2)* > C*|2.= C*|(F2 ()~ Fy (2] for |z > R.

Hence there exist constants C,, R, > 0 such that

W = C, [(wa—wi)Y  for [w| = max(w,], lw,)) > R,.

This gives ga< b, so h(F)< bfa=r. =
Now we shall present the main result of this paper. The expression [x]
denotes the greatest integer which does not exceed the real number x.
(1.10) THEOREM. Let F =(F,, ..., F,): C"— C" be a proper polynomial
mapping. Then
{ [] deg Fi—d(F)+1
n 'f = n 2 1‘
[ deg F;—d(F)+1 min(deg F))
i=1

i=1

i .. [] deg Fi—d(F)+1
d(F)— [] deg F;+ min(deg F)) if &1 -
i=1 i=1 min(deg F})

L i=1

<1

The proof of (1.10) will be given in the last section. Now, let us mention
two results which inspired our theorem. P. Tworzewski and T. Winiarski
obtained in [12] an estimation of the growth of algebraic set ([12], Theorem
3). Applying this estimation to the graph of a proper polynomial mapping F

=(Fy, ..., F)): C"> C" we get the inequality h(F)> 1/(]] deg F,—d(F)+
=1

+1). On the other hand, J. Chadzynski proved in [2] the second part of
(1.10) in the case n= 2.
(1.11) ExameLE. Let d,,...,d,, d > 1 be integers such that d,...d,—
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—min(d;) <d <d,...d,. Then there exists a polynomial mapping F
i=1

=(F,,..., F): C"—»C" such that deg F; =d; for i=1,....n, d(F)=

and h(F) =d— Hd+mm(d)

i=1
Proof. We may assume that d, <d, <...<d,. Let us define for every

n =3 a polynomial mapping F by the formula:

5

F(2)= (' +22' % 2222, F3(2), ..., Fal2))
where F;(z) = z{i+2z,_, 23 ' for 2<i<n,
F2)=z"+z,2"' and s=d,...d,—d.
In the case n = 2 we put F(zy, z,) = (z3' +23' °, z, z3' ). The mapping
F is dominating because F~'(0) = (0}.
To find the geometric degree of F we attach a weight v(Z;) (cf. Section 3)

to each of the indeterminates Z, (i =1, ..., n) by the formulae
0(Z) = (@d—)ds...d,  0(Z;) =dyds...dy,

v(Z3y)=dydy...d,—s, v(Z,,,)=d;v(Z)—(d;—-1)v(Z;) f 2<i<n.

Thus the polynomial F; is isobaric of weight v(F;) = d;v(Z;) for i # 2, v(F,)
=d,...d,—s =d. Now, it is easy to check using Proposition (1.2) that

o(Fy)...0(F,) _
v(Zy)...v(Z,)
Since d >d,...d,—d, the mapping F is proper in view of (1.3). Theorem
(1.10) ylelds h(F)>d d, ..d,+d,, on the other hand, we have
F(0,2,,0,...,0)=(z3 0,...,0) so h(F)=d—d,...d,+d,. w

Remark. I don’t know if the first part of (1.10) gives the sharp
estimation of h(F) for given deg (F)=d;, (i=1,...,n) and d(F) =

(1.12) CoroLLARY. Let F =(F,, ..., F,)): C"— C" be a proper polynomial
mapping such that deg F, =...=deg F,=m>1 and d(F)=m"—1. Then
W) = |

Proof. Let aeC"\(0) be such that F*(a) =0 (cf. Proposition (1.2)).
Thus the polynomial mapping ¢t — F(at) 1s of degree at most m—1, so
h(F) < m—1. Indeed, it is easy to check that h(F) < deg, F (p(t))/deg, p(¢) for
every polynomial mapping C at - p(t)e C". On the other hand, we have by
(1.10) the inequality h(F) >

(1.13) CoroLrary. For any proper polynomzal mapping F =(F,, ..., F,):
C" - C" we have h(F) > mm(deg F)/H deg F,. If

l—l

d(F) =

h(F) = min(deg F,.)/]_[ deg F;,
i=1 i=1
then F is a polynomial automorphism.
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Proof. By our theorem we have

min (deg F,) m"in(deg Fy)
h(F) > 5= > :
[] deg F;i—d(F)+1  [] deg F;
i=1

i=1

If h(F) = min(deg F;)/[] deg F;, then the above estimation gives
i=1 i=1

d(F)=1, so F is an automorphism (F~! must be polynomial since it is a

rational, locally bounded mapping cf. [11]). =

Now, suppose that F is a polynomia] automorphism. By (1.8) and (1.13)
we obtain deg (F~ ') <[] deg F,/mm(deg F;). This implies the well-known

inequality deg(F~ ‘) (deg(F))" ! (cf [1], [10]). In the case n = 2 we then
have deg(F ') = deg(F) and we may state the following:

(1.14) CoroLLARY. For any proper polynomial mapping F: C* - C* we
have h(F) = 1/deg F. The equality holds if and only if F is an automorphism. If
h(F) > 1/deg F, then h(F) > l/{(deg F—1).

The second part of (1.14) follows from the observation: if d; <d,, 1

did,—d+1
dsdldz, then [_lzhd_‘t‘:lsdz—l
1

2. A formula for the exponent of a proper polynomial mapping. The aim
of this section is to prove Proposition (2.3) from which we infer Propositions
(14) and (1.6) and a formula for h(F) which generalizes Example (1.8).

For any monic polynomial P(W, T) = T'+a, (W)T* '+ ... +a,(W)
(d >0) in indeterminates (W, T) = (W,, ..., W,, T) we set

o(P) = mfax {deg,, (a,)/i}.

Then, by definitions, 6 (P) = — oo if and only if P = T%. We put r~® =0 for
r > 0. The number 6(P) is the degree of the “multiple-valued function of
variables w” defined by equation P(w, t) =0. To be precise:

(2.1) Lemma (cf. [9]). There exists a constant C >0 such that if
(w, )eC"* ! with iw|>1 and P(w, t) =0, then |t| < C{w|*®). Suppose that
there exist constants q, D, R >0 such that ‘(w,1): P(w,1)=0,|w| >R}
c {(w, 8): [t} < D|wl% {w| = R}. Then 6(P)<gq.

Proof. By Lemma (1. 1) there exnsts a constant C, > 1 such that for
i=1,...,d we have |a;(w)| < C, W/ if [w| > 1. Hence |1] < 2 max|a, (w)["/
< 2C, IWI“”’ if P(w,t)=0. Next let us suppose that {(w,): P(w, ) =0,
|w| = R} < {(w, t): |t| < D|w|%, [w| = R} with q, D, R> 0.

Fix weC" such that |w > R and write P(w, T) = l_[(T—t) Then

i=1
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Iti < D|w? for i=1,...,d and we obtain the evaluation
_ < d Dk qk
Iak(w)l - l Z til ...[,'kl < k 'Wl .
1€iy <...<ix€d \

Since weC" |w| > R is arbitrary, we conclude that deg(a,) < kg for
k=1,...,d and 6(P)<q. =

Let us assume that F =(Fy, ..., F,) is a dominating polynomial map-
ping. For any Ge C[W1], deg G > 0 we denote by P (W, T) (resp. Qg (W, T))
then unique monic polynomial from C(W)[T] such that P;(F, T) (resp.
Qs (F, T)) is the characteristic polynomial of G- (resp. the monic minimal
polynomial of G) with respect to C(Z)/C(F). Then Pg = (QG)MG, where
d =d(F)=(C(2): C(F)) and dg =(C(F, G): C(F)).

(2.2) LemMMA. Let F: C"—> C" be a dominating polynomial mapping. Then
for each polynomial G, deg G > O there exists a Zariski open set U c C" such
that the coefficients of Pg(W, T) are regular in U and for any we U we have:

Pew, )= [] (T-G().
zeF ~ 1(w)
Proof. Let Qg =0g(W, T)eC[W, T] be a polynomial such that
Qs (F, T) is a minimal polynomial of G with respect to C(Z)/C(F). Then J;
is uniquely determined except for a constant factor ; moreover, we have J; (W, T)
=c(W)Qs; (W, T) with nonzero ¢(W)e C[W].
Obviously, the mappings

(F, G): C"3z—(F(2), G(2))e [(w, e C™*: Qg(w, 1) =0}
and
pry: {(w, )eC"*t: Qg(w, t) =0} 3(w, ) >weC"

are dominating of degree d/d; and d; respectively. By well-known properties
of dominating regular mappings we conclude that there exists a Zariski open
set U < C" such that:

(a) for any weU: # pr; '(w) = dg,

(b) for any (w, )epr; H(U): # (F, G)~*((w, t)) = d/d;.

By (a) c(w) # 0 for we U so the coefficients of Q; and Pg; are regular in
U. Conditions (a), (b) imply # G(F '(w)) =dg, #(F"'W G~ (1)) = d/dg
for (w, )epry ' (U).

Now, we have for any we U:
d

M (T-6@)=( [1 (T-0)" =Qetw, Ty
zeF ~ L(w) teG(F ~ 1(w))
(2.3) ProrosiTiON. Let F: C"~ C" be a proper polynomial mapping. Then
for each polynomial G: C"— C, deg G > 0 we have the following:

(i) the polynomial Pg(W, T) has coefficients in C[W1].

"6 = Pg(w, T). m
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(i) There exists a constant C >0 such that |G(z)] < C|F (z)lmG) if
|F(z)} = 1.

(iii) Suppose that there exist constants q, D, R > 0 such that if |F (z)| > R,
then |G(z) < D|F (). Then 6(Pg) < g.

Proof. (i) Take a Zariski open set U < C" as in (2.2). Then Pg(w, T)

d

=T*+) awT" = [] (T-G(z)) for weU. Given M >0 there
i=1 zeF~ 1(w)

exists M* >0 such that |F(z)) < M implies |z] < M*. Now, fix weU,

[w| < M. A simple calculation like that from the second part of the proof of

(2.1) yields

la,(w)| < (") C'(1+(M*P2%  with C > 0.

i
Then the coefficients of P; are polynomials as locally bounded rational
functions.

(i) By the definition of P; and by (i) we have Pg(F(z), G(z)) = 0 for all
ze C". Hence and from Lemma (2.1) we obtain the assertion.

(1ii)) From (2.2) we conclude that the conditions Pg(w, t) =0, {w| > R
and we U imply the inequality |f| < D|w|".

The set U being dense in C”", the inequality [t} < D|w|? holds for all
(w, )e C** ! such that |w| > R and Pg(w, t) = 0. Now, from the second part
of Lemma (2.1) we get d(Pg) <q. m

Let us suppose that F: C"— C" is a proper polynomial mapping. We
write P, = P,(W, T)=Po(W, T)if G=Z, (i=1, ..., n). Then P,e C[W][T]
by (2.3) (1). Now, let us make the following observations:

(24) ProperTY. There exist constants C >0, R; >0 such that if

_rn:x (&(P;))
|zl > Ry, then |z| < CIF(2)'~"

Proof. By (2.3) (ii) there is a constant C > 0 such that |z;| < C|F (z)IW"'
fori=1, ..., nif |[F(z)| > 1. It suffices to take R, > 0 such that |F(z)| > 1 for
lzZl > R,. w

(2.5) PrOPERTY. If there exist constants R, D, q >0 such that |F(z)|

= D|z|? for |z] > R, then q < 1/max(5(P)).
i=1

Proof. We may suppose that R > 1. Let 4 > 1 be a constant such that
|F(z)] < A)z|**F for |zl > 1. Then obviously the inequality |F(z)] = AR¥F.
(1+max|F(z)|) implies |z] > R, so by hypothesis we have |F(z)] > D|z,? for

lzf <1

i=1,...,n and by (23) (iii) applied to G=2Z; (i=1,...,n) we get
o(P)<1/g(i=1,...,n). »

Evidently (2.4) and (2.5) imply Propositions (1.4), (1.6) and the following
formula:
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(2.6) CoroLLARY. With the notation introduced above:
h(F) = 1/max (6 (P))).
i=1

Let us note a simple corollary of (2.6) and of the definition of é(P):
(2.7) CoroLLARY. The exponent h(F) is of the form a/b, where a, b are
integers such that 1 <b, 1 <a < d(F). In particular h(F) < d(F).

Remark. Using Puiseux expansion one can prove in the case n = 2 the
evaluation h(F)deg F < d(F).

3. Algebraic dependence of polynomials. For any polynomial G(Z)
= Za,,lm,‘"Z'{‘ ..Z" we set supp(G)={(ky, ..., k)eN" y,..x, # 0}.
A weight v of the ring C[Z] is a mapping of C[Z]\(0) into N satisfying the
following conditions:

(@) v(Y(G)=max(v(G)), where (G) is a finite family of nonzero
polynomials such that suppG; nsupp G; = @ if i # .

(b) v(GG) = v(G)+v(G).

(c) If a# 0 is an element of C, then v(a) =

We assign to zero element of C[Z] the value —oo. Obviously if v
is a weight of C[Z], then v(G)= max(k,v(Z,)+ ... +k,v(Z,), where
(ky, ..., k,)esupp G.

Suppose that min(v(Z))> 0, then deg G < v(G)/m}n (v(Z;)) and ob-
i=1 i=1
viously deg G < [v(G)/min (v(Z)))].
i=1

The aim of this section is to prove Proposition (3.3). First we recall a
theorem from the classical algebra which is basic for our considerations.

(3.1) Tueorem (O. Perron [8], Theorem 57). Let F,(2), ..., F,(Z),
F,.1(Z)eC[Z] bé polynomials of positive degree, in n indeterminates
Z=(Z,,...,Z,). Let v be the weight defined by conditions v(W,) = deg F; for
i=1,..., n+1 Then there exists a nonzero polynomial Re C[W;,

n+1

such that R(Fy(Z), ..., Fry1(Z)) =0 in C[Z] and v(Ry< [] deg F;.
i=1

coos Wai ]

(3.2) LEMMA. Let Po(W), P, (W, A), ..., P;(W, A) be polynomials in n+ N
indeterminates (W, A) such that Py(W) # 0 in C[W]. Suppose that the above
polynomials are relatively prime in C{W, A]. Then for almost every ac C" the
polynomials Po(W), P,(W, a), ..., P,(W, a) are relatively prime in C[W].

Proof. We may assume that deg(P,) > 0. Let Po(W) = [[ Po;(W) be a
factorization of P, into irreducible polynomials Pg. By the assumption for

each Py, there is a polynomial P, (W, A) such that Py (W) does not divide
P, (W, A). Then by Hilbert’s Nullstellensatz there exists w®e C* such that
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Po;(w?) = 0 and P, (W', 4) # 0 in C[A]. It is easy to see that for any ae C"
such that [] P, (w", a) # 0 the polynomials Po(W), P, (W, a), ..., P4(W, a)

are relatively prime in C[W]. =

(3.3) ProrosiTiON. Let F =(F,, ..., F,);: C"— C" be a dominating poly-
nomial mapping (we identify F and the sequence of polynomials F,, ..., F, in
indeterminates Z =(Z,, ..., Z,)). Let d be the degree of finite extension
C(Z)/C(F). Then for any polynomial G = G(Z)e C[Z] of positive degree
there exists a polynomial Py(W, T) = Po(W) T4+ P, (W) T '+ ... + P,(W)e
e C[W][T] in indeterminates (W, T) =(W,, ..., W,, T) such that

(i) degr(Pg)=4d

(i) P5(F(Z),G(2) =0 in C[Z];

(ili) Po(F(2)) ' Ps(F(Z), T) = Pg(F(Z), T) (the characteristic polynomial
of G with respect C(Z)/C(F));

(iv) Let v be the weight of C[W, T] defined by v(W) = deg F; for i

=1,...,n v(T)=deg G. Then v(P;) < H deg F; deg G. Let us suppose in
addition that G is integral over C[F]. Then the characterzsnc polynomial

P (W, T) has the coefficients in C[W] and v(Pg) < H deg F;deg G.

i=1
Proof. Let us fix an integer ! > 0. We will prove (3.3) for all poly-
nomials G(Z) of degree less than /. Let 4 =(4; ;) +..+;, <! be indeter-
minates, N = # {(j, ..., j)eN™ j; + ... +j, <!} their number. Let G(4, Z)
=Y A4;.5,2Z) . Zy
Then each polynomial G(Z)e C[Z] of degree less than [ is of the form
G(a, Z) with suitable ae C".
Obviously the ring C(Z)[A4] is a free C(F)[A]-module of rank
= (C(Z): C(F)). Multiplying the characteristic polynomial of G(4, Z) with
respect to this module by a suitable element from C(F) we get a polynomial
P(W, A, T)e C[W, A, T] with the following properties:

(@PW,AT)=P,(W)T°+P,(W,A) T ' +...+P,(W,A)eC[W,A, T]
with Po(W)# 0 in C[W].

(b) The polynomials Py(W), P (W, A), ..., P;(W, A)e C[W, A] are
relatively prime.

(c) P(F(Z2), A, G(A, Z))=0 in C[A, Z].

For any G(Z)=G(a, Z)eC[Z] we define Py(W, T)=P(W,a, T)
= Po(W)T*+ P (W, @) T?" 1+ ... + Py(W, a). Obviously Ps(W, T) has prop-
erties (i) and (ii). In order to check (iii) let us take a Zariski open set U < C"
such that for any weU: # F~!'(w) =d and P,(w) # 0. Then by (c) we get

P(w, A, T) = Po(w} [] (T—G(A, z)). Upon substituting ae C" for A we
eF~ 1w
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get for weU: Po(w) ! Bg(w, T)=Poy(w) ! P(w,a, )= [] (T-G(2)
zeF_l(w)

Then by Lemma (2.2) we have Po(W) !P;(W, T) = Pg(W, T) which

proves (iii).

Now let D(W, A) = disc; P(W, A, T) be the discriminant of the poly-
nomial P(W, A, T)eC[W, A][T]. Obviously D(W, A)#0 in C[W, A].
Hence and from Lemma (3.2) there exists a Zariski open set 2 = C¥ such
that:

(d) for every aeQ the coefficients Po(W), Py(W, a), ..., Py(W, a) are
relatively prime.

(e) For every aeQ: D(W,a)# 0 in C[W].

Let us fix aecf. From properties (d), (e) and (iti) it follows that the
polynomial P(W, a, T) is irreducible in the ring C[W, T].

Then P(W;a, T) is a generator of the ideal determined by
F,(2),..., F,(Z), G(Z) over C. According to (3.1) there is a nonzero poly-
nomial R(W, T) = C[W, T] such that R(F(Z), G(Z))=0 in C[Z] and

v(R) < n deg F;-deg G. The polynomial P(W, a, T) divides R(W, T) then
i=1

we have v(P(W, a, T)) < [] deg F,;-deg G. Since the set Q is open in C" this
i=1

estimation holds for every ae C*. This proves the first part of (iv). If G is
integral over C[F], then the characteristic polynomial Pg(W, T) divides

B;(W, T) in C[W, T] so we have v(Pg) < []| deg F;deg G. =
i=1
Now we will prove two corollaries of (3.3). Corollary (3.4) is an algebraic
equivalent of (1.3).

(3.4) CoroLLARY. If d(F) > []| deg F;—min(deg F;), then the ring C[Z]
i=1 i=1

is integral over C[F].

Proof. It suffices to check that every polynomial of degree 1 is integral
over C[F]. Let Ge C[Z] be a such polynomial and let P,(W) be the leading
coefficient of Pg (W, T). From property (iv) it follows that v(P, T%) < v(P)

< [] deg F; hence v(Po) < [] deg F;—d(F) and degy (Po) <(]] deg F;—
i=1 i=1 i=1
—~d(F))/min(deg F;) < 1. Consequently P,(W) is a nonzero constant so G is
i=1
integral over ring C[F]. »

(3.5) CoroLrary (cf. [13], Proposition 6.2, p. 197). For any polynomial
HW)eC[W]:
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ﬁ deg F;-deg(HoF)
deg(H) < =1
min(deg F;)d(F)
i=1

Proof. Let us put G(Z)= H(F(Z)). Then obviously Pg(W, T)
=(T-H(W)*". By (3.3) we get d(F)v(H)< [] deg F, deg(HoF) hence
i=1
follows (3.5). =

Remark. In all propositions of this section one may replace the field C
of complex numbers by any field of characteristic zero.

4. Proof of the main result. We need a preliminary lemma.
(4.1) LeMMa. Let p, d, m be integers such that d,m>1 and p>d. Let

4 _ .
o =max{-1,-[p d+]]}.
Jj=1 ] m

Then
1 . p—d+1 Ap—d+1 p—d+1
6: < = ] ? .
d-p+mlfm\1anda[m:llfm 1
Proof. Suppose that
p—d+l<l,
m

1e., d—p+m>0. Put j, =d—p+m then

p—d+j _ m—jo+j
m m

m—joti|_,
- .

1.['"_’°+’]< mjot) 1
J m my Jo
with equality for j = j,. Consequently é = 1/j,.
—-d+1

If j <jo, then

For j > j, we have

Now, let us consider the case 4

is1: [p—d+l]>1[p—d+]:|'
m j m

> 1. We will check that for every
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It is obvious if m =1, then we assume m > 1. We have
1 p—d+j _1( p—d+1+j—1
Jj m _j X m m
1 —-d+1 ji—1
=-_‘([E ]+[J ]+s), ee{0, 1}.
i\ m m
Hence it suffices to show that for every j > 1

[p—d+1:'? - ! ([]_1]+s), where g€ {0, 1}.
m j—1 m

It 1s obvious if j =2 so let j > 2.
Therefore

—1—(]; +e srl—(j—_—lﬂ <1< |2t
=1\ m j—1\ m m

p—d+1 S

=>1l. =

since m>=2, j—12>2 and

m
Now, let F =(F,, ..., F,): C"— C” be a proper polynomial mapping of
degree d = d(F), and let Ge C[Z], deg G =1 be given. Then the character-
istic polynomial Py(W, T)= T*+P, (W) T '+ ... + P,(W) has the coeffi-
cients in C[W] and by Proposition (3.3) we have
n
v(P; T ) <v(P)< [] deg F..
i=1

Hence

v(P) < [] deg Fi—d+j
i=1
and
l-] deg Fi—d'*‘j

degy (P) < | =2
min(deg F;)
i=1

for j=1, ..., d. By definition of 6(P;) we get

8(Pg) < max{-| =
i=t IV min(deg F)
i=1
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Now, Lemma (1.4) and the above estimation imply

and

(1
(2]
31

(4]
(5]

(6]
7]

(8]
[9]
[10]
(1]
[12]
[13]

[] deg Fi—d+1 ] deg Fi—d+1
5(PG)< i=1 . i.f i=1 . A ?l
min (deg F,) min (deg F))
i=1 i=1

i=1

5(Pg) € — : it =g
d— [] deg F;+min(deg F)) min(deg F;)
i=1 i=1 i=1

<L

Hence and from (2.6) follows the theorem.
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