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1. Introduction and motivation

1.1. Mean values

Very often, not only in analytic number theory but also in algebra,
combinatorics, geometry and in other fields it is an important task to decide
whether an arithmetical function

fi NoC

has a mean value

1
M(f) = lim — Zf(n)s
XS S
and to calculate this limit.
For example, results on the distribution of primes, on the distribution of
squarefree or k-free numbers, on lattice points in certain regions, on the

* Extended version of two survey lectures given at the Warszawa International Banach
Center on September 6, 1982 and September 8, 1982.

) Often the calculation of this limit is not too difficult; by partial summation the
existence of M (/) implies

= d
F(s):= f(?")=s Zf(n)u,f1

1

~ M{f) ——
s—1

n=1

for s—1, Re s> 1. Hence
M(f) = lim (s—D)F(s),

s=1+

il the existence of M(f) is known in advance.

[463]
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density of subsets of integers, on counting functions for algebraic objects, and
other results may be described as results on the existence of mean values for
certain arithmetical functions:

— M(u) =0 (for the Mobius function z) is equivalent to the prime
number theorem,

— M(u? = 6/n%, and

2 b
MO ) =3 T T (152

slb pla.b).(p2.b)|a b

(where y..0qs 18 the characteristic function of the set of integers n = a mod b)
give information on the distribution of squarefree numbers,

— M(r) = nm and M (1) = oo (where r(n) is the number of representations
of n as a sum of two squares and 7(n) the divisor function) are results on the
number of lattice points in circles or hyperbolas,

— the formula M(a) = H {(v), where a(n) is the number of (non-
y=12

isomorphic) abelian groups of order n, is related to certain algebraic objects,
— the existence of M(gp) for gp(n) counting the solutions of the
polynomial congruence P(d) = 0 mod n, where P(X)e Z[X] is irreducible,
is a rather deep result in number theory. %
Further interesting examples of mean values are the Fourier coefficients

(L1) f@=M(fg), where ¢, (n)=e>",

and the Ramanujan coefficients

1
(1.3) a(f)=— M(f,
@ (r) e
of arithmetical functions.
According to H. Weyl's criterion [79] a sequence {x,},-, .. of real
numbers is uniformly distributed modulo one, if the mean values

M (nsexp | 2mikx,})

are zero for any integer k # 0.
The problem of the existence of a limit-distribution for real-valued

2 This follows for example from Wirsing’s theorem (Section 1.2) in combination with
Lemma 7 from Erd&s [25].

¥ ¢, denotes the Ramanujan sum, defined by
r u
(1.2) c.(n) = Z d-y(—l) = Z cxp(Zm‘ - n).
[¢ r

d|(n.r) 1gasr
{a,r)=1
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arithmetical functions g,

o1
lim —#{n<N,g(n<x}=¥x
N=mom N

is closely connected with the existence of
M (n+>exp {2nitg (n)})

for any real ¢, according to the continuity theorem for characteristic func-
tions (see for example E. Lukacs [54], Theorem 3.6.1).

1.2. Multiplicative functions

The property “multiplicativity” of arithmetical functions can be defined by
the requirements

fi)=T]f") (foranyn) and f(1)=1,
Prlin ,
and thus these functions are determined by their values at the prime powers.
Higher prime-powers are “rare”, hence it may be expected that the behaviour
of f in the mean is determined by the behaviour of f at the primes. Another
formulation of this principle is contained in the relations

- 2
n=1f(?") = I—p[{l+f§)-+£l(,—€s—)+ } ~ Cf]—p[(1+'[—l(fl—7l)~ C% exp(zp:fpr))

for s = 1+, under suitable conditions on the multiplicative function f.
More precisely: ¥ If f is multiplicative, f(p)=c¢, >0, 0<f(p" < ¢35,
then

1
(14) Y SR x exp{ 2= (f(p)—I)}-
n€x p<x
The above-mentioned idea was very clearly expressed by Eduard
Wirsing, and he was able to transform this idea into a rather general
theorem on the behaviour of sums ) f(n) for nonnegative multiplicative

nsx
functions, a theorem, which has a lot of applications.
THeoreM (E. Wirsing [81]). For nonnegative multiplicative functions f
‘with “small values” at higher prime-powers, ® satisfying
(1.5) Y f(Plogp~tx (x—00), >0,

pEx

4 See Barban [1], Theorem 8.1, and Wolke [86], Theorem | and 2, for more general results,
See also G. Haldsz [30],Theorem 3. For a weaker, but very useful result, sec Lemma 5.5.
) This means 0 <f(p") <y,'7; for k =2, where y, < 2.

30 — Banach Center, t. 17



466 W. SCHWARZ

the asymptotic relation

1

(1.6) Y. f(n =(1+o(1))-‘}—- ad I1 (1+I—!()£)+f;§ )+ )

n&x (T) IOg X PEx

is true, where % =0.577... is Euler’s constant.®

About the same time H. Delange [12] gave another result, which is
concerned with multiplicative functions of absolute value [f| < 1 only, but
gives necessary and sufficient conditions for the existence of a non-zero mean
value. '

THEOREM OF DELANGE. For multiplicative functions f: N — C satisfying
|f]1 <1 the following conditions are equivalent.

(D) The mean value M(f) exists and is non-zero.

(D,;) The series

1
(1.7) - S1() =Z; {f(p)—1}
P
is convergent, and for all primes p
(1.8) f: Lf(pk) =0, N®
ey

) Wirsing’s paper also contains interesting results on complex-valued multiplicative
functions. The important paper Wirsing [82] is concerned with weakening condition (1.5),
assuming only an asymptotic formula [or

1
) ;f(P) log p.

pEx

One of his results is the following: Let f = 0 be multiplicative, assume f(p) <y, for all primes p,

und
LY )< m.
p kx2
If
Y lo_gﬂf(p) ~tlogx (with t>0),
psx
and

LX) <xlogx)™! (@<,
p k22
then formula (1.6) is true.
™ Since |f] < 1, condition (1.8) is trivially satisfied for any prime p > 2.
® If M(f) exists, then by partial summation
. 2 1
(19) M(f) = lim ]‘[(1+f;f)+f;fa)+...)(1——).

o
ogl+ g

P

Thus conditior (1.8) excludes the possibility that M (/) = 0 trivially by the vanishing of a factor
in the product representation (1.9),
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Thus in order to have a non-zero mean value, a multiplicative function
f must have its values f(p) mostly near 1.

1.3. The theorem of Halasz on mean values of arithmetical functions

In this survey, results on multiplicative functions which might have a
mean value zero will not be treated. However we have to mention the deep
results of E. Wirsing [82] ©® and G. Haldsz {28]. The latter used the classical
method of complex integration in a very skilful and sophisticated way to
prove the

TueEOREM OF HaLAsz. If f1 N — C is multiplicative and |f]| < 1, then there
are constants CeC, aeR and a slowly oscillating *® function L of modulus.
|L| =1, such that

(1.10) Y f(n)=C(1+o(1))x** L(log x).

nsx

In the case of f being real-valued a and L are given by a=0 and L
= 1, that means: M () exists for any real-valued multiplicative function of
modulus ar most 1. 1D

The mean value M(f) is zero, if

Z(0:= 3 (1-Re £(pp™}) = 0

P

for all te R. If there is a real number t, with the property X (to) < oo, then ¢,
is uniquely defined (and the constant a in Haldsz' theorem may be taken
equal to t4); in this case

L(y) = exp{i ) 'im (f(p)p”"")}-

pser

" A remarkable special case of Wirsing's.Satz 1.2 is the following result: For any real-
valued multiplicative function f, satisfying |f] < 1, the mean value

M(f)=l:[{(§np"‘f(p"))(l—§)}

exists.
oy is slowly oscillating, il L{cu)/L(u) =1 for u— co, for any real ¢ in 0 <c < o0,
(1) This gives another solution of an old conjecture of P. Erdds. The first solution of this
conjecture is contained in Wirsing [82], as mentioned before.
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There are generalizations of Haldsz’ Theorem by several authors (see for
example Levin-Timofeev [48], Tulyaganova [76], Parson-Tull [56]). 2

1.4. The theorem of Elliott and Daboussi

Returning to the case of multiplicative functions with non-zero mean
value, the annoying condition |f} <1 in Delange’s theorem was removed
only in 1975 by P. D. T. A. Elliott. Define the semi-norms | f]|, by

/g
(L) 111y = Jim sup 2 5 7]

x*o n<x

for g > 1. Define a subset &, of the set of multiplcative functions .# as

follows:
feé&, if and only if the following series are convergent:

$,.() =Z%,{f(p)—l},

1
S20f)= X Elf(P)—llz,

\rmfeaz
1
S3(N= 3 =1
p
>3z
1
Sa(N=Y X I
p k2P

For ¢ > 1 it is easy to see that &, is a semigroup with respect to
(pointwise) multiplication of functions. *3

2 K. H. Indlekofer [41] extended Haldsz’ theorem in the following manner: Let f be
multiplicative and “uniformly summable”, i.e.,

lim sup L Y Sl =0.

K=o 321 X pgylfim|zK

Assume that M(|f|) exists. Then either the mean value M{f) =0 exists, or there exist real
constants 0 # ¢y and ag such that

x"1Y f(n)=co x® exp {iA*(x)} +o0(l) as x- o,

nSx
where
A*(x)=3 p~ ' Im {f(pp~%} and lim sup |A*(y)—A*(x) =0.
pXx IO coycy?
M Remark. The convergence of S, (f), S53(f) and §5(f) is equivalent with the conver-

gence of S, (f) and

S5 =Yp ' {1-11 (.
)

Thus the inessential constant 3/2 is avoided. (See Heppner [34].)
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The following important result is true, éiving necessary and sufficient
conditions for the existence of a non-zero mean value for multiplicative
functions.

THeEOREM OF ELLIOTT-DABOUSSI. Assume g > 1. For any multiplicative
function f: N —C the following conditions are equivalent:

(EDy) |Ifll; < oo and the mean value M (f) exists and is non-zero.

(ED,) fe&, and condition (1.8) holds.

In the case g = 2 this theorem was proved by Elliott [17]; Daboussi and
Delange [11] gave a simpler proof for the implication (ED,)=>(ED,).

H. Daboussi ([8], preprint) proved the theorem for g > 1.

P. D. T. A. Elliott [21] proved the theorem independently by a different
method. ,

W. Schwarz and J. Spilker [72] gave another proof for the implication
(ED,) = (ED,) by the method of A. Rényi [60], using the Turan-Kubilius
inequality and simple ideas from functional analysis.

E. Heppner [34] deduced the same implication from a Tauberian
Theorem of G. Haldsz [29] under weaker assumptions.

K. H. Indlekofer [38] introduced the class of “uniformly summable”
functions: f is called uniformly summable, if

lim {supl Y If(n)|} = 0.

K-m (x21 X p<yx
GRS S

If f is uniformly summable, then |f]l; < co. Using this definition,
Indlekofer’s theorem reads as follows:

Let [ be multiplicative and q = 1.

(11) If f is uniformly summable with bounded semi-norm ||f||,, and if the
mean value M (f) exists and is non-zero, then fe &, and fe &, and condition
(1.8) holds.

(12) If fed, N &,, then M(f) exists, ||f]l, < co and fis uniformly sum-
mable. Moreover M(|f|*) exists for A =1 and A =gq.

1.5. Multiplicative functions of several variables

E. Heppner ([33], [32]) showed how to deduce results concerning mean
values of multiplicative functions of several variables from results on func-
tions of one variable. For example the following result is true. %

Let f: NxN— C be multiplicative. '3 Define the functions fi, fi: N
—=C by fi(ny=f(n,1) and fo(n)=f(1, n). Ler > 1.

(14) This result contains for example results of H. Delange [16].
A8) fin on, ngony) =f{ng, na)f (ny, ng), i (ny-mg, my-mg) =1 and f(i, )= 1,
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(i) Assume

Y 2 | f(n, mF < xy.

ngx m<y

If the mean value '® M(f) exists and is non-zero, and if *" ¢;(p, s, 8') # 0 in
Res> 1, Res > 1 for all primes p, and if @z (p, 1) # 0 for all p, then the
Jfollowing series are convergent:

1
(*) Zl i1} X

» D p P

(i —-1},

and

Y Y p A fori=1, 2.

p k=2
(i) The convergence of the four series (*) (for i =1, 2) and of
PO S VA

k,m
k+m22

implies the existence of M(f) and of M(|f19). If ¢,(p, 1, 1) # 0 for all primes
p. then M(f)# 0.,

2. Connections with almest-periodic functions

2.1, Classes of almost-periodic arithmetical functions

The theorem of Elliott~Daboussi contains more information on arith-
metical functions than is expressed in it, and there are hints for this
impression, for example: If f,, f, are multiplicative, if || fil|, < oo, if the mean
values M (f)) exist and are non-zero for i = 1, 2, then the mean value M (f, f5)
exists, and under some precautions"'® M (1)f,) also exists, 19

In reality the conditions of Elliott’s theorem characterize multiplicative
functions in certain classes of almost-periodic functions. ?9

ey N S(n.m)~M(f)xy, if x>0 and y— oo independently.
n&x mSy
o o —k{s—Ras k = -
" gipsns)= Y Y p VTN, ), and g, (p 9= Y peg(A.
k{=0ky=0 =

U8 Precisely: |/ (p) = & lor any prime-power p*, where 4 > 0.

(19 See Delange {15], Schwarz [68). For an extension to the case M (f;) = 0, see Schwarz
[63].

@0 For the special case of Delange’s Theorem, dealing with multiplicative functions of
meodulus |f] < 1, see for example H. Daboussi and H, Delange [10] and W. Schwarz and J.
Spilker [71], Thm. 5.1, Thm, 54.
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Denote by

& = Ling[e,; aeR/Z]

the compl_éx vector space of linear combinations of the exponentials
e,: n—e*™®" and by

2 = Ling[e,, ac Q]
the vector space of linear combinations of rational exponentials. Denote by

B =Ling[c,, r=1,2,..]

the vector space of linear combinations of Ramanujan sums

¢t n— ) exp (Zn'iE n)= Y, du (ﬁ)
1oss r d|(r,n) d

o, & and 4 are not only vector-spaces, but also C-algebras. In fact # is
the algebra of even functions,

(2.1) B={f: N>C,3k: f(n)=f(gcd. (n, k))}.

This was proved by E. Cohen [5] elementarily and later by Schwarz and -
Spilker [70] using the approximation theorem of Weierstrass—Stone. 1)
In order to enlarge these spaces, use the supremum-norm

AN, 2= sup |f (n)
neN

to get the C-algebra
o= |||l ,<losure of &

of uniformly-almost-periodic arithmetical functions, the algebra

2= || l,~closure of 2

of limit periodic uniformly-almost-periodic functions, and

# :=||||,<losure of 4,

the algebra of uniformly-almost-even functions.

The spaces just defined are very small; for example, the beautiful
function n+n"! @(n) is not in & 1t is possible to characterize additive *%
and multiplicative (¥ functions in £ and in .o/":

21 See also Knopfmacher [46], Chapter 7. .
(22 Gee van Kampen [45], Knopfmacher [47], W. Schwarz and J. Spilker [71], § 2.

2% See N. G. de Bruijn [4]).
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An additive function g is in #* if it is in o iff 3 lim g(p") and

k—an

Y sup lg(p")] < co.
p

A multiplicative function f is in " iff 3 im f(p*) and Y sup |/ (p")—1{
k

k= a p
< o,

A nmultiplicative function f is in o iff there exists an integer N and a
Dirichlet character y mod N with the properties

(i) im f(p*) =0 if p|N,

k=

(i) lim ¥(p") f (") # O exists, if p¥ N,

(i) sup X" f(p)—1] < .
p

Hence a strongly multiplicative function is in & iff it is in 4. The
completely multiplicative character y,(m)=1,0, —1,0 for n=1,2,3,0
mod 4 is in &% but not in 4

Due to their smallness the spaces #* = 2" — & are not very useful for

number theory. With the norm |-, we get the important, larger vector-
spaces

o = |||l closure of & (g-almost-periodic-functions),
9" =||"||,closure of # (g-almost-even-{functions).

Set-theoretic inclusions are shown in the following diagram:

27 {gz1}

There are many further set-theoretic inclusions for these spaces, which
imply number-theoretic results, ¥ for example:

(2.2) A A o, BB B,
(2.3) A, BB B, i g+l =1,
Relation (2.3) follows from Hoélder's inequality

WAl < filglif Ny, i 1/q+1/g' =1.

(241 See Section 3. For further results see Lemmas 5.2, 5.3, 5.4.
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Furthermore, if fe o/ {resp. in 4] then |f|, Re f, Im f, f are in o [resp.
in 4.

If fest, then M(f) exists, and the Fourier-coefficients f (a)' and
Ramanujan-coefficients a,(f) exist. If fe ot then the shifted functions

Ja: n—=f(a+n)  (aeZ)

and the pointwise products g-f for any periodic function g (or for any
uniformly-almost-periodic g) are in o*. If f,, ..., fye o then Fe of', where

k
F(n) = [] fe(a.n+b,),
x=1

with integers a, >0, b,
The structural property of “almost-evenness” for $7 is very uséful. By a
simple approximation argument % this property implies:
If feB" is real-valued, then €'/ nise™ js in B for any real t.
Due to the orthogonality relations

0, ifr#r,

Mic ) = {qo(r), ifr=r

elements of linear algebra give
BeSSEL'S INEQUALITY. If fe B, then

(24) Lla. (o) <A1,

r

1
where a,(f) =—— M(fc,).
@(r)
For an application in the next section we shall need
PARSEVAL'S EQUALITY. If fe 43? then

29) > e (NP o0 = 113

The proof can be based on an isomorphism #%/ A% = L2(N*, u) of #*
modulo null-functions *® to an L*-space over a compactification N* of N
with a suitable measure u. For details see Knopfmacher [47].

29 If g=Y a,c, is a finite linear combination of Ramanujan sums, then ¢? is even, and
hence again in Ling[c,]. This type of argument does not seem to be available for o’

28 y2={fe®, | fll, =0}
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3. Applications to number theory and to power-series

3.1. Number-theoretical applications

For functions f in /' the mean value exists; using inclusion relations
between the spaces defined in Section 2, we obtain many results on the
existence of mean values for arithmetical functions.?”

(1) If fe .o, then the mean values M(f), M(Re f), M(Im f), M(|f}) and
M (f-g) exist for any ge o (for example for Dirichlet characters g or for
characteristic functions of residue classes).

(2) If feof* then the Fourier-coefficients f(x)= M(fe,) and a,(f)

= ~L— M (fc,) exist.
@(r)

(3) If f. ge o/ then M(fg,,) exists, where g, (n) =g(a+n). If feo,
ge /% (where 1/g+1/q = 1), then M(fig4) exists. 29

More generally:

(4) Given functions f,,...,f, in o/ and integers a, >0, b,, ¢, >0 (x

=1, ..., k: k an integer), then
a.,n+b,
L3 TA(2E)

x—'manvx 1 Cy

exists, where f,(y) is defined to be zero, if y¢N.

(This generalizes results of L. Lucht [50], [51], if the results of Section 4 are
used, giving sufficient conditions for f € o* in the case of multiplicative or
additive functions.)

(5) If feoff for any q = 1, if the image f(N) is contained in an open set
U < C with compact closure U and if y: U—-C is continuous, then the
composed function yof is in &/ for any q = 1.

Examples are 1/f, expf, logf, cosf, etc. The proof is by a standard
application of the Weierstrass approximation theorem.

6 If? fe®', if f(NNcU and if §: U—>C is Lipschitz-
continuous, 9 then Wof is in @'

A very important example is  (x) = e"* for real t.

CoROLLARY. If g is a real-valued arithmetical function in B, then there is
a limit-distribution for g, that means

1
(3.1) lim —ﬁ#{nSN;g(n)Sx}= ¥, (x)

N-w

@7 regardless of being multlphcauve or additive,

2% Example: The function p? is in #¥ for any q > 1 (see Section 4), hence M (u? fia) €Xists
for any fe /% where ¢ > 1. This resuit is sharpened in Section 5, Lemma 5.3.

2% Warning: The proofl does not apply to fe .o/l

@9 e, [ {x)—¥(x) < K|x—x/| for some constant K and for x, x'c U.



ON THE THEOREM OF ELLIOTT AND DABOUSSI 475

exists in the sense of weak convergence, i.e. relation (3.1) is true for any point
of continuity of ¥,.

In order to prove this, according to the continuity theorem for
characteristic functions (Lukacs [54], Thm. 3.6.1) it is sufficient to prove the
existence of the mean values

M, = M(n—exp ity (n)})

for real ¢ (this follows from e"?e ') and the continuity of t—M, at 1 = 0;
this follows from the estimate

.1 . — 1
lim = 3 (e"™-1)\< im — 3 |tg(n)] =1 llgll,-

N—-wm n<N N—'coan/v

3.2. Power-series with multiplicative coefficients

Let us recall the theorems of G. Pélya [57], [58] and G. Szegé [75]: If
the coefficients f(n) of a power series

(3.2) F(z) = z f(n)z"
n=1

with radius of convergence equal to 1 are integers [resp. assume only finitely
many values], then either F(z) represents a rational function or it is non-
continuable beyond the unit circle.

It suggests itself to ask, ! what will happen, if the coefficients f(n) of
F({(z) are values of a multiplicative function f. Will the same answer be true?

L. Lucht and F. Tuttas [53] and L. Lucht [52] answered this question
in the affirmative: If f is multiplicative with finite norm || f||,, and if the mean
value M(f) exists and is non-zero, then the power series F(z) is non-
continuable if and only if

@Y &)
o (1) #Ek P’

for infinitely many prime powers p*; otherwise F(z) represems a rational
function. @

For example the power series

(3.3)

§:€0(") ;
——z
T on

is non-continuable beyond the unit circle.

31) The author posed this question at the number theory conference in Oberwolfach 1978.
832 Tucht [52] contains more general results.
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However, inspite of this nice result, the posed question is not the right
question. The property of being multiplicative only plays a very subordinate
role. The following result is true.

Let fe%* Then

(a) F(z) is non-continuable, if infinitely many Ramanujan coefficients a,(f)
= M(fc,)/@(r) are non-zero.

(b) If only finitely many a,(f) are non-zero, and if f(n) =3 a.c.(n), ie.
if | is represented by its Ramanujan expansion, *® then F(z) is rational.

Remark 1. If f is in 4% if f is multiplicative or additive, and if
M (f) # 0 in the multiplicative case, then the Ramanujan expansion

£ty = 3 acn

is pointwise convergent. # Thus the condition /' =) a,c, in the case (b) of
the theorem may be dropped if f is multiplicative or additive.

Using explicit formulae for the Ramanujan coefficients a,(f), in both
cases (f multiplicative or f additive), the condition “a,(f)# O infinitely
often” is equivalent with Lucht’s condition (3.3).

Remark 2. The assumption feZ%? may be replaced by fe @'
For the proof, Parseval’'s equation has to be replaced by a result of A.
Hildebrand

(34) lim ”f— Z ar(f)crHI = 0.

K-wo K
The important [eature of (3.4) is that the coefficients of the even function
Y. a,(f)c, approximating f in |{-|j, are not changed, when K is increased.
r|K!

Remark 3. An extension of the result is possible, since differentiation
does not destroy the property of being rational or non-continuable. Hence
the assumption fe % may be replaced by n=*f(n)e #? for some integer k
2 0.

Remark 4, The result is no longer true, if fe #? is replaced by fe .« or
by fe ™. For example, the function f, defined by the uniformly convergent
series

f(n) - z iz e2ni(l/k)n’
e k

=1

“3 Thus fe4 in case (b).
94 For multiplicative functions: Schwarz [65], {66], Tuttas [77], Warlimont [78]. For
additive functions see for example Hildebrand-Spilker [37].
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is in &, but

o0 . | 1
iz = le'l_e(zﬁ-u/m.z

is continuable beyond |z] =1 and not rational.

Idea of proof. Since f & %2 the function f may be approximated in || -||,
by the beginning of its Ramanujan expansion

(3.5) I/~ Z a(ficllz= X la, (NI o0) <e,

r>R

if R > Rq(e) is sufficiently large.
The function

Z {Z a(f)c (m}z"

n=1 r=1

is rational, by a simple calculation we obtain

=z o) ¥

wmodr l O)Z

where @ runs through the primitive rth roots of unity
.a
W, = EXp (2m —), (a,r)=1.
r

Using ||*]l; <€ |I*|lz, by partial summation ?% the estimate (3.5) implies

25
1> f(nyz"—R(z)| < T
1

if |z] is near 1. Hence

1> f(n)z7] = 0,

if z—> w,, along the straight line z = tw,,, 0 <t <1, and if a,(f) # 0.

If a.(f)# 0 infinitely often, then the singularities w,,, (a, r) =1, are
dense on |z| = 1, and the result concerning the non-continuability of ) f (r)z
is proved.

3%} The partial summation only needs an approximation of f in |[*[l,.
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3.3. Some power series bounded on the negative real axis

L. Rubel and K. Stolarsky [61] posed the following problem: Determine
all subsets N, of the set N of natural numbers for which the power series

1 n
,,;1 n! *
shares with the exponential function the property of being bounded on the
negative real axis.
Their solution of this problem shows that there are only a few possi-
bilities for N, just the following six subsets N, = N have the desired property:
Nl = Q)a Nl = Na
N,={nn=0,1mod 4}, N;=[nn=23mod4},
Ny={n,n=0,3mod 4}, N,={nn=1,2mod4}.
The corresponding functions are

I

0, e —1, 4(e*+cos x+sinx)—1,
1(e*~cos x—sin x), 3(e*+cos x—sin x)—1, {(e*—cos x+sin x).
In analogy we pose the problem of determining all multiplicative or

additive functions fe #* (with M(f) # 0 in the multiplicative case), for which
the function

(3.6) E/z)=Y % 2"
n=1 4

is bounded on the negative real axis.

The method of proof is similar to that of Rubel and Stolarsky. The
solutions are

(a) in the multiplicative case: f =1 or f is periodic modulo 4,
1 if n=1,3 mod 4,
fM=<1—c if n=2mod4,
14c¢ if n=0mod4.

The corresponding functions are e*—1 and e*—1—c(cos x—1) (with an
arbitrary parameter ¢).
(b) in the additive case:

c it 4|n,
g(n = { —c i 2|fn,
0 if  2kn,

E,(z) = c(cos z—1).
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Sketch of proof. Consider the Laplace transform 9

£i(2) = JE,(—t)e-”dr: f(_l)"f(n) Z"IH.
n=1
0

The first representation shows that & .(z) is holomorphic in Re z > 0, since
E;(—1) is bounded for >0, and the second representation implies that

& ;(z) is holomorphic in [z]| > 1, since ||f]], < co easily gives |f(n) < C /7_1
Hence

~ /=19 =z 3 f0)7

is continuable beyond the unit circle; according to Section 3.2, & (—1/z) is
rational and fe 4, thus

R
(3.7) fin)= 3 a.c(n).
r=1

Inserting (3.7) into (3.6) we obtain

EI(Z) Z 1<Z< m,.,.z

(a,r)=

and this function is an exponential polynomial. Boundedness on x <0
a .
implies @, =0 for any exponent w,, = exp (Zm‘ -;) with Re (0,,) <0. For

r# 1,4, 6 there are primitive roots of unity w with Re w < 0, and so a, =0
unless ¥ =1, 4, 6.

In the multiplicative case the function r~— a, is multiplicative;

1
M(f)
therefore a, = 0, since a, =0, and

1=f(1)=a,c;(1)+agce(l) =ay,
and so
S(n)=1+a4c4(n)

gives all the solutions of our problem.
In the additive case a, =0, if r is not a power of a prime, hence a¢ = 0.
Moreover,

0=f(D)=a,¢c,(D+ascs(1) = ay,

(36) “Borel-transform™ in the theory of entire functions.
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and thus g, =0, and we obtain the solutions

£(n) = agcy(n).

Remark. Th. Maxsein dealt with the case of additive and multiplicative
functions f, with the property that the estimate

|n§1 %f (n) znl <c- e

holds on the negative real axis, where 0 < 8 < |, There are no new solutions
as long as # < 1/2. For 6 =1/2
a, (—1)+(a, —1) (e — 1+ —1)

where ¢ = —§+%i./3, is a new solution. The number of solutions increases
as §—-1—.

4. Additive and multiplicative functions in %*

It seems to be very difficult to characterize arithmetical functions in & or

#* by well applicable conditions. However, it is possible to do this for

additive and for multiplicative functions. In this way one gets lots of
. functions for which the results of Section 3 may be applied.

4.1. Additive functions

The first result characterizes additive functions g: N — C with finite
norm ||gllg, g 2 1.

Suppose q 2 1 and g additive. Then ||gli, < oo if and only if

(4.1.1) sup M} < 0,
NeN| p<n P
la(p)| €1
1
(4.1.2) Y —lg)* < o,
lap| €1 P
and
1
(4.13) L I lalhi <o
r k21
lg(#9) > 1

The characterization of additive functions in 7 is as follows.

Suppose q>1 and g additive. Then the following conditions are
equivalent:
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(A)) ge &
(A;) The mean value M(g) exists and llgll; < .
(A3) The series

(4.2) 2 =g(p)

latp <1 P
and the series (4.1.2) and (4.1.3) are convergent.

Addendum. For additive functions ge 4 (q > 1) the Ramanujan coeffi-
cients are given by

(4.3.1) a, = M(g) = 2(1*1) i g(r')

Q(P'k ) g(p . X
(43.2) a,={ P (I“)E,‘ o T
0

, i rz2isnot a power of a prime.

The Ramanujan expansion

(4.4) Z a,(g)c,(n) = g(n)

is pointwise convergent.

These results are proved in Hildebrand and Spilker [37]. Another proof
of the first result using a generalized form of the Turdn-Kubilius inequality,
is given in Elliott [22], Theorem 4. We do not reproduce these proofs here.
K. H. Indlekofer [Preprint Oberwolfach, Nov. 1980] announced (without
proofs) the equivalence of [lg|l, < co and {(4.1.1), (4.1.2)} even in the case
g >0 87

Moreover, Indlekofer [43] announced that for ¢ > 1 and for real-valued
addltwe g the existence of a limit distribution ¥, for g and the relation

j [y9d¥,(y) < co are equivalent with the convergence of the series (4.2),

(412) and (4.1.3).

Of course this follows from the equivalence (A,) <+(A;) and Section 3.1
(6).

Remark 1. Hartmann and Wintner [31] proved that (A,) is equivalent
with ge o/ (in the cases g =1 or g = 2, and they stated the result for any ¢
=1, p. 758). Hence, denoting the set of additive functions by Add, the

37 For 0 < q < 1 the definition of ||f]|, is slightly different from that given in Section 2.

31 — Banach Center, t. 17
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following relation is true
S NAdd = #nAdd (g > 1)

Remark 2. There are connections with a charming problem of P. Erdds
[23]. This problem is to characterize the logarithm as an additive function
with some additional properties, for example: An additive function g
satisfying

gin+1)—g(n)—0 as n-—-o

[resp. ). lg(n+1)—g(n) = o(x)]
is of the form g = c-log (see Erdos [23], resp. Wirsing [83]).
‘We do not treat this topic in this survey and mention the papers of
Rényi [59], Elliott [19], Wirsing [85] and the Literature quoted there. ¥

4.2. Multiplicative functions with mean value M (f) # 0

In his preprint [6] H. Daboussi proves the following theorem:

Suppose q > 1 and f multiplicative. If

(ELy) llflly <o and the mean value M(f) exists and is non-zero,
then (39

(ED,) feé&, and condition (1.8) holds.

On the other hand, (ED,) implies that f is in o and is limit-periodic *®
hence fe 2

Daboussi’s proof uses Dirichlet series and techniques of Haldsz. A result
like Daboussi’s theorem ought to be proven by functional-analytic means,
without using too heavy tools from number theory, and one of the aims of
this survey is to sketch a proof of the following slightly different result, using
simple ideas from functional analysis and the theory of almost-periodic
functions.

Suppose f is multiplicative.
M) If g=1 and feé,, then [e .
Addendum: If (1.8) holds, then M(f)# 0.

(M) If ¢ =2 1 and f € of* with mean value M(f) # O, then fe &, and (1.8)
holds.

38 Wirsing’s (best-possible) result (see Wirsing [85] is: If g is a completely additive
Junction, satisfving

gln—g(rn+l)=o(logn as n—om,
then g is a constamt multiple of the logarithm, g = c'log.
3% Recall that fe4, was defined at the beginning of Section 1.4 by the convergence of

the series §,, S3, §7 and §;. Condition (1.8) means ) p™*f(p*) = O for any prime p.
k=0
@0 f js limit-periodic, if the Fourier-coefficients f(«) vanish for irrational numbers a.
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Remark. It would be highly desirable to replace the assumption fe .o/
by the existence of M (f) # 0 and || f||, < «o. However, in our proof, it would
be necessary to know about the existence of M (|f|%?), and it seems that this
could be deduced only from Haldsz-like theorems.

H. Daboussi [8], went further and gave a characterization of multi-
plicative functions in &7 with a non-void Fourier—Bohr spectrum. Define the
spectrum of an arithmetical function as

(4.5) spec (f)={aeR/Z;h‘m sup%l):f(n)e"""'“|>0},

x=a n<x

and so, for functions f in &,

(4.5) spec (f) = {ae R/Z; f (@) # O}.

Then Daboussi’s “Théoréme principal” is as follows:

Assume q =1 and [ multiplicative. Then f is in o/ with a non-void
Fourier—Bohr spectrum if and only if there exists a Dirichlet character y with
the property that the four series

(4.6.1) 2 xS -1},
P

(4.6.2) Y pixef(@-17

If(pls2

(4.6.3) Y T N,
PS> 2

and

(4.6.4) Sy(N)=% kzzp"‘lf (P

p k=2

are convergent,

If these conditions are satisfied, then f is limit-periodic (i.e. f € 9* resp.
spec (f) < Q). ‘

Daboussi's Theorem 2 characterizes positive multiplicative functions in
& with non-void spectrum by the conditions (4.6.1}-(4.6.4), where now the
Dirichlet character y is equal to the constant function 1.

K. H. Indlekofer [42] “Y extends this theorem:

Assume a > 1. Then fes® with spec (f)# @ is equivalent with the
convergence of the four series mentioned above for all g in 1 < g < a and is
equivalent with

4.7 S, <0, f uniformly summable and there exists a Dirichlet character
y such that M (fy) exists and is different from zero.

41 Corollary 1; see also Indlekofer [40).
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5. Tools from number theory and functional analysis

5.1. The relationship theorem

Multiplicative functions are determined by their values at the prime-
powers. Therefore we may expect that multiplicative functions have “similar”
properties, if they do not differ “too much” on the primes. For example, if
one function has a mean value or Fourier coefficients, then the other one
ought to have a mean value or Fourier coefficients too. This often used idea
allows to reduce proofs to simpler special cases by deleting a thin set of “bad
primes” or “bad prime-powers”. If one has some control on the values at
prime-powers one may replace a multiplicative function by a strongly or
completely multiplicative function “without loss of generality”.

The following result is due to E. Heppner and the author [35], weaker
forms were proved before by several authors (for example L. Lucht [49], W,
Schwarz [641 or H. Delange [12]).

Define two multiplicative functions f, g to be related, abbreviated f ~ g,

if
1
(5.1) Z; |/ (P)—g(p)l < c0.
Denote by ¢ the set of functions
(5.2)

{f N — C, f multiplicative, Y. Y. p7*|f(p

p k22

TOF <o}

and by %* its subset

f(p) f(p)
ps

(5.3) g*={fe‘?;’;cpf(p, +...#0inRes>1

for any prime p}.
Then the following result is true.
LemMa 5.1. Let f, g be multiplicative and related, f ~ g; assume
f,9€¥% and fe%*.

Then there exists a (multiplicative) function h, satisfying

(54) g=f*h and ih—(’ﬂ<oo

n=1

n

Remark 1. This lemma was extended to multiplicative functions of
several variables by E. Heppner [32].
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Remark 2. % and %* are closed 2 with respect to Dirichlet convolution
*, defined by

f*g: nH;f(d)*g( )

and fe%* implies f e 9*, where f is the convolution inverse of f(f sJ' = ¢).

Remark 3. If the condition ¢,(p, 5) # 0 in Re s > 1 is violated for some
primes, the conclusion of Lemma 5.1 remains true, if the condition

PY=¢g@) fork=1,2,..

is assumed for these “bad” primes.
The importance of Lemma 5.1 is due to the following:

CoROLLARY. Let f, g satisfy the assumptions of Lemma 5.1. Then:
1) If M(f) exists, then M(g) exists *¥ and

h
_M(f ]'I(1+—%2 ;2)+ )

M(g) = M(f) Z .
1

(2) If fed, then ge B".
(3) If fe s, then ge o
i
@ If Zl f(n) is convergent, then the series Z; g(n) is convergent too.
n

(5) If all the Fourier coefficients f(«) exist, then all the §(x) exist.

For the proof of Lemma 5.1 one describes the relation A = g xf with the
aid of Dirichlet series.

Zh(n) Z /Zf(n) {Z%C'I(S)HZ%C”(S)}_.

n

The main difficulty is then to show that the inverse of an absolutely
convergent Dirichlet series is again absolutely convergent, and this is
achieved by a theorem of Wiener’s type due to Hewitt and Williamson. 44

If ¥ la,| < co, then
1

|Z(%/"‘)]25>0 in Res>=0
1

B2 f g9 (resp. € 9*) implies f#gec ¥ (resp. € 9*).

“3) See also A. Wintner [80).

“4) In his generalization of Lemma 5.1 E. Heppner [32] replaces this result by simpler
results from the theory of Banach algebras.
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is equivalent to
[= o]
2 Ib,| < o0,
L

where the sequence b, is defined by

O a,n QO byn¥)=1."

The proof of this result uses Gelfand’s theory of commutative Banach
algebras. A proof by complex function theory was given by A. E. Ingham
[44], and an elementary proof, modelled after D. J. Newman [55] was given
by J. Spilker and W. Schwarz [74].

5.2. Lemmata concerning spaces of almost-periodic functions

LEmMMA 5.2. If g =1, ge % and g = O, then g% #*.
The same result is true for .« resp. for 29

This is a simple result from the theory of almost-periodic functions; a
proof is given in the appendix of Daboussi’s paper [8]: “* Use the
Weierstrass approximation theorem to replace {sup (0, u)}!/** by a poly-
nomial Q(u) and use that we & implies Qowe 4.

LemMa 5.3. “® If g is a bounded function in #", and if [ is in B, then
g f isin &%

Remark. The same result is true for /', o instead of #*, .

ExampLe. The square y? of the M&bius function is bounded and is “7 in
#'. Hence for any function f € o' the mean value M (n+ p?(n) f (n)) exists. If
J is multiplicative, this mean value is equal to

-1 f(p
I;[(H p P )

Proof of Lemma 5.3. Given ¢ > 0, choose t,, t,€ # with the properties
If—tilly <& llg—tsll; <& and @ [|t,]l, < ligll,- Then

lg—tall, < 227 ighd ™t llg —talis,

and
1 fg =1y tally < WS =t gll, + 11ty (g — £,
< glla =gl +297 Higll2e™ g — 1514,

which is small.

“® Daboussi proves: If g >0, a> 1 and B 2 1, then g"c #* is equivalent with ge s/

“8 See Daboussi [8], I11.8.

“? Proof: p* and | are related. Apply Lemma 5.1, Corollary (2).

8 This is possible, since for real-valued ¢, '€ 4 the functions min (t, ¢) and max (¢, t')
are in # again.
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Lemma 54.If f is in ' and if || f\|, is finite, where g > L, then f isin B
for any r satisfying 1 <r <q.

Proof. Without loss of generality assume that fe ' is real-valued. The
truncated function

Jx =max {— K, min (f, K)}

is in ', since max (c, f) and min (¢, f) are in &' again for any real
constants ¢, ¢’. The function fy is bounded, therefore f is in % for any [ > 1
(see Lemma 5.3). Givenr, 1 <r <g, defines, s by s =qfr > 1, 1/s+1/s' = L.
Then, applying Hélder’s inequality,

1 1
4= 2 1S (=S < - ; |f (ml"
e Lr(mi >k
1 s (] 1/s
<fiy f(n)r'} {— z i}
m L] > K
Obviously
ke ¥ 1< XIS,
n<x|f(M|>K  n<x
and so

, 1 is
1/ =fxlly = lim sup 4 (x) < || f11g" {F IIfIIE} <e,

X = oD

if K is sufficiently large. Therefore fe #".

53. An upper estimate for sums over multiplicative functions
LemMa 5.5. If f = 0 is multiplicative and
(5.5) Y, f(P)log pF < ey y,
L
then

-1 k
5 S0 c,xexp(z””) - z@),

nsx pEx psx k=22
where ¢, only depends on c;.
This lemma is well known (for the idea of the proof see for example
Wirsing [81], Hilfssatz 2). The proof uses
Yfmlogn=3 fn Y logp=) logp* % fm)f

Yugx rREX ln PF<x msxp~
prm

<Tfm ¥ fGlogF<exy L

m<x p"Sx/m msx
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and

3
fim) _ H(+ﬂp—)+ )sexp( S f(p))
m psx P

4 <x D psxkz22 pk

P2

X
and partial summation in connection with

Y. 1/p =log log x+0(1).

PSX

ExaMpLE. Condition (5.5) is satisfied, if f(p*) < ¢, for all Apri.mes p and all
k=1 is assumed, or if f(p) <cy and f(p*) < A, A% for k = 2, where 4, <2
(see Wirsing [81], (28)).

6. Proof for (M,)

In this section we give a sketch of the proof of
(M,) If f € &, is multiplicative, q > 1, then f € %,

following Schwarz—Spilker [72]. #9269
Using Lemma 5.5 and Lemma 5.1 it is comparatively easy to prove

(6.1) If f € &, is multiplicative, then || f||, < co.
The main step is to show
(6.2) If f e &, is multiplicative, then f ¢ #*.
Using relationship arguments (Lemma 5.1} assertion (6.2) is reduced to
LeMMA 6.1, If f is strongly multiplicative, if the series
¥ L(E;);__l and Zlf (P -1

are convergent, and if |f(p)—1| < 1/4, then f€ 33".
Lemma 6.1 is proved by Rényi’s method: ) Approximate f in ||-||; by

(6.3)

1491 The proofl of Proposition 4, p. 333, is not correct as it stands. Moreover, for this proof
the isomorphy of % with a certain space L7(N*, u) was used; this isomorphy is based either
on Gelfand's theory of commutative Banach-algebras or on an explicit construction ol a
compactification /V* of N (N* is the “maximal ideal space” in Gelland’s theory) — see Schwarz-
Spilker [70]. To avoid these difficulties, we give a variation of the proof of (M,), simplilying the
argument leading from (6.1) and (6.2) to (M,).

‘S0 T have to thank Gabor Haldsz for drawing my attention to the problem of avoiding
Proposition 4 from Schwarz-Spilker [72].

51 Rényi [60], see also Schwarz-Spilker [71].
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the strongly multiplicative functions f¥, defined by

fp), if p<K,
¥ =
@ '{1, if p>K.
S 1s even mod H p, and so fF is in &.

p<k

We aim at the relation

(64) ,!im Lf~f&ll, = 0.
Define the strongly additive function
we(m)= ), logf(p)

pin,p>K

and use the inequality |e*—1| < |z] +]|z¢*| to obtain

A 1= TS O) i S5 T 1) w0 {1+1e™ ).

nsN Nn‘éN
Cauchy’s inequality gives
| 1 , 12
a8 < {ﬁ 2 IWx(n)I} (LR 2+ 112).
n<N

It is easy to show ©®? that the norms ||f||, and ||f¥||, are bounded
(uniformly in K). Abbreviating (1/N) ). [wi(n) by Qy .y, we obtain

n<N

2
p<N P

2 2
(6.5) Qi S 'ﬁ Z = -Q“,)N'i'Q?(.N-

n<N

W (p)
pgN P

Put w(p) = log f (p) = log r(p)+i3(p); by the Turdn— Kubilius inequality, ©*

we get

1
(6.5.1) Q< Y = (log?r(p+ 9 (p),
K<p<N
and
] 2 9(p)\*
(65.2) 9%«( y M) +( ) —(‘-’l).
k<p<Nn P K<psN D

(52} Use Lemma 5.5.
53 IT w is strongly additive, then

1
N

nsSN

2 lw(p)|?

) ;

psN P

w(n) — :U(—p)

pPEN

where C, is an absolute constant. For a simple proof see Elliott [18].
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It is not difficult to prove the convergence of the four series occurring in
(6.5.1) and (6.5.2), by use of the assumptions (6.3). Hence Q{')y and Q@) tend
to zero for K — oo, and Lemma 6.1 is proved.

In order to show that (6.1) and (6.2) imply (M,) we define the function

f* by
fin) = I re.

Pl s Sk
Then
(6.6) fiis nea;- S with respect to || ||,, if K is large,
and
(6.7) SYisin & for any K.

Obviously, (6.6) and (6.7) imply fe %°.
Concerning (6.6), calculate

I(x):= Y == (e T f@H-1~

nsx nsx Pln

MTSTED 3
The second factor is zero if there is no prime-power p*||n, for which
|f (p") > K. Using the inequality |o—1[9 < 2%|a/? (valid, if |a > 1), we obtain

<2 Y rme

nsx

where the condition (*) means that there exists a prime-power p* exactly
dividing n for which |f(p*)| > K. Since

e XY L (f s @b

nsx p k21 m<xp~
IF(5N > K pym
q kv 2
<oy U0,y Z'”‘i"}
plfiml>k P » k=22 P
|f(PM) > K

the convergence of S5(f) and S,(f) [for the definition of these series see
Section 1.4] implies that the curly bracket {...} is small, if K is large.

Since f¥ is in #' according to (6.2), assertion (6.7) will follow from
Lemma 5.4, if

(6.8) I/, <o  for some r>gq

is shown. By Lemma 5.5

Lrorsases) ¥ WLy oy pnser,

n€x lf(’;:)lié.!( p PEx, k22,|f(P%| <K
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The second (double-) sum in the exponent is obviously

<Y Y P MK T = K98, (f) <

p k22

(see Section 1.4). The convergence of S5(f) and of S (f) reduces the problem

of showing the convergence of the series Y pHiS(PI"-1) to the
P<x,|/(p) <K

assertion that
(6.9) Y P (If (P —1) is convergent.
y2<iflpi<ar ‘
Since (in 1/2<y < 3/2)
y—=1=ry-1)+0(y-1%,

the convergence of (6.9) follows from the convergence of S5(f) and of
(6.10) Y pHire-1}
lr(mI<3/2

the convergence of the series (6.10) is easily deduced from the assumption
feé&, (see Schwarz-Spilker [72], proof of Lemma 2.2).
Thus the proof of (M,) is complete.

7. Proof for (M,)

We are going to sketch a proof ®* for

(M) If f is multiplicative, f € 4% q 2 1 and M(f) # O, thenfe &, and (1.8) .
holds.

We begin with the special case g =2, assuming ' without loss of
generality that f is strongly multiplicative. The case g = 2 was treated by
Daboussi and Delange [11], and we follow their method with one short-cut,
namely:

To prove

1
Z; I/ ()~ 11* < oo,

we do not use the so-called “dual of the Turdn—Kubilius inequality” as
Elliott [17] and Daboussi-Delange did. Instead of this we calculate the
Ramanujan coefficients

M(e)  fp)-1 (1+|f(p)l“)
— — = 0
G=un P =eompn = p T2

54 Following Schwarz—Spilker [73].
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for primes p; this is rather easy. The Ramanujan sums c, being orthogonal,
Bessel's inequality gives

1 2 *|2 — 1 112
0 > P l|f||2?zp:|ap’ @ (p) gplf(p) 117+ 0(1).

Remark. In fact this method proves: If for multiplicative f the mean value
M(f) exists and is non-zero, and if ||f|l < 00, then feé, and (1.8) holds.

The idea for the general case g > 1 is to apply relationship arguments —
but how to begin with?

The assumption fe o, M(f)# 0 implies |f|€ o and M(f]) # 0, and
hence by Lemma 5.2

(7.1) [f17%e o2,

A short calculation gives
M(|f19?) # 0.

Applying the results obtained already for the special case g = 2 to | f]¥?,
we obtain the convergence of the series

(7.2.1) Y (IS ()9 ~1),

(7.22) Yp (S (e —1)3,
P

and

(7.2.3) > k);zp"‘If (M.

The convergence of (7.2.2) implies

1
(7.3) Y 1<oo and Y =< oo,

plral <12 P lf>32P
and therefore relationship arguments can be applied. Define (for a suitable
Py)

(7.4) fY) =970, f p>Po,k=1,12<|f(pl <3/2,

0, otherwise.

{f(P"), if p< Py,

Then ' =f +h, where ¥ n™!|h(n) < o0, and so fes#* and M(f) # 0. Our
aim “fe.o/*” need not be true due to the primes p < P,.

Denote by u? the characteristic function of the set of K-free integers.
This function is in #' (and even in ¢ for any r > 1, but this fact is not
needed here); this follows for example from Lemma 5.1 or [rom the results of
Section 6.
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Therefore
f~i=uf
is in &', according to a simple result from the theory of almost-periodic

functions. *% If K is chosen sufficiently large (this depends on P,), then
M(f~~)# 0. A short calculation °® gjves

IS~ < o0,

Therefore, by the results in the special case ||f~~||, < oo, we obtain the
convergence of

1
2 —lfp-1?

rlfpls32 P
and the convergence of

X

P
1/2<|5(p| €3/2

1
I—J(f(p)—l)’

using (7.2.2) and (7.2.1) and again (7.3) we obtain the convergence of

Zi(f(p)—l) and

p

1
Y  =If)
P
=32
and we are done.

8. Problems

(8.1) It is known that the Ramanujan expansion

[: 2}

(8.1) f(n)= 21 a,(f)c,(n)
is pointwise convergent, if f is an arithmetical function in %9, ¢ > 1, which is
additive or is multiplicative with mean value M (f) # 0. A. Hildebrand [36]
showed the convergence of (8.1) for any f in 2"

Can one give a “simple” summability method summing the series (8.1)
for “many” f in %%?

(8.2) Tt is easily possible to characterize #* by translation properties:
fe 2 if and only if for any ¢ > O there exists a ke N such that || f—fyll, <e¢,

where f,(n) =f(gcd. (k, n).

69 If ge ot is bounded and if fe .o where g= 1, then gfe .o See for example
Daboussi [8], [11.8, or Lemma 5.3,
56) See Lemma S.5.
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Is it possible to give a similar characterization for functions in %97

(8.3) Is it possible to characterize functions in %7 by some “structural”
or “number-theoretical” properties ?

(8.4) According to Gelfand’s theory of commutative Banach algebras
o > G(N*¥), 2* = €(N***). Is it possible to give a “reasonable”explicite
description of N** and N***, as it is possible for N*, where #* = € (N*)?

(8.5) What can be said on the factor spaces /%7, 2%/%#*?

(8.6) Give a quantitative version of the relationship theorem (Lemma
5.1).

(8.7) Try to deduce a relationship theorem for arithmetical functions,
which need not to be multiplicative, but are in some sense “close” to
multiplicative ones.

ExaMpLE. Denote by a, f the characteristic functions of the sets
A, B = N. Assume there is a direct decomposition N = A x B; this is equiv-
alent with 1 = a« . The functions a, § need not be multiplicative, however
there is some kind of multiplicative structure. Saffari [62] proved: If

() in“ﬁ(n) <w,

then M (a) exists.

An elegant proof of Saffari’s result was given by H. Daboussi [7]. J.
Spilker (unpublished) proved aec #', if (*) is true.

If @ were multiplicative, then the existence of M (x) would immediately
follow from the relationship theorem.

(8.8) If f is multiplicative in #* with mean value M(f) # 0, and if
infinitely many Ramanujan coefficients a,(f) are non-zero, then the Hankel
determinants

s fn)
# —get| /@ SO e f(n+1)
f) f+l) .. f(@2n-1)

are non-zero for infinitely many n. This follows from the result on non-
continuability in Section 4 in combination with a theorem of Kronecker
from complex function theory. 7

Is it possible to prove this result more directly?

") See for example Bieberbach [3], Sec. 6.2.
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Added in proof (Sept. 25, 1984): In the proof of the result of Schwarz and Spilker(72]
quoted on p. 469 a definitely incorrect result (Proposition 4) is used. However, for the proof of
the quoted result Proposition 4 is only needed for multiplicative functions, and for such
functions Proposition 4 is true. We refer to

W. Schwarz, A correction to “Remarks on Elllott's Theorem on Mean-Values of
Multiplicative Functions” (Durham 1979/1981) and Some remarks on almost-even number-
theoretical functions (Proceedings of the Conference at CRM Luminy, 1983, to appear),

where, among other things, Proposition 4 from [72] is proved for multiplicative functions.
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