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In a recent paper [4] the author treated the linear-quadratic control
problem: for generalized analytic functions, which was first studied by
C. and Cl. Simionescu (cf. [2]). In this paper we use the results of [4]
for deriving some simple bang-bang properties for the optimal controls
of such problems. The theorems obtained partly answer a question raised
by W. Wendland after the author’s lecture at the Conference on Complex
Analysis at Halle in October 1980.

1. Distributed control

Let @G he a bounded simply connected region in a complex z plane of class
C), 0 < %<1, with boundary I, i.e., for I" the representation i = t(s),
8 arc length, holds with derivative t’'(s) € C, (I"), the space of Holder conti-
nuous funetions on I' with exponent » (cf. [3], Chap. I, §2).

The complex state functions W(z) fulfil the differential equation

(1) OW|oZ+a(z)W +b()W =f(2)+B(2)V(2) in @

with complex coefficients a(z), b(z) € L,(G), p > 2, and f(z), #(z) € L (G),
¢ > 4/3, and the boundary condition

(2) Re[A(t)Y W] =g(t) on I

with a real-valued right-hand side ¢g(t) € L, (I'), 2 < y < o0, and a complex
coefficient (1) e O, (I'), 0 < u <1, satisfying the normality condition
A(t} #0 on I' and possessing a non-negative index n = ind4 = (1/2=)-
‘[argA(t)]r. The real-valued control functions V (2), z € @, lie in the admiss-
ible control set

(3) U = {VeL((): |¥(2)| <1 ae. in G},
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i.e., actually, V(z) e L (G). The state functions W(z) belong to L,(G)
and possess boundary values W(!) € L,(I'), where r = 24§ and &8 with
2 <0< oo is8 given by

a_min[q/(2—q),7] as 43<¢q¢<2,
- y as q=2.

VWe wish to minimize the cost functional
(4) J=rleW(t)—h(t)l'dh

where h(t) € Ly(I'} is a given complex function and

(5) QW () = (W (1) + (W (1)

with given complex functions g,(t), g,(t) € L,(I"), a = 28/(8—2).

For an optimal control function U (z) with the corresponding optimal
state function W(2) the following necessary and suffioient optimality con-
dition holds (cf. [4], formula (64)):

(6) [/ Re[B(2)Z(2)] [U(2) =V (2)]dwdy >0 YV eU.,

[

where the uniquely determined adjoint state function Z(z) is the solution
of the boundary value problem

(7) 0Z|0Z—a(2)Z—b(2)2 =0 in @,

(8) Re[A(1)t'(8)Z] = 2Im[A(t)o(t)] on T

with

(9) o(t) = ()71 +g: ()7 (1),

(10) n(t) = QW () —h(t) = ¢,()W (1) +G:(OW () —h(1).

The adjoint state function Z(z) belongs to L,(G@) and possesses boundary
values Z(t) € L,(I'), where ¢ = 2» and » = §/(6—1) with 1 < »< 2.

Remark. In the case where g(t) € Ly(I'), i.e,, y =2 with bounded
measurable functions ¢,(¢), ¥ = 1, 2, one also has 4 = 2 and » = 2 with
functions 7(t), a(t) € Ly(I').

From (6) one gets
(11) U(z) =signRe[f(2)Z(2)] if Re[f(2)Z(z)] # 0.
Therefore, one can obtain bang-bang assertions for the optimal control
function U(z) by studying the relation

(12) Re[f(2)Z(2)] =0
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for the generalized analytic function Z(2) in subregions @&, of G. A natural
assumption for the validity of a bang-bang prineiple is here not only the
known condition J., > 0, i.e., () 0 on a set of positive measure
on I', but also the additional condition that

(13) E(t) = Im[A(t)o(f)] # 0

on a set of positive measure on I'. Namely, if condition (13) is not ful-
filled, in virtue of (7) and (8) one has Z(z) = 0 in @ because of the assump-
tion #» = indA > 0. In particular, the situation K(t) =0 on I" occurs for
the trivial functional (4) with QW (t) = Re[A()W], where because of
the boundary condition (2) the value of the functional is wholly inde-
pendent of the control.

At first we deal with the important special case of constant coefficients
a(z) = a, b(2) = b in (1) with f(2) = ¢-{id, where ¢, d are real constants
with ¢?+d? > 0. For a = b = 0 with ¢ = 0 this case contains the control
problem in the theory of whirls considered by Cl. Simionescu [2].

THEOREM 1. In the control problem (1)}-(5) with constant coefficients
a(z) =a,b(2z) =b and B(2) =B # 0 let Jpy > 0. Let U(2) be an optimal
control function with the corresponding oplimal slate fumection W(z) for
which condition (13) is satisfied and, moreover,the function K (1) ¢n (13) ¢8 not
a multiple of the function '

(14) M) =Im[BA()¢' (s)]-exp{2Re([a—b-e* %1} on T.
Then for the corresponding adjoint state function Z (z) we have the relation
(15) Re[pZ(2)] #0 in G-@G,

with an exceptional subset G, of G containing no interior point. The optimal
conirol fumotion U(2) ¢8 bang-bang in G —G, and given by formula (11).

Furthermore, U (z) t8 the unique optimal control function of the problem
i” G—Gl'

Remark. With respect to the uniqueness of the optimal state function
W(z) see [4].

Proof. Suppose that, to the contrary, for the adjoint state function
Z(2) the relation Re[fZ(2)] = 0 holds in a subset G, of G containing an
interior point. Together with the differental equation (7) this yields

(16) Z(z) = Ci¢Bexp {2Re([a—5- -g] i)}

with an arbitrary real constant C, say in a disk of a sufficiently small
positive radius lying in the interior of G4. Owing to the unique continuation
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property of generalized analytic functions (cf. [3], Chap. ITI, § 4, Th, 3.5),
relation (16) holds in the whole region G. The assumptions (13) and (14)
now lead to a contradiction with the boundary condition (8) for Z(2)
on I'. Therefore, inequality (16) is proved.

To prove the uniqueness of U(z) we have to show that all optimal
control functions must be bang-bang in a set of type G—G@G,. Then the
uniqueness of U(z) follows in a well-known way from the fact that the
set of optimal control functions is convex. Now suppose that U,(2), W,(2)
is a pair of optimal control and state function, where U,(2) does not possecss
the bang-bang property, i.e., for U,(z), W,(z) the corresponding function
K,(t) of (13) is (identically zero or) a multiple of the function M (t) in
(14). But then the function K,(t) = (1/2)[K(t)+XK,(t)] belonging to the
(non bang-bang) optimal control funetion U,(2) = (1/2)[U(2)+ U,(?)]
with Wy(2) = (1/2)[W(2) +W,(z)] does not possess this property because
XK (t) does not have it. This means that, in view of the first part of the
theorem, U,(2) and hence U,(z) must in fact be bang-bang. This completes
the proof.

Remarks 1. In the case of real-valued functions A(¢) and QW (1), i.e.,

if gqq(t) =q1_(t), one has o(t) = 2¢,(t)n{t) with a real-valued function
7(t) and K(t) = 29(t)Im[A(¢)¢,(t)]. Then (13) takes the form

(13%) 7(t)-Im[A(t)g,(t)] # 0
on a set of positive measure on I'. In particular, for the important case
QW (t) = Im[A(t)W] condition (13) coincides with the condition Jp;, > 0.

2. A theorem analogous to Theorem 1 holds in the case of a piecewise
constant coefficient f(z) taking constant values g, 0 in subdomains
G, ¥k =1,...,m of a finite decomposition of @, where condition (14)
is satisfied for each corresponding function M, (1). Further, a corresponding
statement to that in Theorem 1 is true if we define the control function
V(z) on a subdomain G, of G only putting formally g(z) = 0 outside &,
in (1).

The following simple examples show the necessity of the additional
assumptions (13) and (14) and also give an application of the theorem.

ExAaMPLE 1. For the equation

(17) OW |9z = iV(2) in the unit disk @: |2| <1
with the boundary condition
(18) ReW =sins on TI: jt| =1, 1t =¢",

and the functional
(19) J = [ W) ds
I
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the functions U(z) = 1/2 and W(z) = (¢/2) (z—2) are obviously optimal
— we have ¢ = 7 = sins and K (t) = 0. Condition (13) is not fulfilled and
U(z) is not bang-bang.

ExAMPLE 2. For equation (17) with the boundary condition
(20) ReW =coss on I:jt|j=1, 1 =¢",

and functional (19) the functions U(z) =0 and W(z) = 2 are optimal.
Namely, ¢ =7 =1t and K(f) = —sins, and therefore Z(z) =2 and
Re[fZ(z)] =0 in G so that the optimality condition (6) is satisfied.
Condition (13) is fulfilled, but K (¢) is a multiple of M (t) = sins and U (2)
i8 not bang-bang.

ExampLE 3. For equation (17) with the boundary condition

(21) ReW = —sins on I': i =1, 1t =¢",
and the functional
(22) J = f |W (1) —2¢f*ds
I
the functions U(z) = 1 and W (2) = ¢Z are optimal. Namely, 0 = 5 = —il

and K (i) = coss, and therefore Z(2) = —2¢ and Re[fZ(2)] =2 in G
so that (6) is satisfied. Further, M (¢) = sins and Theorem 1 applies.
U(z) is bang-bang and is the unique optimal control funetion.

We now turn to the general case of nmon-constant coefficients a(z),
b(z) and B(z) = 0 a.e. in G. A solution Z(z) of equation (7) satisfying rela-
tion (12) in a subregion @G, of @ is also a solution of the equation

(23) oZ |6z — [a(z)— LiC) F(z_)]z =0 in @,

B(2)

which by means of the well-known Theodorescu formula (cf. [3], Chap.
I1I, § 4, (4.6)) has the general solution

(24) Z(2) = A(2)9(2)
with

S S 3 1 B ’
@) AG) —exp( = £ | g_z["‘" Wbm] dEdn)

and an arbitrary holomorphic function @(z). Therefore, relation (12) for
Z(z) is equivalent to the relation

(26) Re[y(2)P(2)] =0 in G, p(2) = A(2)f(2),

* Obviously, in (25) the integral may bo extended over the whole region G instead
of G,. '
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for the holomorphic function @(z). A solution @ of (26), and therefore
a solution Z of (12) are uniquely determined apart from a real constant
factor becanse from Re[y(2)P,(z)] =0 in @, for ¥ =1, 2 it follows that
the meromorphic function @, (2)/P,(2) in @, must be a real-valued function.

In general the solution Z(2z) of relation (12) depends on the subregion
G, under consideration and it seems difficult to obtain a general expre-
ssion for the solution of (12) according to ¢,. We therefore confine oursel-
ves to the following special case.

AssuMPTION D). The function y(z) = 4 (2)A(z) with 4 (z) given by (25)
allows a factorization of the form y(z) = y,(2)'y5(z), where the function

73(?)
(27) ?) =
?(2) 71(2)
is a (not neceéajrily regular) analytic function in G.

Then, of course, the (uniquely determined) solution @ of (26) for all
subregions &, of @ is simply &(2z) = Cip(z) and correspondingly the solu-
tion Z of (12) has the form
(28) Z(2) = Cid(2)p(2)

with an arbitrary real constant C.
In the same way as Theorem 1 we now get

- THEOREM 2. In the control problem (1)—(5), where a(z), b(z) and B(2)
# 0 tn G fulfil Assumption D, let J, > 0. Let U(2) be an optimal control
function with a corresponding optimal state function W (2) for which condition
(13) 48 satisfied.
Moreover, if the analytic function ¢(z) in (27) ¢8 holomorphic in G with
¢(2) € L,(G) and boundary values @(t) € L,(I'), the function K(t) in (13)
shall not be a multiple of the function

(29) M(t) =TIm[A(1)t' (8) A (t)p(¥)]

on I'. Then for the corresponding adjoint state function Z(z) we have relation
(15). U(z) 8 given by formula (11) and it is the unique optimal conirol
Junction of the problem.

Remarks. 1. If ¢(2) is not holomorphic in ¢ with ¢(2) € L,(@) and
@(t) € L,(I'), in particular, if ¢(z) has poles in G or essential singularities
in G, assumption (13) alone is sufficient for the validity of the assertion
of Theorem 2.

2. In the case of Theorem 1 we have

(30) A(z) = exp ([a— %E] 2) A, (2)
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with a holomorphic function 4,(z) in @&, which is continuous and different
from zero in @. Therefore, we may put

91(#) = A4(2),  pa(r) = fexp ([a—%ﬁ] 5)
and obtain (14).

3. Particular classes of functions y(2) satisfying Assumption D are

meromorphic functions, functions with meromorphic y(z), and the products
of such functions. Some simple concrete examples are given by the functions

(31) n(2) = 2 v (2) = 27, 2> 0;

(32) yi(2) =2, y(@) = ()™,  neN;
(33) 71(2) = €2, a2(2) = &2, By, Bz € C;
1 1
(34) y1(2) = eu(i‘ul ”2)7 v {2) = 32;“"11-“2)1 By g € R;

respectively.

2. Boundary control

Let thé domain @ be as before. The state functions W (2) now satisfy the
differential equation

(35) OW|Z+a(2)W+b(z)W =f(z) in @

with complex coefficients a(2), b(2) € L,(#), p > 2, and f(2) € L(&),
¢ > 4/3, and the boundary condition

(36) Re[A())W] =g(@)+6(t)o(t) on I’

with real-valued functions g(f), 4(?) € L,(I'}, 2 < y < oo, and a complex
coefficient A(f) € C,(I"), 0 < u <1, where A(t) # 0 on I"and » = ind4 > 0.
The (rcal-valued) control functions v(?), t € I', arc taken from the control
set

(37 Usa = {v e Ly(I'): |v(t)] <1 a.e. on I'},

i.e., actually, v(t) € L,(I"). Again the state functions W(z) belong to L,(G)
and possess boundary values W(t) € L,(I'). The cost functional J is the
same as that given above by (4) with (5).

The necessary and sufficient optimality condition for an optimal control
function «(t) with the corresponding optimal state function W(z) now
reads (cf. [4], formula (65)):

(38) [ oL (o) —u(t)lde >0 Voe Uy,
r
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where

(39) f) =

1 , —
T (7 RO 0 Z(0] +Reli( oG]

and Z(2) is again the solution of the adjoint boundary value problem (7},
(8) with (9), (10).
From (38) one obtains the expression

(40) u(t) = —sign[o(1)E(r)] if  8(2)C(t) # O

for the optimal control function %(¢). The form of the function {(t) in (39)
suggests the following simple bang-bang statement.

THEOREM 3. If for an optimal control function u(t) with the corresponding
opltmal state function W (z) the relations

(41) Im[i(t)o(t)] =0 ae. on I
and
(42) Re[A(t)e(t)] #0 on y < I' with mesy > 0

are fulfilled, then [(t) # 0 a.e. on y and, if (1) # 0 on yp, expression (40)
holds for u(t) on y. In particular, for y = I' the optimal control function
u(t) t8 bang-bang.

Proof. Assumption (41) implies Z(z) = 0 in @ for the solution of (7),
(8) and so in virtue of assumption (42) the funetion {(?) in (39) is different
from zero on 7.

The following theorem yields a weak bang-bang property of the optimal
control function.

THEOREM 4. If for an oplimal control function u(t) with the corresponding
optimal state funotion W (z) the function

(43) p(t) =it'(8)e(t) on T

does not represent the limit function of a (regular) solution Z(z) of equation
(7) tn G, then we have {(t) 7 0 on a subset y of I" with positive measure and,
if further 3(t) # 0 a.e. on I', expression (40) holds for u(t) on y.

Proof. If {(t) = 0 a.e. on I, the relation
Im[A(t)¥(8)Z(1)] = —2Re[A(t)o()] on I

follows, which together with the boundary condition (8) yields Z(1)
= —2¢t'(8)a(t) on I, i.c., function (43) has to be the limit value of a so0l-
ution Z(z) of equation (7) in G.
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Remark. A necessary and sufficient condition for a (Holder conti-
nuous) function y(t) on I" to be the limit value of a generalized analytic
function Z(2) in @ is given in [3], Chap. III, § 14, 14.2.

ExaAmpPLE 4. For the equation
(44) 0W/[0Z =0 in the unit disk G: |2/ < 1
with the boundary condition
(45) ReW =o(t) on TI: |l =1, 1 =¢",
and the funectional

(46) J= [|W({)—1ds
r

the functions #(!) =0 with W(z) = 0 are optimal. Namely, we have
g =7 = —}I; therefore Z(z) =2 in G and {(t) =0 on I so that the
optimality condition (38) is fulfilled, The function y(t) = —1 on I' is
the limit value of the holomorphic function Z,(2) = —1 in G and u(!)
does not possess the weak bang-bang property.

We now deal with the situation where the boundary I" consists of
two disjoint measurable parts I', and I';, say unions of finitely many arcs.
The control functions »(?) are defined on I, i.c.,

(37" U = (v € L,(Iy): |v(t){ <1 a.e. on I}

and 4(t) =0 on I, in (36). The cost functional is extended over I'; only,
i.e.,

(4 I = [I1QW(®)—h(t)ds,

T

and so o(t) = 0 on I,. The optimality condition (38) then takes the form

(38") foim et —ut)lds=>0 VoeUy,
Iy
with
1
(39" @)y = AP Im[A(t)¢'(8)Z()] on I,

where in the boundary condition (8) for the adjoint state function Z(z)
the right-hand side vanishes on 1.
The following strong bang-bang principle holds:

THEOBEM b. In the control problem (35), (36), (37'), (4') with 8(1) =0
on I; and 8(t) = 0 a.e. on I'| let Jpy, > 0. Let u(t) be an opiimal conirol
function with the corresponding optimal state funciton W (z) for which the
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condition
(13" E(t) = Im[A(t)o(t)] %0

on a set of positive measure on I'; i8 fulfilled. -
Then we have [(t) % 0 a.e. on Iy and the optimal control funclion w(t)
t8 bang-bang, given by (40), and uniquely determined.

Proof. If {(t) = 0 on a subset y, of I', with positive measure, by (39')
and the boundary condition (8) on I, this implies Z(t) = 0 on y, for the
boundary values of Z(z). The well-known Vekua-Privalov theorem for
generalized analytic functions (cf. [3], Chap. III, §4, Th, 3.6 and [1),
Chap. X, §2, Th. 1) yields Z(2) = 0 in G and the boundary condition (8)
on I, contradicts assumption (13’). The uniqueness of the optimal control
funetion %(f) can be proved as in Theorem 1.

ExaAMPLE §. We consider the homogeneous equation (35) with g(Z) = 0
on a subset y, of I'y with positive measure and either g(t) + 0 on a subset
of positive measure on I, or |g(t)/d(1)| > 1 on a subset of positive measure
on I'; in the boundary condition (36). The cost functional is

(47) J = [[Im[a(t)W]Pds.
Te

Obviously, the corresponding optimal state function W(z) cannot vanish
identically in @. Therefore, taking into account the boundary condition

(36) on I',, one obtains n(t) = Im [A(_t)W] # 0 a.e. on y,. Further, we;have
¢(t) = tA(t)n(t) for the functional (47). Hence, assumption (13’) is satisfied
and Theorem 5 applies.
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