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1

In the present work we shall investigate the function

(1.1) A(x):=y(x)—x:= ) logp—x.

pPh<x

This can be expressed by the non-trivial zeros ¢ of the Riemann zeta
function as follows:

x®
(1.2) A(x)=— Y —+0(log*x)
Iyl €x
where we shall always write ¢ = f+iy. Phragmén already proved in the 19th
century that

(1.3) A(x) = Q(x"°7%

if {(go) = 0, but this result was completely ineffective. The problem of finding
explicit Q-type theorems was formulated by Littlewood in 1937 [6].
Somewhat more generally one can raise the following problems. Let us
suppose {(gg) =0 (By = 1/2, 70> 0) and let Y > c(g,), where c(go) is an
effective constant depending on go. The question is for which functions
£, go) > x'° % and A(Y) we can assert:

ProsLEM 1. |4 (x)] = f; (x, go) for some xe[Y, A(Y)];

ProBLEM 2. max |4 (x) = /3 (Y, 0o);

xsY

Y
1
ProBLEM 3. D(Y):=?f.|A(x)|dx>f3(Y, 00)-
1

[411]
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Problems 1 and 2 were solved in 1950 by Turidn [8], who made use of
his power sum method. He showed (in a slightly modified formulation)

log Y
(1.4) max |4 (x)| = Y?° exp(—c1 E_g_

log log log Y
08 7 tog loglog Y )

for Y > ¢, exp(exp (Joof), where ¢, > 0 always denotes an explicitly calculable
constant. His lower bound was proved by S. Knapowski for D(Y) too. (The
result is implicitly contained in [4].)

2
The present author has succeeded in solving Problem 1 with the function
xﬂo
(2'1) fl (xi Qo> E) =(1—£)_
|@ol

[7], which gives the expected oscillation “caused by a particulgr_z;ero 00" It
has even been shown that for Y >c(g, &), I =LY, Y#19® “€0y 54
leol > 4006~

4(x)

(2.2) m {<1<max—2%
. in-—————« — —.
x&l fl (x Qo 8) xel fl ( 2o, 5)

If we now investigate only the problem of lower estimation of |4(x)|, a
slight improvement and a more elegant formulation of the above result are
given by

THEOREM 1. For Y > ¢3y3° there exists an
Glogyg+ 60

(2.3) xe[Y, Y Ji=1I*
such that
Bo
(2.4) 4(x)| > .
40 >y

It 1s a slight imperfection of the above result that the lower estimation
(1—¢)x"%g,| is reached only for |gg| > ce” !/, an assumption of type

Y > ¢(0o, €) being insufficient for this purpose. But with a slight additional
effort we can show also

THEOREM 1’. For Y > max (cd,(yo/e)l exp ((cs/eyo)?)) there exists an xe I*
(see (2.3)) such that

Bg

(2.5) 4() > (1—s) l" :
2o
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We are not able to prove as good estimations for Problems 2 and 3. But a
quite satisfactory lower bound is furnished by the following theorem, which
even gives a good localization for large values of A(x).

THEOREM 2. If g, is a zeta-zero with multiplicity v, then for Y > 7ot

F =[Y/100 log Y), Y] we have

Y7 (™ (go)

1
26 A(x) == —Ce.
(26) max |4 () =Tl

xef Y

JIA(x)l dx >

Xef
In particular,

Y7011 (g,
2.7 max [4(x)| = D(Y) > ————— —c,.
@7) max |4 (5] > D(Y) > g s —co
If we take go =1/2+i-14.13... (and consider the value of c¢¢), this
implies
CoroLLArY 1. For Y > 2 we have

(2.8) max |4(x)| > D(Y) > ./Y/22 000.

xXY

Any improvement of this inequality by a factor greater than 22000
should already imply the falsity of the Riemann hypothesis, since Cramér [3]
proved in 1922 that on the Riemann hypothesis

(2.9) D(Y) < /Y (Y>c).
If the Riemann hypothesis is true, then (1.2) gives trivially
(2.10) A(x) = 0(/x log?x)

but for estimates from below we know only that

2.11) A(x) = 2(/x log log log x),

which was proved by Littlewood [5] in 1914. According to a conjecture of
Montgomery

m |4 (x),
m
=== \/x (log log log x)

which would fill the gap between (2.10) and (2.11).
Now for the average value of |4(x)] we know the precise order of
magnitude, if we assume the Riemann hypothesis.

(2.12)

T T’

COROLLARY 2. For Y > ¢, we have on the Riemann hypothesis

(2.13) JY/22000 < D(Y) < /Y.
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Let
(2.14) @ = sup Rep

i(@)=0

and with the terminology of Ingham we shall say that 6 is attained if there is
a zeta zero g, on the line ¢ =0, ie,

(2.15) Qo =6+i'y0.
CoroLLARY 3. If 6 is attained, then
(2.16) ¢ (o) Y8 < D(Y) < ¢c,(0) YO.

The lower bound is naturally a special case of Theorem 1. The upper
bound follows in the case of 6§ = 1/2 from the theorem of Cramér (see (2.9)),
while for 0@ > 1/2 we have by density theorems even

(2.17) |4 (x)| < ¢,(0) x°
since
(2.18) v Lo

f=(8+1/2)/2 ol

Since the usual way of obtaining Q-type theorems or lower estimations
for D(Y) is through some weighted mean value estimates of 4 (x), one cannot
expect lower estimations, which should hold for a positive proportion of all
x's. Therelore it is surprising that, without assuming anything on the linear
independence or dependence of the imaginary parts of the zeta-zeros, only
with a relatively natural assumption, one can show the following

CoroLLARY 4. If 0 is attained, then

1
(2.19) 7 [t S V1400 > e3 (o) Y% > ¢, (0o)-

If & > 1/2, this is a trivial consequence of (2.16) and (2.17); if 0 = 1/2,
then besides Corollary 1 we need the result of Cramér in the original form

Y
(2.20) %faz(x)dx = 0(Y)
1

(of which (2.9) is only a consequence).

Further it is interesting to note that by (2.16) and (2.17) one can
formulate

CoroLLARY 5. If 0 is attained and 6 > 1/2, then
(2.21) max |4 (x)| < ¢s(go) D(Y).

xgY
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Finally we note that it is possible to prove a relatively good lower
bound for D(Y) without any factor of |{™ (g,)| type. Namely, for ¥ > ¢ the
present author has shown

y

J 14 (x)|dx > Y?° exp (—c, log? )

=

(2.22) D(Y)>
Yexp(—csluggY)
where log, Y = log log Y. This result has important applications. Making use

of (2.22) the author has shown that m(x)—1i x changes sign in every interval
of the form

(2.23) [Yexp(—colog3Y). Y] for Y >V,
where Y; is an ineffective constant. Further, the author has proved with the

aid of (2.22) that the number of sign changes of n(x)—1li x in the interval
[2, Y] is

(2.24) V,(Y)>c

We sketch the proof of Theorem 1. A crucial role is played by the
continuous form of the power sum theorem of Cassels [2], according to
which for arbitrary complex numbers «,, o5, ..., %, and d >0

IZE“‘l

(3.1) max ‘“ﬁl_/l
d<t<€(2n-1)d e |

Let
(3.2) [108 Y 6(log yo;ZIO) log Y:l’
|4 (x)|
(3.3) A= max S,
JOagygg22a | X
(|Qo+3|>

s [od

(34) H():=5 () +7 = fA(x) = () dx
1
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It is easy to show that

1
(3.5) U:i=— JH(S+QO)EGS2+15anS
2mi

(3)

o

1 A(x) 15a—log x (15a—Ilog x)*
i e ()

1

Using (3.3) and 4(x) =0 (x) one can obtain from the right-hand side of
(3.5)
(3.6) Ul < A+ 0(e™Bgy)).

On the other hand moving the path of integration on the left-hand side
of (3.5) onto the line ¢ = —2 and using Jensen’s inequality, one can show
that

- 2 - a -
(3.7) U - Z el(ﬂ eg)“t15(e—egl} +0(e (5/4)a lOB |QO|)'

[y—vgl €3

Since a result of Backlund [1] implies

(3.8) Y 1 <{(log v+ 10),

l[y—ypl =3

estimating the power sum in (3.7) by Cassels’ theorem, one can derive (2.3)
and (2.4) by easy calculation.

4

We shall sketch the proof of the following weakened form of Theorem 2:

THEOREM 2'. If o, is a simple zeta-zero, then

Y

@.1) jm () dx > ﬁ%@l‘ y'te Lo Y4,
J |@ol
Let
(4.2) A=1log Y,
(4.3) G(s)i=~(s—2L(s—1)—(s-1{(s—-1),

(4.4) H(s):

G(s) (4
T X

TEoD6-2I6=D ) = &

1
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(s—2}{(s—1)
4.5 h{s):=
) LT p e ik
(4.6) w(u)=—1—, Je"‘h(s)ds.
2mi
3)

Our starting formula in this case is

4.7 U* .= —2% Jh(s)H(s) e*ds = jd (x)w(A—log x)dx.
(3) 1

From the left-hand side of (4.7) we obtain

1
(48) U* = —{'(go) (1 —?)(eo+ 24 010 (),
0
On the other hand, one can easily show
4.9) wu) <cq for uz0,
(4.10) wu)=0 for u<0.

Now (4.7)-(4.10) give Theorem 2'.
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