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Richert’s. paper [14] on the weighted linear sieve has been deservedly
popular since its publication; it provided a readily applicable general result
of the type we describe below, which many subsequent writers (including the
present author: see [4], [5], for example) were painlessly able to use. At the
same time' it was clear, then as now, that the field was one in which much
work remained to be done.

Approximately one decade later, a number of papers appeared contain-
ing devices which can be viewed as improvements of the weighting device of
Richert. It is our purpose in this article to discuss the relationships between
three of these: the continuous form of the weighting device of Buchstab (for
which see [1], [2]) that has been described by Laborde [13], the weighting
device described in a paper [7] by Halberstam, Heath-Brown and Richert,
and the author’s own device introduced in [6]} (see also the article by
Halberstam and Richert in these Proceedings) which, it appears, is the most
powerful of the three. We hope also to make it clear that this device gives
results which are far from what may reasonably be conjectured to be best
possible in this subject.

Let o = o/(X) be a set of positive integers, depending on a real
parameter X which, throughout, is to be supposed to be as large as may be
required. Denote by

o, = {ae o a'=0modd}

the set of members of o that are divisible by d. We suppose that the number
of these members of & satisfies the “special linear sieve” axiom

X
(1) | #dl =—+0(1),

[143]
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although everything in this article is relevant to the general linear case where
we write

X
2 |M.:I=ge(d)+R(X, d),
for a suitable multiplicative function g satisfying
o(p)logp z
3 —-L< ————log— < K.
©) wév;.‘q p—e(p) W

The axiom (1) is satisfied in the example of the integers in an interval,
= Y-X<n<Y}

about which, however, there is a great deal more than (1) and its consequences
to be said: cf. (7], [10] for example. '

In this context we may proceed as follows. Let A(d) be a function
defined when d < D and form

(4) m(a) = )’ A{d),

dla

where we may suppose |A(d)] <1 without loss of generality. Then in the
restricted context of (1) we have

A
(5) Y m@=X Y —fi-d—)+0(1)).
aed dsD
In the methods we shall describe the choice of A will satisfy

A(d) 1
3 .
a<p d log D

Then the coefficient of X in (5) retains its relevance if, for example,
D = X/log*X,

in the sense that we find in particular that some @ in s has m(a) > 0, a
statement that can be put on a more quantitative basis. Needless to say we
are only interested in constructions where the property m(a) > 0 is itself of
some interesting arithmetical significance.

Define

1 if pla=p>z (p prime),
0 otherwise.

®) (0, 2) =

In the sieve method of Viggo Brun [3] and his successors the construction is
arranged so that (in the “lower bound” aspect of the method) we have

m(a) > 0= S5(a, z) > 0,
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provided the parameter z is chosen suitably. Indeed we have the following
result.

THE LiNEAR SIEVE THEOREM. Under the hypothesis (1) we have

o] 1 (-5} ovo{cty) o

p<D1[s

Jor a certain ¢ >0 and a function f whose most important property is

(7 . f®>0 if s>2.

The function f is actually defined via the system

d
SO =FE-D (>2; TsF@}=f6=1) (> 1,

F(s)=1+0(7%; f(s)=14+0("9,
which can be shown to have a solution satisfying
sf(s) = 2e"log(s~1) (<s<x4),
sF(s)=2¢" (1 <s5<3),

y being Euler’s constant.

For a proof of the linear sieve theorem, by what is the case w(p) = 0 of
the more general weighted sieve that we discuss below, the reader may
consult [8], where the theorem is obtained with the constant ¢ =1/3.
Alternatively the procedure described in [9] (which would differ only in its
treatment of error terms) may be adapted to the present context to yield the
result with ¢ = 1/5, or slightly larger. We should perhaps remark that the
first published proof of the theorem (by a method that yields slightly large O-
terms) was by Jurkat and Richert in [11].

For the remainder of this article we shall refer to a number g (the
“degree”) with the property
(8) ac of =a < DS,

Reading between the lines of Brun's famous paper [3] gives the impres-
sion that at one stage he had hopes of discovering the existence of primes in
certain interesting contexts (Goldbach’s problem) by his sieve method. How-

ever, it now appears clear that in general one cannot expect to do better,
by this approach, than as follows. Choose an integer R = 2 and suppose

g <(R+1)/2.

In the linear sieve theorem choose s =2+¢ (¢ > 0), so that f(s) > 0. Thus
some a in .« has S(a, z) >0, if X (and hence D) is large enough. Then we

10 — Banach Center, 1. 17



146 G. GREAVES

conclude
9) a€ Pp,

in the sense that the number of distinct prime factors does not exceed R.
This is because the product of R+1 (or more) primes all exceeding D'/
= DV2*9) would exceed D¢ if ¢ is sufficiently small.

In this situation it appears we should change our objective, and ask not
that the size of the prime factors of some a should be«large but that the
number of these prime factors should be small. Kuhn [12] was the first to
modify the sieve method with this revised objective in mind; his procedure
would be that obtained by replacing w(p) in (15) by an appropriate constant.
Since the appearance of the paper of Richert [14] (or of those [1], [2] of
Buchstab) we have been able to conclude that (9) holds for some a in &
satisfying (1), (8) provided

(10) g < R—8z = Ag

for certain numbers 8 in the range 0 < 6; < 1/3; the aim is to draw such
conclusions for numbers Jy as small as possible. The -author’s method
succeeds whenever dp < 1/8, and for somewhat smaller §; for small values of
R. It is generally conjectured that such results should hold for any dgz = 0,
but a proof of this conjecture does not, at the time of writing, appear to be
an immediate prospect. Such a proof, if the conjecture is correct, would
correspond to the result (7) on the linear sieve without weights in -that
examples due to Selberg would indicate that the result proved would be best
possible, in the general situation described by (2), (3), (8) and the condition

S IR(X, d)| < X/log?X.

d&D

One might attempt to attack the “65 = 0” conjecture by modifying the
sieve so as to show that some a, if it has k prime factors less than D, has
them satisfying

(11) 4192 > D1

Richert’s procedure in [14] was as follows. Choose reals U, V satisfying

(12) V<U: 12<U<1, V+RU3>y

(for success is not possible with, ¥V =0, U = 1), and specify that w will satisfy

1
13) W) =U—-V, osw(p)sgﬁﬂ—v if D'<p<DY,
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For convenience we will also define

(14) wp)=Ww({1) if p>DY

Then take

(15) m@=Wwl)—- Y {(W(-wp)},
pysp;aSDU

‘so that, introducing extra negative summands, we have

log p
<U—-V- U-— <U1— ,
m(a) ;,, ( logD) U {1 —w(a)+R}

p>0¥

where we have used (8), (12). Thus if m(a) > 0 we have w(a) < R+1 whencé,
the number w(a) of prime factors of a being an integer, we have

w(a) <R when m(a)>0.

This function m(a) is not suitable for direct application of (5) since we would
have

Ald)

—— ~ ~UloglogD;
i<p 4

Richert applies his device only to those a having no prime factors smaller
than DT for a suitably chosen T >0, using the linear sieve theorem to
complete the estimations.
"~ This procedure (and, let it be said at once, all the others considered in
this article) has the undesirable feature that some of the numbers a in the
class Py that we are seeking are not counted; namely those having one of
their R prime factors smaller than DT. One may speculate that the best-
possible conjecture “dg = 0” is unlikely to be proved by a method that shares
this defect to any significant extent; see the considerations at the end of this
article.

We proceed now to a unified discussion, in so far as it is possible, of the
three weighted sieves described in [6], [7], [13]. The quantity S(a, z) defined
in (6) is expressible by M&bius’s formula

S(a,zy= ), uld),

dl(a, P(z))

where

Piz)=[1»r

p<z

denotes the product of all primes strictly less than z. Hence we obtain the
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“Buchstab” identity
Sa,2)=1-3 3 uld),

p <z dil(a.P(p))

where the rdle of p is that of the greatest prime factor of d = pd,. Thus we
obtain

{16) S(a, y)—S(@,2)= Y, S(Ep,p) if y<z.
ySp<z

The procedure of Brun, like that below, is based upon a suitable iterated
use of this identity. Thinking first only of the case k =1 in (11) we define

(17) A = (a, P(D))
and
A
T(a, D) = W(1)S(A, D)+ } W(P)S(—, D),

Plaip<D p
where W (1) > 0 and w(p) = 0 are to be specified. Whatever g < R we have in
(8) it is the case that
(19) T(a, D) > 0=>ae Py,

so that T(a, D) is certainly one suitable object to study. By successive
applications of (16) we have

T(a, D)
A A
=WL)S4, - Y {W(l)—W(p)}S(—,p)— 2 w(p)S(~—,,p’),

p<D P p<p' <D pp
the case p = p’ not occurring because A is squarefrec. Hence we obtain

T(a, D) =E1+Z“,
where

Iy =W(Ql)- 3 {W(l)—W(m)}S(gl, 1),

p1 <D 1

Ly = Z {W(l)—W(PL)}S( A :Pz)— Z W(Pz)S( 4 P1)-

p2<py <D P1pP2 pa<py <D P1 p2,
Applying (16) to the last terms only if p3p, < D, we now have
T(a. D) = Zl +£2+Z¥‘+‘f] _2—2
where

(20) = ) fW(l)-—W(Pl)—W(pz)}S( A ,Pz),
D1 D3

py<py <D

ngm £D
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A
;P)= Z W(Pa)S( :pZ)a

2y z3= )} W(Pz)S(

pa<p<py; <D P1PaD P3 <P32<p P1P2P3
pgp_lSD pgpISD
5, = W 4
1= Z {W(l)—W(Pl)}S y P2 ),

p2<py <D 1P2
D<pgp1

_ A

2y = W@)S( .p)
2 p2<§l <D z pi pZ !

D<p3p1

The condition p3 p, < D and its negation are borrowed from the “combina-

torial” proof (i.e. the proof by the development of Brun’s method; see e.g.
[8]) of the linear sieve theorem.

As is usual in this type of argument, we will dismiss £, with the remark
I, >0;

such treatment cannot, however, be given to the term —Z,. Accordingly we
write

T*(aa D) =Zl +22+£;'s

and argue differently in the two cases below. Case 1 is when £, = 0 and we
have

(22) T(a, D) > T*(a, D).

Case 2 is when £, # 0. Then 03 Q, > D, where Q; < Q, are the two,smallest
prime factors of . Then the sums defining X, and X¥ are empty and we have

T*(a, D) = I,.

Accordingly we specify W(1), w(p) to be as in (13). Then X is precisely the
expression (15), so that we have in case 2 that

(23) T*(a, D) >0=aceP;g.

This conclusion also holds in case 1 because of (19) and (22).

This argument, which is contained in the content of §§ 2, 3 of [5], has been
arranged to facilitate the comparison of the sieves that we wish to discuss. We
will choose U, V so that U+ V < 1; then X, > 0 because p, p, £ D guarantees

W({1)—w(p)—w(p) 2 U+V—-1.
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We thus see that our inequality (23) improves on that used in [14] to the
extent of the additional contribution derived from %, and X%.
The somewhat weaker remark

Zl+zz >0=>aEPR

can be seen to be equivalent to the continuous form of Buchstab’s weights
described by Laborde [13]. In the first place no benefit would be derived by
including contributions from p,, p, satisfying p3 p, > D because the procedu-
re described by Laborde is equivalent to estimating terms involving
S(A/(py py), ;) from below using the linear sieve theorem, so that the
estimates are in terms of

f log \D/(p, p3)}
log p, ’

which, by (7), is equal to zero when p3p, > D. Thus X, + X, is equivalent, for
this purpose, to 2+ X%, where

A
23 = ) {W(l)—W(pl)—W(pz)}S( , Pz)-
pa<py <D P1D2
w(py) +w(p2) SW(1)

In the second place Z,+2% can be rewritten. as

I+Z =W~ Y i(p),
.pla
where

“m={wurw@) it p=0.

min {W (1)~ w(p), w(Qy)}  otherwise.

Apart from more straightforward changes of notation and scale this is the
expression considered by Laborde [13].

An expression equivalent to X% also occurs in the paper [7] by
Halberstam, Heath-Brown and Richert (in their expression (2.19), along with
other terms which, as they write, “may safely be omitted”). Their paper thus
contains what is essentially a prool ol (23) somewhat different in aspect from
the one described in this article.

The inequality (23) does not yet constitute a sieve inequality, because we
have not yet shown how to estimate 2% from below by an expression of the
type (4). Halberstam, Heath-Brown and Richert estimate X, directly from
below (in their Proposition 3) using the linear sieve theorem, so that their
estimate is in terms of

f (log {D/(p1 P2 Ps)})
log p, ’
which, by (7), is non-zero only when p, p3p; < D.
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The author’s procedure outlined below takes non-trivial account of the
contribution to Z, from the somewhat larger set of p, p, p; satisfying the
weaker inequality p3p, < D. Accordingly we record at once the fact that

Zg ?f 235

where

A
24) p)) w(p )S( , D )
( ’ ra <pzz*:<p1 <D 3 P1P2Ps 2

pgm &D

We deal with X, by applying the “Buchstab” identity (16) to it in such a way
that the expressions obtained interact, not with X, itself, but (and herein lies
the essence of the author’s approach) with the expressions obtained when X,
is estimated from below by the method used in the proof [8] of the linear
sieve theorem. We obtain from (20), (24)

2 a
Z,+Z= ) {wi- Z W(Pi)}S< , 1)'7’231,
pz<py <D i=1 D1 P2
P%PlsD
where
3 a
Ly =— Z {W(l)— E W(Pi)}S( ’ Pa)—
Py <pz<p; <D i=1 D1 D2 P
pgplsD
¥ ( )S( e p )
- WiPs —, P3
P4 <P3<P2<pi P1P2P3pPa
nglﬁD
3 a _
== > wiy- % W(P.-)}S( . l)+24+24,
p3<py<py<D =1 D1 D3 P3
p3p1 <D
with
> wip)}S(—
I, = w- ), wip) S( ,p4)+
¢ p4<p3<§3<p1<nl i=1 l P1DP2PaPa
P%P]gD

D<P2P3pzp1

+ Y W(Ps)S(

,P4)a

pg.ﬂl <D

D <p3parapi
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while X, is the similar expression obtained when the condition D
< paps P, p; is replaced by its negation pl ps p; p, < D. We will cast £, out
with the remark

f4>05

and deal with 2, in the same style as we did with 2,+2;. In this
construction, the terms involving the expressions

s(A ,1),5( A 1)
P1D2 Pi P2 Da

(which simply count when p, p,|A4, p; p2PalA, ...) will contribute to the
expression (4).

If we proceed appropriately in this fashion we will arrive at the
construction described in [6]. We should mention the fact that requirements
such as

4
Pa<Ps<Py<p;, PP < D=>i2‘,1 w(p) < W(1)

which is needed to infer £, > O, follow from (13) only in the case when
U+3V = 1; the further conditions to be imposed on w in the contrary case
are described in [6].

In conclusion, we remark that it is the author’s opinion that the
weakness of this argument lies in its neglect (by merely dismissing them as
being non-negative) of such terms as the contribution

(25) S= ¥ W(Pa)S( A Pz)

E]
p3<p2<p1<D p1p2p3

p3p§p| €D <p;p1

to Z¥. We say this because inspection of an example described by Selberg (cf.
[15]) suggest that X (and other related terms) make a significant contribu-
tion in what may be conjectured to be an extremal example for the problem
discussed in this article.

Lastly, we draw attention to the fact that the estimate obtained in [6]
for the expression of the shape (5) is of the type described by the equation

ad olp) 1
378 - {n(-2P Hmon=o (g )

where, if we write w(p) = W(log p/log D), we have
1 1/2
Em(W) — — Jw £+J‘ m{__l___h(t)}dt’

1—1¢ t t 1—t
1/2 0
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for a certain h(t) > 0 when 0 <t < 1/4. If such a result could be proved with
h(t) replaced by O then the conjecture “Ax = R” (see (10)) would follow by a
suitable choice of W close to W (t) =t. It thus follows that methods such as
those discussed in this article must, at best, lead to results involving a non-
zero h, because of considerations relating to the neglected sum (25), for
example. Indeed in [6] the function h satisfied

1
h(t)>1——t for 0<t< T,

for a certain constant T, close to 0.074368 ... This means that the method
cannot take effective account of the sought —for numbers a lying in the
classes &/ and Py if they are divisible by a prime smaller than p™° (for
choosing non zero W(t) for t < T, makes (W) less positive than it would
otherwise be). This is the defect shared (with somewhat larger values of Tp) of
all weighted sieves whose behaviour is known to the author. Like the failure
to prove “Agr = R”, it is linked to the non-vanishing of the function A.
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