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1. Introduction

We consider the following problem: X is a random vector with
X ~Npii(p, 2),

XT:(XH+1’X“)T)7 X”)Tz(Xla"'aXn): #T=(pun+lv #(I)T)

2 T
5 - (‘7"+1 0'u+1-(1))
Gnr1(1) 211
where o, 1.1, 15 the vector of covariances between X,,; and the subvector

X1 and X, is the covariance matrix of X‘'). We are interested in the
conditional moments of X,,; under the condition of X = x1;

E(Xyo X = XM) =ty +000 1 7 (40— i)

= Hn+1p1) (1.1)

and
Vaf(XnH'X(“) = 0'3+ 1 *GL 1-(1)21_11 Op+1-1)

=107+ 1/1) (1.2)

These moments should be estimated on the basis of a (mathematical) sample
Xin = (X221, XD

of size N. The substitution o), ,Z7,' =:B leads to the following model:

XN, = Bxfl) + (1.3)
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where
E(el X'V = x") = 0 A
E(#MT e X&) = x&) = 624 10 Ins
N ~ N0, a7, 10, 18-

This model is an ordinary linear model in which the matrix X{}} is no
longer assumed constant. Since the X; (n+ l)<dimensional iid. random
vectors such that E(X;) = u < oc, cov(X;) = Z, and X, are independent of ¢
for all i and N and since the distribution of X; is absolutely continuous with
respect to the Lebesgue measure, it follows that

2>0 (A2)

The assumption (A2) implies that the rank of X{}) is n with probability
one, and hence X{3) X7 is invertible with probability one. Conditionally on
X, ., X\ this model is an ordinary linear model as discussed, for
instance, in HUMAK (1977). In the following sections of the paper the
following possibilities will be given

1) of calculating the properties of the estimators for the model par-
ameters if N and n are fixed,

2) of improving the properties of these estimators by eliminating of
variables of X1 ie., where N is fixed and n is variable,

3) of determining a suitably large sample size ensuring a certain degree
of precision for estimating by means of inequalities by Tong (1980) or by
cross validation and

4) af sequential procedures for the estimation of the conditional mo-
ments of a multinormal distribution.

2. Properties of the estimators B™ and S2,,,,

If assumptions (Al) and (A2) are satisfied, then the following well-known
results are valid:

B = (X XN X XY, el

sSn}i)%/(l) = gmr (2.2)

where
Ny N) B(N) (1
g —_ XE|+ 1 = SB( ng)),

BM and SV3, are unbiased for B and o2, respectively, if

E(X{3) X{NT)~ " exists. The covariance matrix of B™ is given by cov(,B™")
=(N-n—-1)"" n+1/(1)211 .
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Moreover we can prove the following theorems:

THEOREM 2.1.
L(B(N), SL’“L’%,(“) = L(sB(N): s Se layy)

n+ 1)1)
where L(-) means the distribution of (), B™ and SIV3,,, are the usual
estimators in the ordinary linear model with fixed regressors (KLM) and

Gy = Y (0 - FO) (0 - O,
i=1

THEOREM 2.2. 1. L(A7:141) = Ons 1jy XN-n-15
2. L(sB(N)/Au =a,,) = N(B, 03+ 1/(1)0f11);
3. SN3a), B™ and A,y are independent;
FGN)I,,)"
4. fsﬁ()“) = (1 /2 T N/2
F(T(N—"))n n+1/(1)l1+(}“ By X,,(A-B)o n+1/(1)r
Jor —xw <ii<oo,j=1,...,n

This i1s the form of a multivariate central ¢ distribution in n variables
and (N —n) degrees of freedom.

THEOREM 2.3. The sequence of estimators [B™}y .y and { SN2, ven of
the linear models with stochastic regressors (SLM) are consistent for B and

2 1
Ont1i1) ()

Thueorem 24. Let [&M}yn be a sequence of iid. random variables
belonging to the sequence of models

XM, = BV XD +EM v where & ~ F, F is independent of N.

Under the following conditions:
1) the distribution of X' has finite second moments,

1
2 m(‘X“))——»() where m(A) = max (q;;),
) \/ﬁ (N) ( ) IisisN( _])
<j<n

3) there exists an invertible matrix X,, with the property that
l(X(l) T

™ X ) —‘"N_,d DT

then we get

L(\/N(SB(N)_B))“Z‘; N(0, or. 1/(1)21_11)-
THEOREM 2.5.
. {(SB‘"’—B) X X7 (B~ B)T} R L(_YEH YT)
N->x

= 17.

(N)2

2
Ont 1/(1) On+1/1)

(Y If (A1) is satisfied.
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Remarks. 1. Tt can be shown under fairly general conditions that the
F-test is asymptotically valid in the sense that the size of the F-test is not
affected asymptotically by non-normality (Arnold (1980)). This means that
the Hubers condition (the largest diagonal element of X{)" (X} X"~ X3}
tends to O with probability 1) is satisfied and therefore we have

(C,BY—CB[CT(XH XX~ ' C] (C,BY—B)T

FN —
. QN2
k Snt 1

sz
S5
k

for all (k x ny matrices C that have rank k. (If we consider testing that CB = d
where C is a specified (k xn) matrix of rank k and d is a specified vector,
then we get the usual F test.)

2. The maximum-likelihood estimates of the regression coefficients and
the conditional variance are identical for the two models under normality
assumptions, but their distributions differ considerably. The residuals for the
two fitted models also have different distributions. Further, the joint distri-
bution of X,,, = B™x{}) is multivariate normal for the fixed model but
unknown for the random case.

If there are no other abnormalities, such as multicollinearity or autocor-
relation of the g;, then the Theorems 2.1 to 2.5 are able to justify the use of
the sample Xy, for the determination of the estimators.

If there are abnormalities, for instance a high degree of multicollinearity,
then one can expect incorrect estimators, unreliable test statistics, confidence
intervals which are too wide and so on. Consequently, it is necessary to
examine the assumption of the model before one can analyse if N is large
enough. (%)

'3. Determination of an optimal n

The aim of regression analysis is to find an extrapolation equation for X, ,.
It is well known (Hocking (1976)) that when a regression equation with
parameters estimated from given data is used for extrapolation beyond the
range of this data, the accuracy of such extrapolation (prediction) can be very
poor. One of the reasons is that the statistical relationship between X,,, and
X1 within the sample does not necessarily remain the same outside the
range of the sample. The consequence is that the variances of the estimates
can be large and can contribute a large amount to the expected mean square
error of extrapolation. Reducing the mean square error, while preserving the
usual maximum-like-lihood estimators, one can include 1n the extrapolation
equation only a subset X'® of the whole set X'V of regressors in the model.
But the expected mean squared error can be large il the number of variables
in the extrapolation equation is sufficiently small.

(?) New results you can find in Jahn, Riedel (1984).
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It can be shown (Oliker (1978)) that there exists a certain optimal
number of variables among X! in the model, such that the expected mean
square error corresponding to the extrapolation equation with these variables
is minimal.

THeEOREM 3.1 (Oliker (1978)). The expected mean square error is

N+1 n
E[E{(Xp. — Xi2)X0 XD = 00, 1) N—(l +m)

where
FW N) (2 T 2T (3T
XN, =B "X, XN = (X", XRD-
n . . . .
ConcLusions. 1. c(n) = l+ﬁ—_2 is a monotonically increasing
-—n_

function of n, c(0) =1, c¢c(n) > o0 when n > N—2.

2. ok =02 1—01 1.4y 211 Ons1uy IS a nonincreasing function of
n, since X, is positive definite. Therefore, there exists a certain ny, 0 < ng
< N—2, such that the expected mean square error is minimal.

3. n, depends on the sample size.

2
N—-n-2 I*Rﬂ+l.(1)
< 2

N—m—2 l_Rn+1.(2)
where XOT = (X7 XY the dimension of X'® is m and R,y .1, Rat1.2
are multiple correlation coefficients and R,..3yz IS the partial-multiple
correlation coefficient.

Theorem 3.1 can be used for the calculation of n,. But with n, we do
not have those variables which can be eliminated.

The following lemmas enable us to construct a simple sequential pro-
cedure for the elimination of variables.

2
4, S 1—- R,,+ 1(3)/(2)

LemMma 3.1.

(N—n),S%0% 00y = X3, (T - X7 (X(M XM~ XM XL
LEMMA 3.2
(N —m) S"“/m (N—n) Sn+1/(1) —(s (1) X%flv% (’zv)) X( ) X N = Red,,.

Concrusions. 1. Red, +(N—m) S0, = (N—m) SN,
2. The reduction of the sum of squares of deviations of the components of
X, from the regression hyperplane B3 X{2 by means of addition of

regressors of X} is

(N—(n—m))sSf,’?f,(g,,—(N nj Sn+ 1/ = ( B}f,’ XW; (3) Xf?v))) X:.TI

(ﬁ:-Nl)(N 22)) SN2, be the estimator of the expected
n

3. Let §,:
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mean squared error of Theorem 3.1. Then we get

_ [Red,, —(N—n) S7,,)][(N+1D(N-2)
" N(N=m—=2}(N—m) '

(N)2 2
sSn+ l/(l)sBj

s’j

4. Redl =TJ'-—_

With these lemmas we can construct a sequential procedure for the
determination of ny, see Thompson (1978).

4. Determination of sample size

The sample size problem in the linecar model with stochastic regressors is
very difficult. First, it is not known what specific [X;;}, i=1,...,N, j
=1,...,n will be sampled, or, in some cases, what range of values is
reasonable. Second, the distribution of X,,, is not known.

4.1. Estimation of the mean of a multinormal distribution — fixed
sample size procedure. We consider first the n-dimensional multinormal
distribution with mean u and covariance matrix X! = ¢2 %, where ¢? is a
scalar and 2 is a known n xn matrix (positive definite). First, we suppose

_ B
that o2 is known. If we use XV = N Y X, the expected cost for fixed N is

(Wang (1980)) o

EN (L) =

Ag" £ N(X(N) _#)Tz— 1 (Xf(N) _.u)nll N
N2 2 +

ag
= A(n, Na"/N"2+ N (4.1)

where
A-2"2T(3(n+n)
I'(3n) ’

An, n) =

A and 7 are positive constants, [A4(x—@2)(Z')" ' (u—2)]"*+ N the cost func-
tion. Treating N as a continuous variable, we differentiate E (L) with respect
to N and set the derivative equal to zero, obtaining the relation

n
—A(n, '])G”W+l = Q.

From this we get the optimal sample size N,

No =[A(n, n)a"-Fn]*0r 2, (4.2)
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4.2. Determination of sample size with probability inequalities. Let
X.,..., Xy be a sequence of n-dimensional random vectors (n = 1) possibly
mutually dependent with joint distribution belonging to the [amily
1Py: 0c®! and let T, be a consistent estimator of 6, which is a function of
X,,....Xx. Then, for any Borel-measurable set 4 < R* containing a certain
neighbourhood of the origin and any a, 0 <a < 1, there exists a smallest
natural number N, such that

for N = N,. We call the number N, = Ny(4, a) the necessary sample size
(n.s.s) corresponding to the precision 4 and the significance level 2 with

k
respect to Ty—0. We consider the precision of the shape 4 = X [y;.r;],
i=1
where — o0 < g; <r; < . The ns.s. depends essentially on the distribution
of Ty, which is a function of €. Hence, the n.s.s. can be determined only if 8 is
known. By means of the probability inequality it i1s possible to give bounds
for Py (Bergmann, Fritzsche, and Riedel (1984)). If we have a lower bound
QOn < Py, then from the definition of the nss. it follows that Qy -, <a;
hence No—1 <sup |N: Qy <al.
We note that the right-hand side is a maximum of a finite set

if im Q, > «. In many cases the condition Qy < a can be transformed into a
N

computable form. In particular cases it is possible to obtain the supremum
mentioned above.

42.1. Upper bounds of the nss. if Ty has a known covariance
matrix. We suppose that the covariance matrix of Ty, ™ exists and the

precision
k

Ao= X [-E;, E;]

i=1
with positive real numbers E; is given. Using modified Chebyshev inequal-
ities, Bergmann et al. (1984) derived from Corollary 2 of Theorem 7.2.2 in
Tong (1980) the bounds of the ns.s.

THeEOREM 4.1. The nss. Nog = Ny(Ag, @) satisfies
VT k= kW™

o Ssw? o,

1—x
where

k
Y= VED) = o W=t (a),

ij=1

E.

J

1
M =DEMD =(g}), D= diag(—).
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CoroLLARY. If in addition for all N the matrix X' has the
representation

2
E(N) S
N

with a certain nonnegative definite and symmetric matrix, then

f+ fk—T)(k-w— Ve _
(1—a) k> ST«

where Y, =DXD, V=V (Z,), w=1r(X2,).
(The equality sign holds if Ty has uncorrelated components.)

No—

4.2.2. Upper bounds of the nss. if Ty has a normal distribution.
We suppose that Ty ~ N, (0, Z™) and denote

By (x) = [ e P dr
0

and

™ = max aﬁ“,
Jj=1,.

and denote by yx?, the a-quantile of the chi-square distribution with r degrees
of freedom.

From Theorem 2.2.2. in Tong (1980) we get
THEOREM 4.2. For the nss. Ng = Ny(A,, o) the following relation holds

1 o

This inequality implies

2 (No— 1)

THEOREM 4.3. The ns.s. satisfies
I <H;(Vo-1 (Vo= 1),

where H;(No-1 _,(No=D, is the o fractile of the distribution function as a

mixture of chi-square distribution functions and AV, 0 <AV < ... < AV are
the eigenvalues of X,. If Y,,...,Y, are independent chi-square distributed
random variables with one degree of freedom, then H, ., (x) is the distri-

bution function of Y y;Y; where y; are real numbers.
i=1
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Remark. The simple inequality

_ - No—-1) 2
HyNo~ b iNo=1), < 4y Xia

implies a preater bound then Theorem 4.2 because

(No— 1)
xT3,0

(Np-—1 X (Ng—!
A ° " = max = > g0V

xR X' x
and
2 2
Xica Z X7 417k

THeoOREM 4.4. Suppose that the matrices ™ are positive definite for all
natural numbers N. The ns.s. No = No(Ay, o) satisfies

1 kj2
(Nog- 1) . (No— 1), _x-— X (Ng—- (T
[ (coshix?m™® " —sinh3x*M "0 V)x*"tdx < |2, ||
a k 2
1
where m™ 1= —= M :=max xT (")~ " x,
o

xeAQ

In a similar way it is possible to find lower bounds of the nss. if Ty has
a normal distribution. The lower bounds are useful for the estimation of the
goodness of upper bounds.

43. Cross validation approach to sample size. The aim of cross
validation is to assess the statistical procedure which is based on a statistical
model

P={P, 6e®@}, ©<R"!

for the data x;eDy:= {(x,+,4, x{"'7),i=1,..., N}, whose conceptual in-
gredients are probability and parameter. For this assessment we introduce
the decision function

0 = 8(X, Dy)
and the loss function L(X,,,,d), where de Dy, the set of all possible

decisions taken for (X,.,, X"T). L(x,.,, d) is observable. The question is
now, how 1s ¢ to be assessed when only Dy is available?

“The philosophy (Stone (1977)) of cross validation is to decline to make
the assessment of §(X'Y,Dy) on the basis of the quantities
L(xp414 0(x;, Dy)) i =1,..., N, on the ground that 3(x{", Dy) is influenced
by x,. .. thereby affecting the honesty of evaluating 6{x!V, Dy} as a decision
for the (xV, x,, 10"

One of the cross-validatory assessment criteria is

N
C= Z Wi L(xn+l-ia 6(){}1)1 DN\J))

i=1
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where Dy, denote Dy with (x!") x,.,,;) omitted, and w; = w(x!", Dy.),
N

i=1,...,N, > w, =1 are nonnegative weights.
i=1

4.3.1. A cross-validation approach to sample size determination for re-
gression models. We only want to use cross-validation for the determination
of sample size. :

431.1. The fixed model. The regression function estimate is

v — P P _ (1) (DTV-1 (1) YvINT
Xni1 = Bxin, where B = (x{s} x(a)") ™' x{») Xa¥1
and
. % () W(1y Ry _ 2 (T ¢ (1) (DHTy=1 A1)
var{ X, 1 X" = x'"') = var(Bxy,) = Opnt101) X(N) (Xiny Xim ) Xy

In order to estimate, on an a priori basis, the necessary sample size, such
that for any arbitrary chosen constant o

POUIX o1 — Moyl <8)) =1-a,
the experimenter has only to estimate a7, ,,,, and then solve

(Un+1/(nf~—1.(1—a)/2)/N”2 =0 (4.4)

for N.

4322 The random model The sample size problem in this
model is much more complex because it is not known what specific {x{!’}
will be sampled or, in some cases, what range of values are reasonable, and
the distribution of X,,, is not known.

By Park and Dudycha (1974) a solution to the sample size problem was
developed to the extent that it reduces the problem to the evaluation of a
probability density with one unknown parameter, namely the squared mul-
tiple correlation coefficient R?. For the estimation of the conditional expec-
tation value we can write (we use our model (1.3)):

E(X,1 (X" = x) = By + ,Bx{}). (4.5)
It can be shown that
E(,B.B") = BB" +02, ;, 1 /(N-n—2) (4.6)
and
E(B) = B.

From this follows
E(BB")—E(BE(B")=X5=02 4 Zi/(N-n-2). (4.7)

Cross validation as a test of an estimated regression function consists of
drawing the second random sample (X, .4, X145.--» X)) K=1,..., N, and
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correlating the observed dependent variable {X,,,,] with its estimated
values obtained from the original equation. The resultant correlation R, (,B)
is an estimate of the validity of the derived equation in the population.
R.(.B) estimates

E(Xn+l n+])
R.(, ,
W)= B2 N ERE T
R (sB)_ E(Xm—lsﬁx(“) O';zr+1-(1)sBT

= ~ = ) 4.8
n+  E [sBx{}v)) xulv))T sBT]] 12 [03+ 1sBXy, sBT]I/Z (*48)

R.(,B) is a population parameter for a given set B, but is a random variable
over the possible vector of (B.

Lemma 4.1. R,.(,B) < R, 1.1y where R, ,, is the maximum correlation
possible in the population.

THEOREM 4.5.

. -1
PURGE < 1) = Fr(d.  Faztd) = F (Y 22" ))
¢ ¢ Ryiyay—4

where F represents the noncentral F distribution.

Proof. See Park and Dudycha (1974). .
. R?
COROLLARY. RZ(,B) = __":1%
1+
Fl.n—l.él

where F,,_,, is distributed as a noncentral F with the noncentrality
parameter

R
8y = (N—n—22__—m+1th
! + ) (1— n+1(l))”

From this corollary we get for any positive ¢

. }22+1 (1) 1/2
P({Rn+l-(l)_Rc(sB)QS})zp(%_(n 1)1/2[ e 1:' Stn—l.nil

< (n—1)12 [M — 1]1/2 })
&

Using the noncentral t distribution, we get
N* = (1 =R 1 ) 031/RA ¢ 1 1y H(n+2)

as a function of R,,; ), ¢ and n.



302 W. JAHN

S. Sequential sampling procedures

5.1. The sequential decision problem. Using the terminology of
Ferguson (1967), we shall formulate our problem as a sequential decision
problem. The elements are as follows (%)

L 0 =10 = (s yyay Fatr 1)) — 0 < Py 11y < 00,0 < a4 1yqy < 0}
is the parameter space.

2. A = 0 1s the space of terminal actions. The statistician chooses the
parameter 0@ if he stops sampling, § = (,B, ;S2, ,,,,)"- Let the true par-
ameter be 8,, then we have to consider two hypotheses: H,: 6 = 8, against
H,: 6=28,, 0,+0,.

3. Let L(B, ,B) be the loss function. It is a real-valued function on

@ x A representing the loss when the statistician makes his deciston. L can be
defined by

L(B, ,B)
= [[Bo+Byx;+ ... +Byx,—(Bo+ B, x, + ... + B, x)]?dF (x,,...,x,)

=Y Y w;(B,—B)B,-B,)=(B-BMB- B
j=1 jo=1

I Hot - Hon
Hio Ky -« Hin

Mpo #nl .-« Hpn

and u;;, = E(X;X;), j,j’=0,1,...,n;, Xo =1, F is the distribution function
of XV =(X,,...,X,)", B=(B,, B,,...,B,) are the unknown parameters of
. the conditional expectation E(X,, /X" = x") and B =(B,, B,,...,B,) are
the estimators for these coefficients. M is positive definite since

M=

a) for any (ay, a,,...,a,) not equal to zero we have P(a+a, x, + ...
ceota,x, =0)=0,
b) E(X))<w,j=1,...,n
Denoting B by B, under hypothesis H, and by B, under H,, we can
suppose that
L(B,, Bo) = L(B,, B,) = —r,  L(Bo, B;) = L(B,, By) = I.

4, X,,...,Xy,... 1s a sequence of random variables available to the
statistician. They are independent and distributed as X; ~ N, (u, 2).
Under the condition X' = xV) X, , has the density

Jn+ 1/(1)(x) = fa+ 11y (Xn+ 15 x(l))/fm(x(l))_

(®) See also Hee and Hordyk (1975).
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For brevity we write

Pu+l/(l) = fa+ 1y = N, (ﬂn+1 ‘*‘C"I+1-(1)21_1l (xm—ﬂ(”); 0'3+1/(1'))-
The statistician will choose a decision rule, which may be divided into two
parts:
— a stopping rule for sampling;
— a terminal decision rule.

5. A stopping rule y is a sequence of functions

Y= (Yo, Y1 (xy), Yo lxy, xa), W3(xq, X3, X3), ...}

where x; is the realization of X; =(X,;,..., Xp419)" and Y(x,,...,x) =0
or 1.

Ify;(xy,...,x;) =1 then Yy(x,,...,xy) =1 forall N =i ie, if x,,...,x
are observed, the statistician will stop sampling if ¥;(x;,...,x) =1 and he
will make another observation if ;(x;,...,x;)) = 0. If o = 1, then he makes
his decision without sampling. Using y, we can define a random variable =,
called a stopping time, by

T = mil'l {i: l‘[l,-(xl ,...,x.') = 1}.
Hence 7 1s the time stopping the sampling if the stopping rule ¢ is used.

6. A terminal decision rule & is a sequence of functions

& = {69, 05 (x;), d2(xy, X3), 03(xy, X3, x3),‘..}

where d;(x,,...,x;) i1s a function with values in A. For each sequence of
realizations x,,..., xy the statistician specifies by , the decision he will make
under the condition that he stops sampling at the time ¢. So a decision rule is
a pair (y, 9).

7. The risk function R(0, (, 8)) of a decision rule (i, J) is the expected
loss plus the expected sampling costs when 8 is the true parameter:

R(B(lﬁ, 5)) = EQ[L(B’ 5t(xla ters x,)+tc]
where 7 is the stopping time defined by . In general, and also in our case,
there exists no decision rule (¥*, 6*%) such that
R(0, (y*, 6*) < R(0, (¥, 9); YOO, VY (Y, J).

Hence we have to choose other criteria to determine the best decision rule.

Such criteria are:

a) the minimax rule (y*, 6*), for which

inf max R (6, (¢, 8)) = max R(6, (y*, 6%));
f0c®

,8) 0e@®
b) the Bayes rule with respect to the distribution n over @ if

Y R0, (%, 6%)x(0) = inf ¥ R(8, (¥, 6)n(6).

0c® ¥.9) peO
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5.2. The Bayesian approach. We assume that 6 is a random variable
which takes on the value 0, with probability n(f,) and the value 8, with
probability n(0,), [n(0,) =, n(6,) = 1—7, 0 < 1 < 1]. Note that the simul-
taneous distribution of 0, x,, x,, ... is completely determined by the assump-
tion in 4° ie. by the distribution assumption. The distribution of 0 is called
the prior distribution and it is completely determined by =.

The Bayes risk of a decision rule (Y, d) depends on n and is defined
analogously to 7° as the expected loss plus the expected sampling costs:

R(m, (¥, 8)) = E[L(8, 6.(x,,..., x,))+1c].

Conditioning on § = 8 gives

R(m, (4, 8) =Y E[L(0, 6, (xy,...,x))+1clf = 6] n(0)

0e®

Compare this formula with (7°b) — hence the Bayes decision rule (y*, %)
satisfies

R(m, (W*, 6*) = inf R(m, (¢, 8)).

.9

The choice of the prior distribution of § (or equivalently the choice of )
depends on the (subjective) opinion of the decision maker. Sometimes he has
prior information about the two hypotheses, which he can translate in a
prior distribution.

53. The sequential decision process. We now introduce the posterior
distribution of 6, given the sequence of observations

X, =x1,...., Xy = xy where X[ =(X,.,, XV7), i=1,....N,
yw=PU0=00X, =x,,..., Xy = xy)), N=1,23,.

With the rule of Bayes it is easy to verify that

P({Xl=x1,...,XN=x~|é=90})P(9 o))
ZP({Xlle,...,XN-_—xh,lB:gl) ( 9})

Pe®

YNn=

If we use the distribution from 4°, then we get

]—[ Ja+ ,,“,(x; GO)P(:O = 00})
Yy = l=1N :
Z n fn+1/(1)(X; 0)P(10 = 0})

e i=1
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N

2 2_-2
n (2m)~ (I (o n+1/(1)) CXP{“%(X’"H{—BOXE”) C’n+1/(1)}
i=1

N
12 1/2 1 1

Z H (2m)~ =t ¥ n 1) Y exp | — 2 (Xps1.i— x‘ ]) Un+1/(m

Bc® (=

N
—Nn+1)/2 (.2 -N/2 -2
n(2m)” M (g ) TV exp { =20, 200y X (Xpe 10— Bo X{M)?)
i=1

N
Z n(2m)” N("+1)/2( 1/(1)) /ZCXP{_za(;il)/(l) Z (xu+1-i_Bx$”)2}
] i=1

where 0 = (B, 62, ).
With the two hypotheses,
Hy: 0 =08o; 07, 1y0) > 0; Hi: 6=0; 6211 >0,0#8,,
we get

N,
_ -2
yN—nexp{—a,,H/(” Z (xn+1~i'_B0x$”)2}x

i=1
N

-2
X [75 €Xp {—0n+ 1/(1) Z (Xp+ 15— Bo x{V)*+
n+ 1/(1)

N
+(1—n)exP{_20(;i1)/(l) Z (Xn+ 14— By xsu)z}]—l-
i=1

We now put y, ==,

102
exp, 20n+1/(1) Z (xn+1;—Box( )) !

i=1
N .
exp '{—20;+21/(1) Z (\/ExH‘H-i_(Bo"‘Bl)x}”)z}
: i=1
Now the value yy., can be computed from yy and xy,., by

YN =

f_ _ 2
Ynel = €Xp . — 2U'n+1/(1)(xn+1N+1 BoxN+1 } N=1,2. ...
expl 20u+1/(n \/ixn+l N+1— (BO+Bl)x(h!-)l-1)2‘
So yy+, is the prior probability of & =8 for the (N + 1)th experiment.
Considering the sequence y,, y,,... as functions of the random variables
instead of their realizations, we get a sequence of random variables
Yo, Vi, Y,,... recursively defined by P({Y, ==}) =1,

expl 26r|_+1/(l)(Xn+1N+1_BOXN+12}
exp { — 20,1 ( \/an+1N+1_(BO+B1)X(N! 1)2}

= exXp [_26;+1/(1)[(Xu+ 1.n+1—Bg XG0P -

~(/2X s 1n41—(Bo+By) X5, )]0

Y4y =

20 — Banach Center t. 16
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Without proof we state some well-known facts from statistical decision
theory (Ferguson (1927)).

a) Consider the sequence Y,, Y;,... For each sequential decision rule
(¥, ) based on X, X,,... there is a sequential decision rule (¥, 6,) based on
Yy, Y;,... which is as good as (, d) since there is a one-one correspondence
between the two sequences. So we have only to consider Y,, Y;,... when we
are searching for the Bayes rule.

b) Iffor N=1,2,..., 85(Y;,..., Yy) is a Bayes rule with respect to =
for the decision problem based on the fixed sample size of N observations,
then for any stopping rule  the risk R{n, (y* 3*)) is minimized by
6 =(dg, 0y, 03....)

¢) When we consider also randomized action rules and stopping rules
there exists no randomized pair (¥, 0) with a lower risk il thé loss functions
is bounded and if there exists for each N a fixed sample size Bayes rule.

d) It is easy to verify that for a fixed sample size of N observations the
Bayes risk with respect to = 1s

E.[min{—rYy+I1(1-Yy), —r(1 = ¥y)+1Yy}1+ Nc,

where the subscript 7 indicates the dependence of the prior distribution and r
and ! is the reward or the penalty (r = | = 0).

Hence we may formulate our sequential decision problem in the fol-
lowing way:

Search for the stopping time 7, such that

E,[max {rY,—I(1-¥), r(1— ¥)— 1Y)} —zc]

attains for 1, its maximum (7 is a random variable).

Note that we are maximizing the expected return instead of minimizing
the risk.

54. Connections with Wald’s sequential probability ratio test
(SPRT). Wald’s sequential ratio test is useful in the same situation: two
simple hypotheses Hy: By, H;: B,, B, # B,. In this test the likelihood ratio
test

N
exp{__%o-"_*'zlf(l) Z (xn+1-i_Box§l))2}
AN(XI,-..,XN) ol i=1

N b
- N2
exP{_%O'quu) Z (Xp414— By XE ) }
i=1

N
i=1

+(Bo— By) x{") x;"'" (B, — By)"]
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determines, together with the real numbers A and B 0<A<1<B < w,

the

stopping time

0 if A<i(xg,...,xy) <B,
1 otherwise,

Un(xy,...,xy) = {

and the decision rule

Let

B, if An(xy,..., xp)
5~(xl,...,xN)= Bl if AN()CI,...,XN)
any if A=B=1.

pi = P({accept HoH,}) and Po = P({accept H,|H,}),

denote the two error probabilities. Although in general it is tedious to
compute p, and p, given A and B, here it i1s easily done by

(1]
(2]
(3]

1_
and B = po'
1—p, P

A=

References

S. F. Arnold (1980), Asymptotic validity of F-tests for the ordinary linear model and the
multiple correlation model, JASA 75/372, 890—894.

R. Bergmann, B. Fritzsche and M. Riedel (1984), Determination of sample size in
point estimation, Math. Operationsforsch. Statist. Ser. Statist. 15, 73-89.

J. Cohen (1969), S:tatistical Power Analysis for Behavioural Sciences, Academic Press,
New York.

[4] T.S. Ferguson (1967), Mathematical Statistics, A Decision Theoretic Approach, Academic

(5]
(6]
(7}
[8]

(9]
[10]

[11]
(12]
[13]

Press, New York.

D. A. Harville (1971), On the distribution of linear combinations of non-central chi-squares,
Ann. Math. Statist. 42, 809-811.

K. M. van Hee and A. Hordijk (1975), The technique of optimal stopping applied to
a sequential sampling problem, Preprint, Eindhoven.

R.R. Hocking (1976}, The analysis and selection of variables in linear regression,
Biometrika 32. 1-49.

W. Jahn and M. Riedel (1984), Reduction of the dimension in the linear model with
stochastic regressors, Comm, Math. Universitatis Carolinae, to appear.

HUMAK (1977), Statistische Methoden der Modellbildung, Akademie-Verlag, Berlin.
H.J. Larson and T. A. Bancroll (1963), Sequential model building for prediction in
regression analysis, 11, Ann. Math. Statist. 34, 462-479.

Odeh and Fox (1975), Sample Size Choice Charts for Experiments with Linear Models
Marcel Dekker, New York.

V.J. Oliker (1978), On the relationship between the sample size and the number of
variables in a linear regression model, Comm. Statist. A — Theory Methods 7, 509-516.
C.N. Park and A.C. Dudycha (1974), A cross-validation approach to sample size
determination for regression models, JASA 69/345, 214-218.



308

[14]

[15]
[16]

[(17]

(18]

[19]
[20]

[21]
[22]
(23]
[24]
[25]

W. JAHN

S. ). Press (1966), Linear combinations of noncentral chi-square variates, Ann. Math.
Statist. 37, 480-487.

— (1972), Applied Multivariate Analysis, Holt, Rinehart and Winston, New York.

C. R. Rao (1973), Lineare statistische Methoden und ihre Anwendungen, Akademie Verlag,
Berlin.

H. Robbins (1959), Sequential estimation of the mean of a normal population, in:
H. Cramer (ed.), Probability and Statistics, Almquist und Wiksell, Grenander Uppsala,
235-242.

K. G. Seal (1951), On errors of estimates in various types of double sampling procedure,
Sankhya Ser. B 11, 125-144,

R. Shibata (1981), An optimal selection of regression variables, Biometrika 68, 45-54.
N. Starr (1966), The performance of a sequential procedure for the fixed width interval
estimation of the mean, Ann. Math. Statist. 37, 36-50.

M. Stone (1977), Cross-validation. a review, in 3rd. Int. Summer School! on Problems
of Model Choice and Parameter Estimation in Regression Analysis in Miihlhausen, Thiir.
M. L. Thompson (1978a), Selection of variables in multiple regression: Part I, A review
and evaluation, Internat. Statist. Rev. 46, 1-19.

— (1978b), Selection of variables in multiple regression: Part II, Chosen procedures
computations and examples, Internat. Statist. Rev. 46, 126-146.

K. L. Tong (1980), Probability inequalities in Multivariate Distributions, Academic Press,
New York.

Y. H. Wang (1980), Sequential estimation of the mean of a multinormal population, JASA
75/372, 977-983.

Presented to the semester
Sequential Methods in Statistics
September 7-December 11, 1981



