ELEMENTARY AND ANALYTIC THEORY OF NUMBERS
BANACH CENTER PUBLICATIONS, VOLUME 17
PWN-POLISH SCIENTIFIC PUBLISHERS

O Q0 ~1 N W R L N e

el el e
[= WV Y S

chu
Ccis X
d(n)
dy(n)

e(x)

exp x

Kh y

WARSAW 1985

INTRODUCTION TO KLOOSTERMANIA

M. N. HUXLEY

Department of Pure Mathematics, University Coliege
Cardiff, Great Britain

Contents

. The Epstein zeta function '

. Hyperbolic space

. The Kuznetsov Trace Formulae

. Nodal! line theorems

. The group I'°(13)

. Numerical bounds for the first eigenvalue
. Exceptional eigenvalues in genus zero
. The spectral theorem

. Bessel functions

. Fourier coefficients of cusp [orms

. Hecke operators

. Kuznetsov's Basic Lemma

. The First Trace Formula

. The Second Trace Formula

. Linnik’s Sum

. Kloosterman sums with opposite signs

General notation

(pronounced ‘kosz’) is cosh u (cosinus hyperbolicus).
(pronounced ‘kis’) is cos x+1i sin x.

is the ordinary divisor function.

is Y d(m).

is eggu.

is written instead of ¢* when x is a complicated expression.

is the square root of —1. Kubota uses ./(—1).

is the Hiankel function of pure imaginary argument. Kuznetsov uses
K(y) and normalises differently.

[217]



218 M. N. HUXLEY

|s is the factorial of s. Kuznetsov uses I'(s+1) or s!
log x is the logarithm to base e. Kuznetsov uses In x.
shu  (pronounced ‘san$’) is sinh u (sinus hyperbolicus).

d s

7,(n) is a divisor function ) (E)
de=n

thu  (pronounced ‘tansz’) is tanh u (tangens hyperbolica), sinh u/cosh u.

1. The Epstein zeta function

Additive problems in number theory are usually attacked using
e(x) = exp 2mix,

and multiplicative ones using n”, or y(n) if there is a congruence condition.
Kuznetsov, Iwaniec and Deshouillers have added to this list. I will try to
explain how their new functions arise.

The basic lemma in number theory, Euclid’s algorithm, states that given
two integers a and ¢ with (a, ¢) = 1, there are integers b, d with

ad—bc =1,

This condition says that an integer matrix

()

lies in SL,(Z), the group of integer matrices of determinant one. The new
functions associated with it are called Eisenstein series and Maass wave
forms.

The function e(x) has e(x+n) = e(x). An analogue for matrices would

have
ab
f((c d)Z) =f(2).

We have not yet defined z. What do 2 x 2 matrices act on? Here Bruggeman
would say, on themselves by matrix multiplication. But there is a simpler
action. Let z be a complex number,

ab Z'_az+b
cd/”  cz+d

This product is associative, in the sense that

a b\/(rs . ar+bt as+ bu ,
c d)\t u/" \er+4dt es+du)”’
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When we allow oo as a value for z, the action makes sense for any real
numbers a, b, ¢, d with ad—be > 0, with

Imz>0,z# 0 = Irn(: Z)z>0.

Hence we may restrict z to the upper half plane H defined by the condition
Imz>0.

Do such functions f exist? Yes, Consider the Epstein zeta function of
the lattice generated by 1 and z, where Im z > 0,

[= ] @ ys
B(z, s) = —_
(2 9) ¢=Z_:m d=z_m|cz+d|2’
| (c,d) #(0,0)

The function B(z, s) depends only on the lattice, and it satisfies

B(z,s)=B(z+1, s)=B(—Z,s)=B(—1/z, s),

and by induction
ab
B ((c d)z, s) = B(z, s)

for any matrix in SL,(Z). So without loss of generality we may suppose
lz21=1,y>0, ~1/2< x < 1/2.

These conditions define the fundamental domain D (Fig. 1).

=

-1 -172 172 1

Fig. 1

When z is restricted as above, the lattice point argument of Vinogradov
or van der Corput gives

2

T
N(r):= > o1 =—-;—+0(r2/3y2’3 log ry),

0 <lcz+d|Sr



220 M, N. HUXLEY

so we obtain

B(z, s) =sffN;I() = s—-sl Y1+ R(s),

1

where R(s) is regular for Re s > 1/3. We deduce that B(z, s), which con-
verges absolutely only for Re s> 1, has a meromorphic continuation to
Re 5 > 1/3 with a pole at s = 1, residue m.

We can check that B(z, s) satisfies the differential equation

8 s(s—1 )
( + )B(x-Hy, §) = (s—1) B(x+iy, s)
dx? y?

term by term. Also B(z, 5) must have a Fourier series in x, whose coefficients
are functions of y, and these functions of y tend to infinity no faster than a
fixed power of y (depending on s).

a

B(Z, S) = Z a,,(y)e(nx),

with
yv2a,(y) = {4n*n? y*—s(1-5)} a,(y).

For n = 0 we know one solution must be y°; the other is y' ~*. For n # 0 we
may put

a,(y) = a(2ny|n)),
and if a(u) = /u f (1)
(P—s(1 =) f(w) =ufY—3%1,

which is Bessel's equation, and has two linearly independent solutions, of
which one increases exponentially in u. So we want the other one. Naming
names,

B(z, 5) ~ ay*+by' *+2 Y ¢, cos 2nnxA,_ ;;(2nny),

n=1

where A, (u) is expressed in terms ol more familiar Bessel functions by
A, () = il ™ Kb, (4 T I_,(w-— I,‘(u),
v 2 \/ sin mk

A ~e™ as u-—+oo.

and
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Let us calculate g, b and c,.
For Re s > 1 the n =0 term is

1

2Zd25y +2[Z 2 Y dx.

1== o {lex+d)®+c2 y2)*
0
So
a = 2{(2s),
had dx
b = py2s—1
d c§1 dmzo:dc J {cx+d)? +c? y*)
(grouping d into residue classes)
= p2s—1 _C_ dx
Y ZCZS (x2+yz)s
=mkmﬁ$14m j
(t2+1) Ju 1y
0 L]
§s—3/2 1—-1/2
B Y el CHTNIN
s 1

where [ is the factorial function I'(s+1), and the last step is Euler’s trick
evaluation of the Beta function integral. You will be pleased to hear that c, is
worse.

1

[ ] @ ys
A2 d

0

As before, we collect terms in d into residue classes mod c:

ao

ye(nx)
2;1 c®® ) J{(x+d/c)2+y} dx

dmodc

572( )Lﬁﬁ?

The sum over d is 0 unless ¢|n.
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We know the integral over x is a multiple of A(2nny). Which?

Re x

Fig. 2

Make it a contour integral, and deform the contour as shown in Fig 2. For
large y only that part near iy matters, and it is asymptotically a I-integral,
so that we have

s — 2nny
~2Y (rn)” e ~ i Ts_m(n)A(ZTmy),

o ps=lon =1
where for simplicity
) =1_,(n).

| &AL

win=3

de=n

o

So we have identified ¢,, and

~1 215—1 215—3 L (2s—1)
= B, 9 = "=ty = —

+4ZL”(") cos (2nnx) A, 12 (2nny).

NG

This hard work had better be some use.

The Bessel function is defined for all s, and it is an even function of
s—1/2, so the sum over n gives a regular function of 5. For 1/2 < Re s < 1 all
the terms are defined except {(25s—1). So {(s) must have a continuation to 0
<Res<1 with a pole at s =1 residue 1. Well there are easier ways to
prove that. I claim next that

-1 -
J:';—B(z, s)=—JI__isB(z, 1—5%)
e T

since both sides are defined for 1/3 < Re s < 2/3. Their difference is a
function of y only, satisfying the functional equations for B(z, s), and zero at
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s = 1/2. So the difference is 0. Comparing the coefficients of y*
s—1 0@  |~4—4sL—9)

/2 = PEVERETF

and we have the functional equations for the Riemann zeta functions and the
Epstein zeta functions.

Suppose now that {(1+iy) =0 for some y. Let s, = 4(1 +iy). The terms
in y'° and y © in the Fourier series for B(z, 50) vanish. In fact B(z, sq) will
tend to zero exponentially as y — 00, becoming what is called a cusp form.

The Eisenstein series is defined for Re s > 1 by taking out common
factors between b and c in the definition of B(z, s):

B(Z, S) _ -i- O 0 )’_g
26(28) c=_md=-—-mlcz+dlzs
Writting B(z) for B(z, s;) we have (cd)=1

ddy_, & 8 Y = dxdy
jJE(z s)B(2) R Y lecz+d|2‘ B(z) T

c=—am d=—m
D (c.d):]_ D

E(z,8) =

Now the sum over ¢ and d is iri (1, 1) correspondence with the cosets of the
subgroup generated by z — z+1 in the action of SL, (Z) on H. This action is
called PSL,(Z) and differs from SL,(Z) only in that —1I acts as the identity.
Hence the integral is |

b\ |* — dxd
cgc:“ J-HIm(Z d)z} B(z) ;ZJ’
D

(—c a)D =0x=-

w 172

dxdy J — dxdy

J”B z)

This integral is now zero, since every term in the Fourier series for B(z)
contains an e(nx) with n # 0.
To obtain a contradiction, we note that since {(2sq) =0,

{(25) ~ als—so)f

for some r > 1 and some nonzero a. Take a contour enclosing s, and no
other pole of E(z, s). Since the triple integral involved converges absolutely,



224 M. N. HUXLEY

we have

dxd
L‘ (.s;—s(,)"1 ij(z, s)B(z, so) y—zy ds
D

2mi
C

dxd

=j_["l’ (s—8oY " E(z, $)ds B(z, 50)
2mi
c

D

Bz, 5o) B(z, o) dxdy fﬁ dxdy
J 2a

b

Since B(z, s,) is not identically zero (consider large y), this integral is

nonzero. However
' dxd
[ [rie. 98G5 =5

D

is the analytic continuation of a function of s which is identically zero for
Re s> 1, and so it remains zero for all s. This contradiction now gives

L(1+ip) # 0.

Background reading
JEFFREYS and JEFFREYS
KUBOTA

VINOGRADOV

ZAGIER

2. Hyperbolic space

You will now ask: what sort of function is this Eisenstein or Epstein series?
Consider it for fixed s, so it now becomes a function ol z, with

E(yz,s)=E(z,s5) for y= (: Z) in I'(1) = PSL(2, 2),

N
gty JEE 9= —s(0-9EG, 9.

The first condition says that we only need take z in |z| 2 1, —1/2 < x < 1/2,
y >0, the fundamental region D on the upper half plane. The second
condition says that E(z,s) is an eigenfunction of the Laplacian. Let me
explain what this means.

The simplest model of the hyperbolic plane is the upper half plane H,
with circles orthogonal to the x-axis representing straight lines. The two
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intersections of such circles are on opposite sides of the x-axis, so two
straight lines meet in at most one point. The angle between two straight lines
is what it looks like, the angle between their tangents. Given two points
A, B, the circle through A and B with centre on the x-axis is unique. It cuts
the x-axis in two points U, V (Fig. 3).

(UIZZJ B‘

(X21y2)

zy) A A [, )

U{u,0) Viv,0)

Fig. 3

The distance from A to B is defined as the logarithm of the cross-ratio d
= log (AB, UV). Draw lines from V to A, B, U, V, cutting the tangent at U
in A,, By, U, V;. V; is at infinity, so off the picture. Then

(AB, UV) = (4, By, UV)) = z,/z,.
There are various equal ratios, since U4 1 AV, UB 1 BV

Z — Y1 _ — (%, —u) Z3 - Va - —(x—w
U—v X, —0D y;, | U—U  Xg—V y,
Hence
o — 21 _ — (g —u)(x3—1) _ —Y1)2
22 Y12 (x2—u)(x1 —V)

We eliminate ¥ and v by symmetry:

sehdoiieif2_ = 12, x5 —(u+v)(x; +x5)+ 2uv}
2z Zy Yi)2
(e =x2)* = (xy =) (x; =) — (x5 — 1) (x— V) _ (x; —x2)" +yi +y3
1)z Y1¥2 ’
which is usually written as
_ 2
4sh?d—2chd-2 =zl
2 Y12

15 — Banuch Center, 1. 17
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Infinitesimally the metric is

dx*+dy*
Y
area is given by
dxdy
dp=—73-.
Y

The hyperbolic Laplacian must transform contragredient to the area, so it is

2 ﬂz_+_a_z_
Y \ox? oy? )

+b
If a, b, ¢, d are real, z—»Z

preserves cross ratios, so the metric is

az+b . ..
invariant under the action of SL(2, R). In fact, z — ot d gives all the rigid

motions which do not involve reflection.

Straight lines and circles in the Euclidean metric correspond to lines in the
hyperbolic metric as follows.

1. Euclidean circles or straight lines perpendicular to the real axis
represent hyperbolic straight lines.

2. Euclidean circles not cutting the real axis represent hyperbolic circles
(locus of a point a fixed distance from a fixed point.)

3. Euclidean circles touching the x-axis or straight lines y = constant
are called horocycles.

4. Euclidean circles or straight lines cutting the real axis at an acute
angle are hypercycles-locus of a point a fixed distance from a fixed line.

From now on ‘straight line’ will mean an hyperbolic straight line. Rigid
motions can be classified as

1. Translation along a straight line. Points not on the straight line move
along hypercycles. (Russian: giperbolicheskaya)

2. Rotations. One point fixed, all others move in circles. (Russian:
ellipticheskaya)

3. Transvections (or rotations around points at infinity). One direction
(or one point at infinity) fixed, all finite points move along horocycles.
(Russian: parabolicheskaya)

Some usefu] theorems and formulae:

GAuss's DEFECT THEOREM. The area of an n-sided polygon and its internal
angles add up to (n—-2)m.
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. . dxd
Proof (Fig. 4). The area is J.J‘ );zy- Integrating over y, this is

J 515
y v’

lower sides upper sides

Z3

Zy

Z,
Zy

Fig. 4

The sides are circular arcs, and

jl'd (r cos 8)

r sin 0

= f—ua.

A

Fig. 5

The contribution of one side to the angle-defect (n—2)n-sum of angles is
B —a, positive for lower sides, negative for upper sides.

CoroLLARY. The area of quadrilateral z,z,252, is
Im log (24, z3; 23, Z4).
A question: If the lengths of sides of a quadrilateral are fixed, is the area

greatest when the vertices are on a circle? This is true in the Euclidean plane,
Zenodorus’s theorem. It would give a nice proof that of all closed curves of
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given length, the circle has the greatest area, a fact I need in a later lecture. If
Zenodorus's theorem is true in hyperbolic geometry, it ought to be well-
knowable.

Some formulae: lines are best described by their endpoints on the real
axis.

Distance of z from line (a, b):

|z—b||z —a]
chd=———
yla—Db|

Distance of line (m, n) from line (r, s) (if non intersecting):
,d
coth 5= (m, n;r,s).
Angle between lines (m, n) and (r, s) (if intersecting):
tan? = = —(m, n; r, s).
an > (m r, )

Trigonometry:

Fig. 6

Cosine Rule: che=cha chbh — sha shb cosy,
sina _sinf siny
sha shb she’

Cosh Rule: cos « cos f+cos y = sin a sin f§ ch ¢, all fairly easy to check.

The circle radius ¢ has area 2(ch ¢—1), circumlerence 27 sh ¢. You can
see why it is called hyperbolic geometry.

Note that most of the area inside a circle is close to the boundary. 1 find
this very hard to visualise. It makes lattice point problems in hyperbolic
space very difficult and counter-intuitive.

Now suppose you take the hyperbolic plane and hit it with a hammer.
Think of it as an infinite thin sheet of metal. If you hit it simultaneously at
all points P which are images of a fixed point P, under I'(1), it will vibrate

Sine Rule:
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with the symmetry of I'(1). If you are lucky you will hear a pure musical
note. That means you have set it into a normal mode of vibration.
The Eisenstein series E(z, s) gives a normal mode of vibration

E(z,s)cosnt, n= c\/I =c./s(1-5s).

This is technically in the continuous spectrum, which means it has infinite
energy per unit area, so it is difficult to obtain in practice. You can get an
average over s of the Eisenstein series. The normal modes which carry finite
energy per unit area are called square integrable eigenfunctions. All but
finitely many of these die out at infinity — strictly towards icc. One that
does not is the trivial eigenfunction where the whole plane is moved bodily
downwards and then stops still in its new position. This one has eigenvalue
0, so you cannot hear it. The non-trivial normal modes of finite energy are
called the Maass wave forms.

3, The Kuznetsov Trace Formulae

So far we have produced the Epstein or Eisenstein series, which is a very
elaborate generating function for the divisor function. The aim of this theory
is to generate Kloosterman sums.

In the Euclid’s algorithm equation ad—bc = 1, it would often help to
know how d varies with a for fixed ¢, or how d varies with ¢ for fixed a. The
method of Kloosterman and Hooley leads to the sum

Sm,yno0= Y ¥ e(am+dn)'

amodc dmodc 4
ad = 1(modc)

The individual terms of the Kloosterman sum are functions of 2 x 2 matrices,
and the Kloosterman sum arises naturally in the Fourier coefficients of
functions “on D” (by which we mean invariant under I'(1) = PSL,(Z)). Put
h(z) = e(mx)g(y) and consider the sum

(o))

extended over a representative set of 2x2 matrices. This is Poincaré’s
construction; the case m = 0, g(y) = ° gives the Eisenstein series or Epstein
zeta function. Since

az+b_a 1

cz+d ¢ c(cz+d)’

it is easy to see where the factor e(an/c) comes from. In the formula for the
nth Fourier coefficient there is a factor e(—nx). There is a variable change
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that replaces z by z—d/c, which gives

a

Ze(%)e(zg) f e(—m Re chz)g (Im c—zlg)e(—nx)dx,

—a

after we have put all the terms together with 4 in the same residue class
(mod ¢). You can now see the Kloosterman sum appearing.
The idea of Kuznetsov and Bruggeman is that

-3

is a mode of vibration of the hyperbolic plane with the symmetry of I'(1),
and it can be analysed into Eisenstein series and Maass wave forms. More
precisely, they take two Poincaré series of this type, and calculate the energy
per unit area of the mode of vibration U, (z)+tU,(z), concentrating on the
term which is linear in t. The calculation can be done in two ways. The
‘unfolding method’ sketched in the first section gives the energy in terms of
the m,th Fourier coefficient of U,, an explicit but messy computation. On
the other hand, the energy is the sum of the energies in the normal modes.
Kuznetsov was able to choose a function g (y) for which these integrals came
out not in closed form, but in an usable one. This equality is the Basic
Lemma of Kuznetsov’s method. Next he picks an arbitrary analytic function,
and integrates to obtain the First Trace Formula, which I so name by
analogy with Selberg’s Trace Formula. It contains on the left the Fourier
coefficients of the Maass wave forms, which unfortunately are completely
unknown, and on the right a sum over Kloosterman sums.

At this stage there are two cases. If m and n are both positive, one can
choose a function which produces on the right-hand side the Kloosterman
sum’ zeta function

ao .
Zm.n(s) = ZS_M’
1 [
and on the left-hand side a convergent series of factorial functions. From this
we read off the poles and residues of Z, ,(s). There are rather a lot of these,
as it is an analogue of

1 1 1
{9 {s+1) Ls+2)

(Kloosterman sums are associated with the Mdbius function). The poles are
at

() s(1—s) = A, the eigenvalue of a normal mode,
(i) 40 where ¢ is a zero of {(s),
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(iii) %—1 if » is some other pole (now iterate).

The residues are explicit, except that they contain the Fourier coefficients
b;(n) of the Maass wave forms

() ~ i b;(n) e(nx) A (2rny).

One can now do a Mellin transform integral to pick out the coefficients
S(m, n; c) of Z,, ,(s). There are lots of poles, so we need a weight function

g(c) whose Mellin transform G(s) falls off like 1/t*. This gives Kuznetsov’s
Second Trace Formula:

1

e )

_ g amblbe 0 1 [ talm, e
,=1 ch & C(1+2if) { (1 2it)

S(m, n;c)

(_ l)k ’ m 2k-1
— : — G 2k—1) {J (2
¥ I n { ( .’an mn} ) 2k— 1 /JC)g
'Here the extra notation is Ay =3+%7, ¢,(Gay ) is the coefficient of a classical
modular form which arises from the trivial zeros of {(s ) in order to satisfy
Bruggeman’s Philosophy, and § ought to be called Kuznetsov’s transform

g(t) = _shnnv Jlm J 21 (2/%) g (x) dx.

Thus if g(x) is the piecewise linear function whose graph with 4 > 1 is

AN

a ad b4

-

Fig. 7

then
1/2
?Q(h—q\/—m——n)s(m,nm)<\/—{l+,/ (1——) flogfn} x

o oo

with M =2ra./mn, N = 2nb./mn.
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Many more elaborate means are in the paper of Deshouillers and Iwaniec
[9].

The case m > 0, n < 0 differs. The sum over residues of Z,, ,(s) does not
converge, but the Second Trace Formula comes out by a different argument,
with a very delicate inversion in it. The Kuznetsov transform is replaced by
a Lebedev-Kontorovich transform, and there is no term in the classical
modular forms.

To deal with congruence conditions in ordinary multiplicative number
theory we use the characters x (n) ds well as . In this theory, to sum c¢ over
multiples of some fixed Q, we go to the congruence subgroup I'°(Q) of the
full modular group I'(1). Since we require less symmetry, there are many new
normal modes. When Q is squarefree there are no essentially new Eisenstein
series, but for Q with a squared factor we get the Epstein zeta function of a
shifted lattice.

The difficulty arises from the cusp forms. For A = 1/4 the eigenvalue of a
Maass wave form is written as

Ay =g1+%;, % 20.

qu A < 1/4 we must write

A=Bi1=p), 12<p;<1.

For I'(1) we have A, =91.1413 ..., but eigenvalues < 1/4 are not impossible
on theoretical grounds. The number f; is analogous to the possible excep-
tional zero of a real quadratic L-function, so that

+1/2

S(m, n; q) ~ N2,

q
qsogn:odm g (Zn . /mn)

where the constant ¢ depends on m and n as well as on the weight func-
tion g. ‘

In the next four sections of this paper we use combinatorial geometry to
discuss possible small eigenvalues, in the spirit of Buser.

Background reading

BRUGGEMAN
DESHOUILLERS-IWANIEC
HOOLEY

KUZNETSOV

MAASS

MAGNUS

RANKIN
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4. Nodal ]ine theorems

In this section results on partial differential equations are sketched. An
eigenfunction means a function on the upper half plane H which satisfies

div grad f = —Af

in the hyperbolic metric. A domain will mean the inside of a smooth simple
closed curve. We say that a function g satisfies boundary conditions on a
domain D if one of the following conditions holds:

(i) g =0 on the boundary dD (Dirichlet condition).

(i) The gradient vector grad g points along the boundary, so that the
outward normal derivative satisfies

%9 _

P on 0D (Neumann condition).

(i) The boundary 0D can be divided into finitely many arcs which are
congruent in pairs, and g takes the same value at corresponding points
(periodic condition).

(iv) The boundary dD can be divided into finitely many arcs, on each of
which one of the conditions (i), (ii) or (iii) holds.

The boundary should be sufficiently smooth for the divergence theorem
to hold for a sufficiently differentiable vector u

,ds = [ [divudy,
éius ij udu

where u, denotes the component of the vector u in the direction of the
outward normal. When f is a nontrivial eigenfunction the contour lines of f]
the sets /(1) f9r some constant r, form smooth curves.

If now g is a function satisfying boundary conditions on D,

0g
§g'a—’;d5 —-0,

oD

and expanding div (g grad g) we have from the divergence theorem

[ flerad gl*du= — [ [g div grad gdy.
D . D

In particular, for an eigenfunction f satisfying boundary conditions on D we
have

J flgrad /1 dp = 4] [ d.

We introduce more terminology. We say f is an eigenfunction on D if
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(i) divgradf = —Af on D,
(ii) f satisfies boundary conditions on &D,

(iii) | ff?du converges.
D

With this convention the Eisenstein series is not an eigenfunction on D when
D is the fundamental region for the full modular group, but it may be an
eigenfunction on E for a subset E of D which does not include the point at
infinity (“cusp”) ico.

A nodal line of a function g is a curve on which g =0, and a nodal
domain is the interior of a smooth simple closed nodal line. A nodal domain
is minimal if no proper subset of it is a nodal domain. We show first that an
eigenfunction f has constant sign on its minimal nodal domains, and the
nodal domains determine the eigenfunction, in the sense that two linearly
independent eigenfunctions cannot have a common minimal nodal domain,

For fixed domain and boundary conditions, we number the eigenvalues
according to multiplicity A, 4,, ... and corresponding eigenfunctions, or-
thogonal in the sense that

IDMJ}du = byj

are numbered fi,f;, ... If a constant function satisfies the boundary con-
ditions, it will be f;, with corresponding A, = 0. In other chapters the zero
eigenvalue is 44, but to name it so here would upset the counting arguments.
We make the further convention that only eigenfunctions with eigenvalues
below the ‘continuous spectrum’ are counted. For our application this means
that if the Eisenstein series satisfy the boundary conditions on D, then we
count only exceptional eigenvalues, those with A < 1/4. We can now state the
nodal line theorems.

Horrs RULE. A nonconstant function g with div grad g < 0 cannot have a
local minimum.

Proof. Take a circle C with centre P, bounding a set E.
g . .
wn ds = div grad gdu < 0.
n

If P was a local minimum, there would be a small circle C with dg/dn > 0.
CoroLLARY 1. An eigenfunction changes sign across a nodal line.

CoroLLARY 2. A nodal line of an eigenfunction which enters a domain D
divides D into two non empty sets, and so must cut 8D again.

CoROLLARY 3. An eigenfunction with f =20 on D has [ >0 on D.
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A TEST FOR THE FIRST EIGENFUNCTION. If f is an eigenfunction on D with
f>0on D, then f minimises the ratio

jnf |grad g|?du/ | [g* du

among all functions satisfying the boundary conditions.
Proof. By the boundary conditions
2
g- o
— —ds=0.
fm®

oD

Applying the divergence theorem, we see that

0= jj ? div grad fdu+ JJ(? grad g-gradf—g; Igradflz)du
D

. [Joa ]

which gives the bound, with equality only if g is proportional to f.

grad g —-g); grad f

2
dp+ fflgrad gl*du,

b

CoroLLARY. If f is an eigenfunction on D with f > 0 on D, f must be the
first eigenfunction.

COURANT’S NODAL LINE THEOREM. The n-th eigenfunction on D has at most
n minimal nodal domains. If there are periodic boundary conditions, two or
more nodal domains which become connected if we identify the corresponding
arcs of the boundary are counted as one nodal domain.

The counting convention under periodic boundary conditions is best ex-
plained with a diagram:

Fig. 8
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Proof. Let f be an eigenfunction on D with nodal domains D,, ..., D,.
Let x, be the characteristic function of D; and choose real constants
Ay, -.., G-y SO that

g=(@ 1+ ..+ a1 -0 S

is orthogonal to f), ..., fi—2. The function g is continuous and piecewise
differentiable, and satisfies boundary conditions on each D;, so that

[ flgrad gi*du = A [ [g*du,
D; D;

and when we add up, the same equality holds on D. Since g is orthogonal to
fis .. fu_a, its Fourier expansion begins with f,_,, and

J flerad gl*du > A, | [g*dp.
D D
Equality holds here only if g is a linear combination of the eigenfunctions
with eigenvalue A,_,, of which there are finitely many. Such a linear

combination is itself an eigenfunction. Since g=0 on D,, g is not an
eigenfunction, equality can not hold and A > 4,_;.

CoRroLLARY. When the boundary conditions are Neumann or periodic, the
first non-trivial eigenfunction f, has two minimal nodal domains on D.

The lower bounds for eigenvalues which follow are based on considering
the vector grad f2. We use

[ flgrad f*|dp = 2§ [If||grad fldu < 2 {,[Effzd#fEﬂgradflzdﬂ}“z-
E E

If f has a maximum or minimum other than 0 on the interior of E, the
inequality is strict. If f satisfies boundary conditions on E, the right-hand
side simplifies and we have

jEjlgrad FAdu< 24( [fdu.

The next lemma is somewhat technical. Buser gave the first case, and the
second two cases work similarly in different coordinate systems.

Buser's LEMMA. Let C be an arc of a curve which cuts each straight line

only finitely many times. Let E be a region bounded by C together with
(i) two intersecting straight lines,

(i) two straight lines intersecting at infinity,
(iii) two non-intersecting straight lines and their common perpendicular,
Let g be a continuously differentiable function that vanishes on C. Then

[fa*du<4( {lgrad g|?du.
E E
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-
:

Fig. 9

If E is bounded, we may replace 4 by 4th*>R/2 in case (i), where R is the
furthest distance from C to the vertex, and by 4th*V in case (iii), where V is
the furthest distance from C to the common perpendicular.

Proof. In each case we take coordinates: polar in case (i), Fermi’s axial.
coordinates (used in Section 7) in case (iii). We prove only case (ii). Although
it uses familiar (x, y) coordinates, there is an extra complication, as we must
consider first E(Y), the set E cut off at y =Y. We have

0g*| dy dx J‘J&gz dy J[gz:l j' dy
rad y?3du > = == Zdx = ||| = |- |g* = dx
jﬁg yldp ijla‘y 3 oy y ’ 9"z

y
E(Y) E(Y)

2 2
S ”’g d;cdy_fg e ¥)
y Y

E(Y)

since the intersections of a line x = x, with the boundary of E(Y) are all on
C except the point (x, y). Averaging Y over Y, < Y < 2Y;, we get

2Y,
2 2 2
5 1 g d)zcdy d_Y_ 1 g szcdyZ g dfdy—o(l),
log 2 y Y log2 y y
Y=Y, EY) E(2Y{)—E(Y{) E

since g is square integrable. Expanding grad ¢g? and using Cauchy’s inequal-
ity as above gives the result.

TRIANGLE LEMMA. Let D be a triangle: a domain whose boundary forms
three straight lines. If g is continuously differentiable with

ffgdu=0, [fg*du=1,
D D
then

[ flgrad g/*du > 1/4.
D

Proof. By the calculus of variations, the third integral is minimised by an
eigenfunction f with df/dn = 0 on dD. Since f changes sign, there is a nodal
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domain E of f/ on D which contains at most one corner of the triangle. F is
bounded by a nodal line and possibly part of 4D, so that f satisfies
boundary conditions on E. In all configurations, case (i) or (ii) of Buser’s
Lemma applies, so that

J 77 dp < 4] Jlgrad /17 dyu = 4A] [1dp.

E
giving 1 > 1/4.
Buser's THEOREM. If @D is a polygon of r sides, with boundary conditions,

Ihen 1.,._1 2 1/4.
Proof. Divide D into r—2 triangles E,. Some linear combination

g=chi+...+c-1/-y
of the first r—1 eigenfunctions has

{fgdu=0 for i=1,..,r=2.

E;
By repeated use of the Triangle Lemma

| [lerad gl*dp = 5[ [g*dp,
D D

so by Parseval’s formula
r—1 r—1
2 1 2
Z cihi >3z Z ci,
1 1

which is impossible if 4, < 1/4 for i=1, ..., r—1.

If an eigenfunction f has a closed nodal line on the upper half plane,
the Triangle Lemma gives a lower bound > 1/4 for the eigenvalue A.
Cheeger’'s Theorem gives the same conclusion, with a better lower bound
(except when the nodal line is a circle).

CHeeGer's THEOREM. Let [ be a non-trivial eigenfunction. If f has a
nodal domain D of finite area, then

4n
> 1(1 +—).
U
Proof. As before

§ flerad fdu <2 /2[ [frdu=2./2,

since we can suppose [ to be normalised. Take curvilinear coordinates s, ,
where r=f? and s is the distance along the curves C(t) on which ¢t is
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constant. These coordinates are orthogonal, with
dsdt = |grad f?|dp,

so that

2. /4> (dsdt = [I(r)dr,
D

where [(t) is the length of C(f). The contour lines C(t) form a finite union of
simple closed curves (since f is an eigenfunction and infinitely differentiable),
whose interior has area p(t). Since the circle has the greatest area for given
perimeter, even in hyperbolic space,

{u(t)+2n3% < P +4n2,

1Z(1) 2 p2(t) (1 +4—“) = u? (1) (1 +i)
u(r) 1

- 4 \'? 4 \!7?
2\,//1 > J.l(!)df > (1 +m) J,u(t)dt = (1+p—(‘0—)) J\J‘Id,u

on integration by parts, giving the result.

In Buser’s theorem the polygon can have vertices (but not sides) at
infinity, and in Cheeger’s Theorem the nodal line can pass through discrete
points at infinity, so long as the area remains finite. I can extend Cheeger’s
Theorem to one type of nodal domain with infinite area, one which is
periodic in one direction only.

and

Fig. 10

When one considers n segments, there is an extra term from the periodic
part of the boundary, but it remains bounded as » tends to infinity. This
argument fails if the nodal domain branches with valency 3 or more.

Background reading
BANDLE

BUSER

HUXLEY



240 M. N. HUXLEY
5. The group I'°(13)
As exceptional eigenvalues are like exceptional real zeros of Dirichlet L-

cd
. 11N, o (113
13| b is called I'°(13). The smallest power of 0y re(13) is , SO

ab) .
functions, checking individual cases is of interest. The group of ( ) with

01
the copies of the fundamental triangle of I'(1) numbered —6 to 6 in the
diagram are distinct under I"°(13). The index is 14, so we need one more
triangle to complete a fundamental domain; it has been labelled co.

Fig. 11

Here triangle <o is opposite cusp o0. Since (1 )sends 3 to oo and oo to 4,

-3
: o : .. 10O\ (2 —13 5 ~-26
region 3 is joined to region 4, and similarly 11\ Ze and { 5

make region 1 join region —1, region 2 join region 6 and region S join
region 5 as shown in Figure 12.

Fig. 12

4 —13 5 —-26
The matrices ( { 3) and (1 5) are rotations, the first a rotation of

2n/3 about a point K, ¢+4, and the second a rotation of m about a point M,
5+i. Thus K is a branch point of order 3, and M a branch point of order 2.
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The branch points can occur because 13 =1 (mod 3) and also (mod 4).
There are two other centres of symmetry which we discover as follows.

1 0
representing a rotation of n about a point A4 =i./13, corresponds to the
Hecke operator W;; and gives a symmetry of the fundamental domain.
Conjugating by this matrix gives an outer automorphism of I°(13) sending

(a b) (-—d 13c)

— -
cd b/13 —a/

Since A4 is on x = 0, there is fourfold symmetry at A, and another symmetry
axis |z| = \/E intersects x = O there at right angles. It passes through K and
its mirror image the branch point L, o—3.

We now have sixfold symmetry at K, so that there are two more
symmetry axes through K at angles of 2n/3 to AK. One of these turns out to
be KM, making M a centre of fourfold symmetry. The perpendicular to KM
at M must also be a symmetry axis. It cuts x = 13/2 at right angles at B,
(13+i\/ﬁ)/2. Since x = 13/2 is also an obvious symmetry axis, B is also

a centre of fourfold symmetry. We can now re-draw the fundamental
domain.

: : : : 0 —13
Firstly x =0 is an obvious line of symmetry. Less trivially ( ),

wly

w|g

M,

16 — Banach Center, 1. 17



242 M. N. HUXLEY

The other corners are M,, (5+i)/2; B,, (13+i\/ﬁ)/28; B;, (—13+
+i/13)/28; Ny, (—5+i)2; L, ¢+3; N, —5+i and B,, (—13+i./13)/12,
all centres of symmetry. We see what is called the pin-cushion distortion
in optics. We can look at the hyperbolic plane only through a wide angle
lens, which compresses the whole plane into a circle or a half-plane.

The arrows indicate how the sides are identified. Since the arrows do
not cross, the topological genus is 0, which is allowed when there are branch
points. The subgroup I'°(78) of index 12 in I'°(13) has a fundamental
domain twelve times as large, with no branch points, but high genus.

The fundamental domain has all these symmetry lines, but a Maass
wave form can be either symmetric or skew-symmetric across symmetry lines.
There are four cases.

(i) f skew symmetric across 0 to co and |z] = \/ﬁ . The lines 0 to oo,
LAK and ooB are nodal. By rotation about K, KM is also a nodal line.
Finally BM is also a nodal line. For if P is a point on BM, P, the
corresponding point on B, M,, f(P) =f(P,) since the boundary conditions
join BM to B, M,. But f(P) = —f(P,) by reflection in LAK, so f(P)=0.
Since f is zero on the sides of the pentagon coAKMB, whose area is 7m/3,
we have A > 19/28 by Cheeger’s theorem.

(1) f skew symmetric across 0 to oo (and hence also across oo to b), but

symmetric across |z| =./13. This case is best put aside.
(iii) f symmetric across 0 to oo and across |z| = ./13.

(iv) f symmetric across 0 to o0 and skew symmetric across |z| = \/ﬁ .

We can treat cases (iii) and (iv) together. Since f is zero at the cusp ico,
a nodal line passes through co, and we have at least one nodal line in each
quadrant.

|

I
|
i
I

r | Y

| 1 [

] | \

! ; \\

&- ; X
\ i 7

\ i /

\ | /

| | I

L i ‘
|

N | /’J

\ ) V4
\ | /
\-—“'—‘\\ | ,1—-—-~J

The nodal line that enters the pentagon co AK MB must cut one of the
sides again, and we have five cases. If it cuts oA,
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there is a nodal domain of area at most 14n/3, and 1 > 13/28, We now
redraw the fundamental domain with B at the centre.

. Qo
A A A
F=="\ "=
/ ' \
’/ = \\ )
K<~ | Sl
f\ | /7
N % /
\ | /
| | /
R
/ ' \
/ ! \

4 | AN
KM.I | —
N I »”
\\ | ,/

\ | /
N
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We now see as before that if the nodal line cuts coB there is a nodal domain
of area at most 7r/3, and if it cuts BM there is a nodal domain of area at
most 14mw/3.

Finally, if the nodal line crosses KM we have the diagram.

=]
1
i
I I
Kl i v
e ——— e — — [
M 8| N
I |
1
|
1372
Fig. 18

Since M and N’ are centres of four fold rotational symmetry, and KM, L' N’
are lines of reflectional symmetry, repeated reflection in KM and L'N
produces a long thin nodal domain, repeating at a distance 4BM, a so called
“worm”. By the extension of Cheeger’s Theorem, 2 > 1/4. In case (iv) we also
have BM as a nodal line; the conclusion remains merely 1 > 1/4.

To discuss case (ii) we draw a picture with K at the centre. This is not a
fundamental domain, but three right-hand halves of a fundamental domain.
This picture is consistent with f > 0 on the right-hand half of the funda-
mental domain, and f < 0 on the left-hand half. The copies of KMK' form a
tree with valency three, so the nodal domain branches repeatedly.
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This is the first case in which combinatoric geometry fails, and one has
to calculate. However, there cannot be two exceptional eigenfunctions, since.
they must both have this pattern of nodal lines, and since f; is orthogonal to
fi, f» must change sign on the domain shown. If we put in another nodal
line, there must be a bounded nodal domain or a worm, and so 1, > 1/4.

Background reading
ATKIN and LEHNER
RANKIN

6. Numerical bounds for the first eigenvalue

Upper bounds for eigenvalues are easier to find than lower ones. Construct
any function that satisfies the boundary conditions, and calculate the in-
tegrals of g2 and |grad g|%. For instance, if you know where the nodal lines
are, take g to be the distance from the nearest nodal line, so that grad g is an
unit vector. If E is the nodal domain

n(E) = { flgrad gi*dp > A{ [g*dp,
E E

so that
1/ > d*,

where d is the root mean square distance from a nodal line. We use this in
the next section. The calculation could be made in the outstanding case on
re(13). I would expect it to get within a factor 2 of the true eigenvalue,

Lower bounds depend on finding a point Q where f(Q) =0, drawing a
curve from P to @ and using

£(P) = [ grad fas,
Q

so that for any positive function h(s)

P p
|grad f1?
fz(P) < J‘—T(S)—- ds jh(s)d.&‘.
Q Q

We use a weight function as we must integrate P over the fundamental
domain, and the same point Q is used for many points P. We want h(s) large
near (, and small away from Q. The weight k(s) should be as close to the
component of grad / as possible, so it is often best to choose it as the
derivative of an eigenfunction which vanishes at @, but may not satisfy all
the boundary conditions. This is quite feasible when the eigenfunction on D
is skew-symmetric at the cusps. On Ir°(N) for N =13, 17, 21, 22 and 28 the
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method based on Cheeger’s theorem only fails for skew-symmetric functions,
and calculations by Alan Cohen in Cardifl give:
N | 13 17 21 22 | 28
A >10.29...[0.28.../0.20.../0.23...[0.54...

This settles N =13, 17 and 28, but not N =21 or 22

When no nodal line is known explicitly, life is much more difficult. Since
our functions are cusp forms, we can try Q = oo; this gives the bound 4 > 0.
However Hopfs rule applies even at cusps, so a nodal line passes through
the cusp, and each horocycle y = constant cuts some nodal line in the
required point Q. In the diagram the cusp is ic. '

- ———
- -

Fig. 20

We can save about five lines of argument by using the Fourier expan-
sion, which will be of the form

fu)~Y a,(y)e(%),

LES]

so that for fixed y

wf2 wf2
dx w? 2min 2w of |* dx
287 _ PSRN il idisls = =,
J‘ P = L1a0l<gs b == al) =70 J o e
- wf2 —-wf2 I

However if P is near the bottom of the fundamental region, all points Q on
the same horizontal line with f = 0 may be outside the fundamental domain.
For a subgroup of the full modular group I'(1) a trick due to Roelcke and
Vignéras does this quite efficiently. Draw the fundamental domain as an
union of copies D; of the triangular fundamental domain for the full modular
group. Let E be the lune (region bounded by circular arcs) between |z| = 1
and y = ﬁ/Z, and let E; be the image of it corresponding to D,.
The idea is that
[ du< 1 fdu

D; D+ E;
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There will be a certain number of triangles D, corresponding to each distinct

cusp in the fundamental region. Experts call this number the width: it is the
w in the Fourier expansion above. We integrate f2du over these w copies of

by

E

Fig. 21

D, U E, using the inequality above on the integration over x, taking out 1/y?
at its maximum value 4/3, and w? at its maximum value N2, where N is the
level of the subgroup, the lowest common multiple of the widths at the cusps.
Here comes the cunning part. Under the rules for joining up the fundamental
domain, each E, is a subset of some D,;, where ¢ is a permutation (in fact an
involution) of the cosets of I' in I'(1). So the integral over all the E; is less
than or equal to the integral over all the D;, and we have

”ﬁdu\——zjﬁ d P S =2 ”ﬁdn,

D

since

2 2

TP _ lgrad f1?

J’E; +y—a;

in the hyperbolic metric. We deduce that
A>3n?/2N*, A>1/4 for N<T.

When I first understood this argument, I thought it must be very
wasteful; now I am not so sure. The other obvious thing to try is:

l &

Fig. 22



248 M. N. HUXLEY

Some notation; let a be the minimum of y on the domain in the picture, P
be (x, ¥), R be (x, u). Then

u

0
£ ) =1 (x, 1) — j % (x, o) do,

y

f2(x, y)s(l i)f (x, w)+(1 fk){fafyr(x v)dv}

y

and the usual argument takes

et <o g

What do we choose here? Not merely h(y), but also k(y) and u(y) are
functions of y. Their best choice depends on a, which should really be
considered as a function of x. There will also be a best weight function on
RQ. To optimise them all is a nasty problem in the calculus of variations,
non linear because of the presence of k(y). If you let k(y) be constant, at
least it is a linear problem, but then you lose most of the saving.

To make life easier

m.

h(w) = v—a for a<v<2a,
" a for v>2a.
7a2 1 8y2
ko) = =2 _&
) yt—ga? T T 72
The other function u(y) will be chosen shortly. We want
2 2a
d
f f 5 /2 (x, u) y+
y?
2a
y? dv dy
+Jy2_—%az(a(u—2a)+% 24y~ —a )t

In the second integral we interchange orders, making it

e

v=a y=a
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e ]

u” 1)
a(u— %y a) dy dv
y —~3a? v—a

The only thing to do here is to choose the integrand of y to be constant

T e T -2
P v wmer g

and the complicated term is

2
dv.

[ o
4 ”5“"”

The simple term now becomes complicated, from

8 29a/2 d 8 o f2( )d

o 2 _9S 2 X, uyau

qumw ffum mzf W,
u=2a u=2ag

Finally
dy 1
Jfl(x, y) 7 gr‘z sz(X, y)dy.
) 2a

Recall that a is really a function of x: now forget it again. For simplicity we

treat it as constant, \/5/2 in fact. So
w2 m

wil o
2 2
5 W 1i /o
j j frdyax <35 J _[28a2(6x> dydx.

2842
~w/2 2a

-wf2 2a

Now
af 2 5f 2
29, _
lgrad f|* du = ((6x) +(6y) dxdy,
SO we have

w/2 @
11w?
-[ J‘fz dﬂ < max (4, m) J< J.]grad f|2 dﬂ.

—w/2 a(x)
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So if the level N has
448
< —=173...,
N<na T

we get the inequality with <4, which gives 4 > 1/4.

THEOREM. There are no exceptional cusp form eigenvalues on any sub-
group of level < 17. So there are no exceptional eigenvalues on I'°(N) when
N|m? for some integer m < 17.

Note 1. This theorem covers all the cases I can do by other means.
Note 2. Finite level does not imply finite index!

Note 3. I can get N < 18.1 from more complicated choices of the weight
functions., Machine calculations will be the next step.

Background reading
BANDLE

BUSER

HUXLEY

7. Exceptional eigenvalues in genus zero

/3
P
R
Q \
-1 -2 x-r 1 x X+r

Fig. 23

In this section we give explicit examples of groups for which the first
eigenvalue is less than 1/4. By varying the construction we can have the
eigenfunction zero at the cusp oo (a cusp form) or tending slowly to infinity
(a Maass wave form in the Eisenstein system). Qur construction resembles
Buser’s Y-pieces, so that there will be subgroups for which there are
arbitrarily many exceptional eigenvalues.

We start with the unit circle and the line x = —1/2, intersecting in P,
exp (2ni/3). For a variable x > 1 we let QR be the common perpendicular
from (—1, 1) to (x, ), represented by the circle radius r, where x> —r? = 1.
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The distance QR, d is given by

d -1
thz_i:z_-{-l’ x=Chd, r=shd.

For the distance PQ, D, we have the more complicated formula

_lx+r—pllx—r—g| 2x+1 _x+2

2r Im ¢ —r\/j’ _rﬁ'

Reflecting the quadrilateral co PQR in its sides gives a tiling of the hyperbolic
plane, with sixfold symmetry at P, four fold symmetry at Q and R. The area
of the quadrilateral is 2m/3.

First we consider eigenfunctions symmetric in coP, PQ and ooR, but
skew-symmetric across QR. Their symmetry group has a fundamental region
consisting of four copies of the quadrilateral. It has two cusps, two branch
points of order three, and genus zero.

ch D sh D
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] | \
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/ : \
i
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S/ \\ Il /’ s!
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Fig. 24

To estimate the first eigenvalue, we take the Fermi hypercyclic coor-
dinates u, v, where u is measured along QR, v is the distance perpendicular to
QOR. The differential of area in these coordinates can be calculated to be

du = ch vdudy.

An eigenfunction with this symmetry satisfies boundary conditions on the
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quadrilateral coPQR. Let E be the inside of this quadrilateral. Using the
coordinate v as a test function, we have ’

Agf [v?du < § [lgrad v|*dyu = § fdu = 2n/3.
E E E

The coordinate v is not constant along coP. Its least value is the shortest
distance ¢ from ooP to @R, given by

e & =x+1/2-r’ ch ¢ =x+1/2'
2 x+1/2+4r r
Let E, be the set of points within E with v < c¢. Then
d ¢
ijzdyz fjvzdu = ffvl ch vdvdu
E Eq 00

=d((c®+2)shc—2cchc)>d(c~1)*che

(c—1)*d(2x+1) =(c—1)2d(2 chd+1)

2 3(c— 1)
2 2shd ze—1)

We deduce that
4r

-1

which is less than 1/4 for c sufficiently large, and thus for x sufficiently close
to 1. We find that for r = (x2—~1)"/2 < 1/20 there must be an exceptional
eigenvalue, By Courant’s nodal line theorem, the first eigenfunction is zero
only on the line @R and its images under the symmetry group, so it is not
zero at oo, We can also see this from Cheeger's Theorem, by drawing nodal
lines through the cusps and considering all configurations, and showing that
they lead to A > 1/4. The Eisenstein series for this group will not be an
Epstein zeta function, but will have a pole at f#;, where f,(1—8,) =4,.

Next we consider eigenfunctions symmetric across coP, QP and QR, but
skew symmetric across coR. Again the fundamental domain for the symmetry
group consists of four copies of E. There is one cusp and four branch points,
two of order two and two of order three. The genus is zero.
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We take Fermi coordinates with u measured along Roo, v at right angles. As
before we have

A [ [v?du < 2n/3.
E
A suitable subregion E, is more difficult to construct. Let the hypercycle

consisting of all points distance d from coR cut (—1/2, w) at M. Let N be
the foot of the perpendicular from M to (x, o). The coordinates are

i(x+3 :
My —3 10D XD
r r
The distance RN is given by
x(x+4) x(x+3) _ 1
c=lo =lo >
- E— 0 81 T 2x
N
[+
R
M d
i
-1 -1/2  x-r 1 x x+r
Fig. 26

We take E, to be bounded by QR, RN, MN and the hypercycle, with

b d
[ Jo*du=[ [v? chvdvdu > c(d—1)? ch d > $(d—1)?,
Ex o0

and we deduce that A, < 4n/3(d—1)?, which is less than 1/4 for d sufficiently
large, for instance when x > 1982. The first eigenfunction changes sign only
on the images of (x, c0), and is a cusp form: its mean value is zero along any
horocycle centre co.

These eigenfunctions have symmetry groups of index two in the group
generated by the rotation T; of n about R, the transvection T, at co and the
rotation Ty of 2n/3 about P, where

(xfr (1=2xY)r 1 241 1 -1
Tl_(l —~ Xx/r )’ B_(O 1 )’ 73—(1 0)'
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Our eigenfunctions satisfy

f(T2)=x(D)f@, x(T)==*Ll.

For suitable values of x the T, are all in SL(2, Q).
If m> 3964 is an integer, there is an exceptional cusp form with

W) =-1, x(B)=-1, x(B)=1,

where
m?+1 m*+1 : m2+m+1
mi—1  mmi—1 m
.- ")
2m m-+1
— 0 1
m2—1 m2—1

If m > SO is an integer, there is an exceptional function in the Eisenstein
system with

y(T)=-1, x(M)=1, x(hH)=1,

and
m?+1 m*+6m+ 1 ) Im?+1
2m 2m(m?—1) m?—1
’Ii = 2 2 , Tz=
m“—1 m-+1
~ 0 1
2m 2m

Background reading
BANDLE

BUSER

HUXLEY

8. The spectral theorem

We say f(z) is automorphic when f(yz) =f(z) for each y in the discrete
subgroup I' being considered. In Bruggeman’s lectures I' was arbitrary; in
this account we take I' = SL(2, Z). For SL(2, Z) and its congruence sub-
groups the Eisenstein series are explicit functions: for SL(2, Z) we know
from Section 1

@™ @ ys
E(z,5)= ¥ (Im 32 =1 o
@9= 3 (myf=3 L L joiae

(ed=1
for Re s > 1, with a meromorphic continuation for all s, with a single pole at
s =1, residue 3/m = 1/u(D), where D is a fundamental domain. The sum over
{T>»y means a sum over the cosets in PSL(2, Z) of the transvection group at



INTRODUCTION TO KLOOSTERMANIA 255

oo generated by T: z— z+1. For arbitrary discrete groups the existence of
the Eisenstein series is a technical problem, and it is probably easier to
follow Faddeev’s approach from the theory of differential equations.

When f(z) is automorphic and square integrable (feL?(I'\H)) and
Res>1

f fE(z, ) f (@) dp = f Y, (Im yz)°f (z) du

(T
D D
o 1/2
—_dxd
=Z”f)” ffysf( axdy
(THy

i
Ot—u13g
<
5
ule

where f;(y) is the term independent of x in the Fourier series

f(z) ~ Zf.,(y)e (nx).

This remains true by analytic continuation as long as both sides converge
absolutely. However to ensure convergence we work with continuous func-
tions of compact support. Let g(y) be a piecewise differentiable continuous

function, non zero only on a bounded interval a < y < b. Let -
b ©
G(s) = jg’(y) ds =fg(y)dy

ys s s+ 1
0

a

be the Mellin transform of g(y); it is an entire function. We require that for
each fixed o as t -

Glo+it) <€ 1/t%;

this certainly holds if g(y) is twice differentiable. Let L be a line Re s = &,
with o, > 1. By the usual Perron’s formula argument

b x
1 ]_ dS — ! —_
L fowxras - fﬁff(i) g0y Jg B dy = 903,
L a L a

We form an automorphic function by

= Y g(Im yz).

(THy
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The sum is finite, but we may rearrange it as follows:

H(iz)= ), % j(lrn vz)* G (s)ds = ?%JE(Z, 5)G(s)ds
L

{THy

where we may interchange summation and integration by absolute conver-
gence. On moving the contour we see that

H(z) = % G(1)+2im, f G(s)E(z, s)ds.
Res=1/2

When f(z) is automorphic, the same argument used above with the
Eisenstein series gives

(H,]) = ”H(z)ﬂdwfg(y)fo(y)%%.

D

As special cases
a0

(H,1) = fg(ﬁ)fy —6(),

0

] E , ) d
(H(2), E(z, S))=Jg(y){y’+(w%s_)—s)) y! ’}y—f

0

- G(1—§)+EE(Z’ )

5615 °®

We now have

[ (H(@), E(z, 9)E(z, sydt = [ {G()E(z, 5)+G(BE(z, 3)}dt

Res=1/2 Res=1/2

=2 [ GEE(z s)dt,

Res=1/2
so that we can write

3
H(z) = \/% (H(z), \/%)_}_4_; J (H(2), E(z, 9)) E(z, s)dt.

Res=1/2

This implies a Parseval theorem

- )

2+—1— J (H(2), E(z, 9))dt.
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We define the cusp space M, to be those automorphic functions for
which

[ [17@)1*du converges,

D

foy)=0.

If feM,, then for any H(z) as constructed above (H, f) = 0. If f¢ M,, there
is a permissible function g(y) with

[
fg(y)fo(y) ;%;e 0,
0

so for the corresponding H(z), (H, f) # 0. By Hilbert space theory we can
write any square-integrable automorphic f as fg+f., where f.e M., (fz, @)
= 0 for any ¢ in M,, and f; can be approximated by a function H(z) in the
sense that for any ¢, there is an H(z) with

(fe—H, f—H) < 2.

Hence for any fixed T

(fe, f&) = ‘(f, \/‘?:‘)

and as T — oo the right-hand side approaches the left.
In the cusp space we shall have orthogonal eigenfunctions f7, f, ... with

12 +iT
2 1
+ZT—t j I(f,E(z, s))|2dt,

1/2-iT

D

(fer S = XIS I

1

To prove this it is sufficient to show that for any v > 0 there is an N such
that any N-dimensional space of square-integrable automorphic functions
contains a function f with

[ [lgrad f1*du> v {12 dp.
D D

We divide the fundamental region for the full modular group into triangles,
of which one contains the cusp, the others are bounded (Fig. 27). We restate
some calculations from Section 6.

Cusp LEMMA. Suppose f(x,y) satisfies for each y
wj2

flcw,y)=f(x, ) and [ fx )dx=0.

-wf2

17 — Banach Center, L. 17
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Let E be a domain bounded by x = +w/2 and a curve y = a(x). Choose
b= max a(x), ¢ < a=min a(x). Then

filfidu< Kj'Ejlgradflzd,u,
E

K (b—a)* 4n* 1+ d*—c?
= max 2(a’—c?)’ w? \b?* alb—a)c*))

where

VAVAVAVAVAN

Fig. 27

We take E to be the triangle containing the cusp, so that w =1, a(x)
= (a2 —xH)12 a; =(a—1/4)"2. If a, is large enough, we may choose b and ¢
so that K < 1/v.

Having now chosen a,, we divide the rest_of the fundamental domain
into triangles E,, ..., Ey of side < 2 arg th(1/2 \/\7). Any N-dimensional
subspace of the cusp space M, contains a function f with

[ffdu=0 for i=2,...,N,
E;

and by Buser’s lemma and the Triangle lemma

Hmzau < f f lgrad f12dg,

E; E;

so that summing over the N triangles gives the inequality required.
From this an expert in Hilbert space theory (which I am not) concludes
that the Laplacian restricted to the cusp form space corresponds to the
inverse of a compact self-adjoint operator. Hence the cusp form space can be
spanned by orthogonal square-integrable eigenfunctions, the Maass wave
forms., The words ‘cusp form’ are usually reserved for Maass wave forms in
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the cusp form space M,. We number the orthogonal Maass wave forms
Jisf2, ..., and normalise them by

(.ﬁ‘s j_}) = 6U'
If we write f, = ./3/m, the Parseval formula is
Uf) = o J)+Uo 23 = U+ f (/, B, §+in)dr.

= a0

If f and h are two square integrable automorphic functions, we deduce that

(f, b= iff) (fis h)+— f (f, E(z, 9))(E(z, 3), h)dt.
0.
Res=1/2

Further reading
KUBOTA
SHOWALTER

9, Bessel functions

A section on Bessel functions is needed, firstly because the properties of
Bessel functions which we use are rather recondite — some discovered by
Kuznetsov himself — and more importantly, because the Bessel function is a
continuous analogue of the Kloosterman sum. Let

F(x, 1) = exp (Ix(l+l)) Z I, (x}A".

The Bessel coefficients I,(x) are means of F(x, 1) round the unit circle. Since

a 2 a 2 5
(JCE) F—(l-éz) F=x F,

we have
d 2
(x —) I, =(x*+n?)1,.
dx
Similarly
1 m
(x, A) = exp ({rx( —I)) =3 J,(x)A"
gives
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We shall require I,(x) when s is not an integer. If

* fm=fﬂxﬂsi,
. OV p B _ g [P
(2o et e o8

M

provided that the contour M is such that the integrated terms vanish when
we integrate by parts. For Re x > 0 we can take M to be a loop from — o
around the origin and back to —oo, and put

1 di
umzwﬁuawp

M

for other nonzero x we rotate the loop M so that Re Ax - —c0 as |A] - o
on M. A variable change u = $Ax gives

L(x) 1 —l—ex u+£. du
X ;i | 2 P 4u)s+1°
M

the right-hand side is an entire function of x. If s is an integer, the integral
along the loop M is the same as the integral round the unit circle, and we
recover the previous definition. If Re s < 0 the integral along M is the same
as the integral along the negative real axis taken twice with arg u changed by
2n. We see that

[=#}
I ( _, dt
11_1}(1) f 2”1 {cis (—sm)~cis st} —71 S

sin §7 1 ST 1

_ e = : q—s—1 =
TCZS JS_ 23nl:ilil.s_ zsji’

where we have used various properties of the factorial function. By analytic
continuation the integral still represents 1/2°-)s |s for all s. The differential
equation now gives the familiar power series

o] (1 x)s+ 2r

S ey

_ @ (__ l)r x 2r+s
Js(JC) —-,-;olim (:2') .

and similarly
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From the integral definition or from the power series various recurrences
follow:

xJ;+SJs=xJa—1, XJ;—SJ:= —x‘]s+1a

25
Js—1+Js+1=;Jss Js—l—Js+1=2J;

and one which Kuznetsov uses

d J,
—1)Jeoy— NJeyr = _—
(S ) s—1 (S+ ) s+1 2SJC dx x

Kuznetsov also requires Neumann’s inversion of the power series:
x} 2 |s+n—1

' | (~) = ) (s+2n) === J,1 3, (%),
2 n=0 E

To see this we IOQk at the coefficient of (3x)**2* in the expansion (which is
absolutely convergent). It is

(s+2n) s+n—1 (=1f
ntr=u Ji]r_ |r+s+2n

_LSI_SL"'_ZE Z (s+2m(=s)...(=s—n+1)(s+2u)...(s+2u—r+1)x

[*
xm|u-n'

and the sum over n is the value at x =1 of

d \¥ i ‘s d u—1 el st3
8 8 u s xs u
s(——dx) x X 2su(dx) x ,

which is s for u =0, but for u >0 it is

2u 2u—1
s—I:—2sul—_=0.
I Ll

T

M

Fig. 28
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'Returning to the integral definition, we can take the loop as:

M,: straight line —oo to —1,

M,: the unit circle,

M,: straight line ~1 to —co.

On M, and M5 we put A =¢cis +m, on M, we put A=cis 6. Then

2n

1
=;1t- J~ exp (—xch t) sin sm-e “‘dt+2n'[exP(XCOS 6) cos 56 df;

0

the integral with sin s is zero by symmetry. The integral round the unit
circle can be eliminated by subtraction:

I_ (x)—1I,(x) = sin st Kh,(x),

2
Kh,(x) =— J exp (—x ch t) ch stdt,
T
=0
which is Macdonald’s integral, valid for Re x > 0. It can be transformed as
follows:

O

Kh;(x) =% J exp (st—x ch t) dt

~an
a0

1 x(, 1\ ooy, 1 [271d)
*Ef °"P(‘5(“z))‘ 4= %f Fod)

0

another integral of the same type as the one defining I,(x).
We can integrate G(x, 4) from 0 to 1 along the real axis. This leads to

Hankel’s integrals

2 dA : 2 dA
HSS(x)=2_TEI'j‘ ( A-) FIEEK Hls(x) 2 l ( )As+1’

s

where the contours consist of
S,: straight line 0 to 1,
S,: clockwise semicircle from 1 to —1, with Im 2 > 0,
3! straight line —1 to —o0;
I,: straight line —o0 to —1,
I,: clockwise semicircle from —1 to 1, with Im A <0,
15: straight line 1 to 0.
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Then
2J, = Hs, + Hi,,

and the other ‘familiar’ Bessel function is given by
2iY; = Hs, — Hi,.
There are now many relations between our six functions.
I (x cis (n/2)) = cis (sn/2) J,(x),
Js(x cis (n/2)) = cis (sn/2) I,(x),
I (x cis m) = cis (sm) I(x),
Js(x cis ) = cis (sm) J,(x),
Kh_,(x) = Kh,(x),
Hs, (x) = cis (—sn) Hs _,(x),
Hi, (x) = cis (sm) Hi_, (x),
Kh,(x cis (n/2)) = i cis (—sn/2) Hi, (x),
Kh,(x cis (—n/2)) = —i cis (sn/2) Hs,(x).

Hence

J,(9+7 -, (x) = —i cos 7 {Kh,{x cis (%/2)— Kb, (x cis (~w/2)},
ST
2 l

In the Kuznetsov theory s is usually pure imaginary, and Macdonald’s
integral

Jy(x)—J _(x) = sin — {Kh,(x cis (n/2))+ Kh,(x cis (—n/2))}.

Kh,(2) =%J‘cxp (—zcht)chstdt
0

still converges on Re z =0, so by continuity the integral still represents
Kh,(z), and we have

Khy, (iy) = Khy, (—iy) =

Ao

J 2i sin (y ch 1) cos 2tudt,
0

2
Kh,,, (iy) + Khy, (—iy) = - f 2 cos (y ch t) cos 2tudt,
0
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and

h
J2.ON+J - 20 (¥) =4Cn i jsin (y ch t) cos 2tudt,
0

a0

Jaon (W) —=J -, (¥) = fcos (y ch t) cos 2tudt.

.
0

4i sh nu

These integrals converge at infinity although the integrand does not tend to
Zero, since integration by parts yields

an

jsin (y ch t) cos 2tudt

T

_ | —cos{ycht)cos 2tu |° % cos (y ch t) sin 2tudt
B ysht r sh t
T

<(1+u)y~te T,

At times we will wish to know the orders of magnitude of Bessel
functions. When x? = o(|s|), the first term dominates in the power series for
J, and I,. For large x we estimate by the saddle point method. The integrals
involving F(x, 4) and G(x, 1) are suitable: F(x, A) has stationary phase at
A= %1 G(x, A) at A = +i. For x real and large compared with s, the results

arc

exp X

I, (x) ~ Ny

~ COS$ (x—EE—E) (2/nx),

hg (x) ~ exp (—x) /(2/nx),
Hs, (x) ~ cis (x—%—%)\/(Z/Tx)

Hi (x) ~ cis (—x+%n+g)\/(2/nx),
Y,(x) ~ sin (x—i;—-;—), (2/n%).
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These bounds actually hold uniformly in regions of the type Re x = R,
larg x| < (n/2)—&. We shall use them only for real x — +00 to verify that
certain integrals converge.

We are taking the basic properties of the factorial function as well
known (the functional equation, Euler’s integral and Legendre’s duplication
formula). It is surprising how factorials appear in integrals with no ex-
ponential factor.

BETA-FUNCTION LEMMA. For Rea > —1, Re > —1

j = = |8
(1 +uy*p+2 e+B+1°
0

Proof. By Euler’s integral
18 = j' j' e I yPdydx = [ e” j x*(z—x)fdxdz.

x=0y=0 z2=0

Now put u = x/y = xf(z—x). We find

8

-]

ua
— J J a+ﬂ+1 (1+u)a+ﬂ+2 dudz

z=0

which gives the result.
We can now prove Mellin transform theorems involving Bessel

functions.
THeOREM. For Re a—|Re f| > —1

Ju Khﬁ(u)du—zla+§ 1}“ g L
0
r |a+ﬁ |ac—-ﬁ

Juﬂe'"Khﬂ(U)du = 2“\/7—; a+1/2.
0

Proof. Using Macdonald’s integral we have

- 2]

j u*Khy(u)du =

0 u

f u*e " ch frdtdu

0

Al
,'_.',‘—as

aD

ch ft il ___—em dt;
Il cht"“ T (Ch )
0

c‘-lll\)
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the double integral converges absolutely, so we may interchange integrations.
When we put v = e?, the integral becomes

an

E 2¢+1 v(a+ﬂ+l)/2 @
(v+1)2%1 20

! R
P 0
Similarly
- 2 — u(1 +chr)
ue "Kh,(u)du=—1; ue ) ch frdtdu
0 u=0
2 a A h t a r eﬂ‘
= ch P +1 dt:L 12 1L ,-1t/2 ar7 dt
s (1+ch 1) n ) 3 +e )

when we put v = ¢'. We have simplified the answer using Legendre’s dupli-
cation rule

’21+1 =22a+lﬁlﬂ/\/&-'

We also require the inverse formulae connecting factorials with Bessel
functions.

THEOREM. Let x be real and positive, and let M be a contour from ~ co to
the finite plane and back to — oo such that all the poles of the integrands lie to
the left of M. Then:

1 [[s—%+ia|s—3—ia -
2mi x?.s ds = —; KhZI'ﬂ (2x)5
M

| (cos ms|s—3+ia|s—3—ia _

T
i e ds = Tx ch na 1 21a(22)+ T _ 30 (2%)},
M
1 (sin ns|s—3+ia|s—3—ia i
— ds = ———— —J_ )
2mi f x2s 5 2x sh na (210 (2= 210 (23)}

M
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-%+m -3 +ia

x x M
1_; 1.

x27" x1™" )

Fig. 29

17

Here a is not required to be real, and M may be replaced by a line L: Re s
= ¢, with indentations to carry the contour to the right of the poles. For
convergence on L in the second and third integrals we must have C < 0.

Proof. If o, is not the abscissa of a pole, the integral along the straight
line segment 6o— N—iT to oq—N+iT, where T is fixed, tends to zero like
x?¥/(|N)* when N tends to infinity through integer values. Hence the
integrais are the sum 'of the residues at the poles. The poles of |s—3/2+ia
are at § = —n+1/2—ia, with residue (—1)"|n, for n =0, 1, 2, ... Taking the

third integral as an example, the residue at this pole is

x2n=1+2ia (=1

T |—n—1=2ia sin n(—n+4—ia)

w-l+da ch g n(n+ 1+ 2ia)

" n+1+2ia sin t(n+1+ 2ia)

X

3 xln—1+2ia Ch na P
~ jn p+2ia (=1)*ish2na
. w v L2n+ 2ia
] L |
2x sh na n ]n+2:a

which leads to the series expansion of the Bessel function.

CoRrOLLARY. Writing ia = u and rearranging

ix (cosm(s—u)s—3+u |s—3—u
J2u(2x) = 27'[2 J‘ 25

ds

b

x f|S*}z+u ds 1 Jm ds

Y4u—s x* 2nmi 2s-1

y—=s X

This integral could also have been checked directly by adding the residues.
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Further integrals involving Bessel functions will be needed, but they are
rather special to the Kuznetsov theory, and will be discussed in the appro-
priate context.

Further reading
JEFFREYS and JEFFREYS

10. Fourier coefficients of cusp forms

From the spectral theorem we know that Maass wave forms
f} = zl: (bgj) E(nx) + b_q)” E( — HX)) Aixj (2nny)

exist and span the cusp space. In fact the proof of the spectral theorem
shows that the number of eigenvalues less than or equal to v is O (v), so the
number of j with »; € K is O(K?). By the calculation of Section 6 x; > 1 for
j = 1. Our notation here is slightly different from that of Kuznetsov and

Iwaniec, as the function A absorbs a factor 2\/ﬁ/n. In the spectral theorem
we are obliged to normalise a Maass wave form f (here we drop the suffix j)

by (f,f)=1. However
b(n)/n

b(1)

a(n) =

is a multiplicative arithmetic function. The Ramanujan conjecture (extended to
Maass wave forms) is that

la(p) < 2.

From the theory of Hecke operators it will be clear that
la(p)l < p+1.

Bruggeman has discussed the size of the normalising factor 5Y(1), and has
shown that it must vary somewhat with j to counteract the arithmetic
properties of a'’(n) for different f].

First we give a crude order of magnitude bound, which will be improved
by the Kuznetsov theory.

GEeOMETRIC LEMMA. The line segment [ —1/2+id, 1/2+i8] cuts < 1/d
copies of the fundamental domain D of I'(1).

Proof. Suppose zeD and Im yz > . Then
2y+(ex+d)*y < 1/8,
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so ¢t < 2/6 \,/3. But now

2c|ex+d| < (ex+d)¥/y+cty <1/,

and
lex+d) < 1/28¢ < 1/./8.

So ¢ and d, which determine the coset representatives, each take < 1/\/'3
values. This nice argument was suggested by conversations with Dr
Pleasants.

From the geometric lemma we see that
1/2 28

| [rerZ2den <,
Y

x=-—1/2 y=8
when f is a normalised Maass wave form. The left-hand side is
25
Y w J
J Y |b(m)2 A2 (2mmy) y—i’

- m
L]

SADDLE POINT LEMMA. With A large compared with 1/x

ad

J ( ch x) \/(2n) cos (x log 2xAd—x —n/4)
cos (xx) exp | ——— |dx ~ ——— .
4 \/(k4) exp (nx/2)

0

Proof (sketched only). The saddle point nearest to the real axis is given
by sh z, = ixd, zo ~ in/2+log 2x4.

n/2
Zy

Fig. 30

Deform the contour to pass from 0 to + oo through z,, with z=2z,+
+u cis (—n/4);, we want

£, 2
jexp (ixzo—ChAzo +% ch zy— ) du.
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If u is real near u =0, the main term 1is

Re (%P (ixzo—ch zo/A)\/E cis (-75/4))
° 14 ch zo|'/? '

CoroLLARY. If s =1/2+ix, and u/x is small

/{2u r _ 2u cos (% log 2xfue —m/4)
A(u) = (—)J.exp(—uch x) ch ixxdx ~ .
n ! \/; exp (nx/2)

We now have

24

1 dy dm? |b(m)|*

-> bm"'J‘A2 2mmy) = » —_—

o m<z1/al (m) ( ) }’2 m<21/6 % €Xp Tx
5

Two useful bounds can now be deduced:
M .
lb(m)® <xe™ and Y m|b(m)® <xe™ M log M.
1 !

Further reading
BRUGGEMAN
JEFFREYS and JEFFREYS

11. Hecke operators

The ideas behind Hecke operators go back to Poincaré. Mordell used them
to prove that Ramanujan’s t-function was multiplicative, and Hecke,
Petersson, Atkin, Lehner, Rankin and others developed a systematic theory.

The first idea is the correspondence between automorphisms of the
group and symmetries of its fundamental domain. All the congruence sub-

—b b .
groups contain ( j d) if they contain (z d)' The fundamental domain

can be so drawn as to be symmetric in the line x = 0, a left-right reflection. If
f(x, y) is automorphic, so is g(x, y) =f(—x, y), and il [ is a Maass wave
form, so is g, and with the same eigenvalue. Now 3(f+g¢) and 4(f—g) span
the same linear space as f and g, and they are orthogonal. Hence we can
suppose that the functions of the orthonormal basis for cusp forms are either
symmetric or skew-symmetric under this symmetry. In terms of the Fourier
coefficients, symmetric means that

b(m) = b(—m) = b(m),
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so that b(m) is real, f is a cosine series, and skew-symmetric means that

b(m) = —b(—m) = ~b(m),

so that b(m) is purely imaginary, and f is a sine series. This symmetry is
called the graph automorphism by students of Lie groups, and T_, by
Kuznetsov.

The congruence subgroups I'°(N), I'y(N) and I'(N) of the modular
group posess further automorphisms. Recall that I'(N) consists of matrices
congruent (mod N) to the identity, I'g(N) and TI'°(N) consist of matrices
respectively uppet and lower triangular (mod N). Suppose that N = QR with

(Q, R) = 1. Let
ab A; B;
r= (c d)’ W= (ci D,-)’

with 4,D,—B,C; =Q, Q|A,, Q|D;, N|B;. For any y of I'°(N)

. D, —B,\ (a b\ (A, B,
W) yW, =
adi Wy = (" A)( d)(cz b

/0 0\[a0\[0 0\_/00
\ =(_e, ) 0)(e, o) =0 o) i@

Hence W1 19W, is an integer matrix, with top right entry divisible by R. In
fact, since det W; = Q and Q%|(4,, B)(4;, B,), the top right entry is also
divisible by O, and so W !'yW, is in I'°(N). We deduce that if f(z) is
automorphic for I'°(N), so is f| W defined by (f| W)(z) =f (Wz), and f|W
depends only on the congruence conditions defining W, not on the particular
choice W,, and

SIW =1ladi W, [IW?=f|Wadj W =F.

Hence W gives a Hermitian operator Wj,: f — f| W with eigenvalues +1. We
can exhibit an explicit W as

10 / OR
40 = (0 Q)’ V“'Q=(—R Q)

where RR+Q0 = 1. When —Q is a quadratic residue mod R, there will be

where

: ) 0 :
a matrix W which represents a rotation by 7. For instance (_ 10 ) is a Wy

representing a rotation about i\/ﬁ , used in Section 5 with N = 13.
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The second principle is that if R is any rigid motion, and f(z) is
automorphic under a group I', then f(R™'z) is automorphic under the
group RIR™1! This group is said to be commensurable with I' if the
subgroup ' "RI'R™1! is actually of finite index in I' (and thus also in
RIR™Y. In particular

ANTP(N) AR =T (N),
Ay (N?) Ax* = T'y(N) " T'*(N) = T'(N).
The fundamental domains and the eigenfunctions of I'®(N) and I (N) differ
only by a trivial coordinate change z — z/N. This is the basic concept in
Atkin and Lehner’s beautiful theory of oldforms and newforms.
The third principle is that if H is a subgroup of G of finite index, so that

G is a finite coset union |J Hy;, and if f is automorphic on H, then } f(y,2)
is automorphic on G. We apply this principle with G=TI°(M), H

= I'°(MN). Suppose (3 Z)GFO(M). Let Q =(a, N), N =QR, a = Qe. Then

a b\ /fu —BM
(c d)(t 0 )EFO(MN)

Be = b/M(mod R).

when

Since (e, R) = 1, B lies in an unique residue class (mod R), and since (a, b)
=1 there is an integer in this residue class with (Q, BM) = 1: we choose B
to be the least non-negative such integer. We also choose t and u so that

Qu+BM:r =1,

ab Q0 BM
(c d)el""(MN)(_t ) )

So each @| N gives at most N/Q coset representatives (if (Q, R) > 1, then B
has to lie in a residue class mod R that is prime to (Q, R)).
If f(z) is automorphic for I'°(M), f(Ayz) is automorphic for I'°(MN),

el 02
)0 ))

Then
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Hence

R=N BmodR
(Q M)=1 (B,Q,R)}=1

- g 02

is also on I'°(M). The condition of summation (B, Q.R) =1 is inconvenient
here. If (B, Q, R)=d, then B=bd, Q =dq, R =dr, N =d?n, and

R (F D RN i (g B

@.M=1 (B,0,R)=d @.M=1 (b.g,r)=1

This is a sum of the same type with N replaced by n = N/d%. Summing over
all d with d*|N, (d, M) =1 we see that

B Q BM
912) = an=:~ Bng;mf((o R )z)
(0. M)=1

is also on I'°(M). If
1 (@) =1, ) e(nx/M),

_ Oy Qnx+ BMn
o & an(i)anéne( RM. )

n
)_—_

- L))

R=
Q.M=

then

In the special case when f (z) is a cusp form,
fo () = b(n) A(2nny/M),

g(2)= ¥ RYb(mR)e (m]e}x)A (2”;;@ )

QR=N m
Q.M)=1

The map from f(z) to g(z) is a Hecke operator on I'°(M). In Atkin and
Lehner's notation

T (M, N =1
g(2) = Uy f(z) if all prime factors of N also divide M.

and

Hecke operators derived from different subgroups I'°(MN) of I'°(M) com-
mute, and in fact

T.T,=} dT, .,

an

18 — Banach Center, 1. 17
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which can be checked either on calculations with 2 x 2 matrices, or on the
Fourier expansions of automorphic functions. In the case (M, N)=1 a
cunning choice of coset representatives shows that Ty is Hermitian. In fact
the Ty with (M, N)=1 and the W, with QR=M, (Q,R)=1 form a
commuting system of Hermitian operators on the automorphic forms, which
map the finite dimensional space of cusp forms on I'°(M) with a fixed
eigenvalue into itsell. We may choose a basis for which all these operators
are diagonal, so that
Wof = &f, Tof ="l f = alM)N"2S

say, where «(N) is a multiplicative function. The Ramanujan Petersson
conjecture is that |a(p)] < 2 when p is prime; Deligne has proved the original
form of the conjecture for holomorphic cusp forms.

Atkin and Lehner in their classic paper prove a result which translates
into our situation as follows. Let V be a space of simultaneous eigenfunc-
tions of the Laplacian on I'°(M) and of all Ty with (M, N)=1. If V has
dimension greater than one, it is spanned by ‘oldforms’ f(z/Q), where 0 > 1,
Q| M and f(z) is automorphic on I'°(M/Q), a larger group. If the dimension
is one, the generator f(z) of V is a ‘newform’, not induced from any larger
subgroup of this type. It has b(l) # 0. Their only result which does not go
through immediately in our context is the Determination Theorem
(Bestimmungssatz) that every oldform is derived from an unique newform on
a larger group. W. W. Li gave another proof which does work for Maass
wave forms.

Further reading
ATKIN and LEHNER
RANKIN

12, Kuznetsov’'s Basic Lemma

So far we have only written down explicit automorphic functions in the
“Eisenstein space” of functions orthogonal to the cusp forms. The more
general construction, due originally to Poincaré, takes

U,(2) = ) e(nReyz)g(Im yz).
(T
By suitable choice of the function g (depending on n) Bruggeman makes
U,(z) an ecigenfunction of the Laplacian with prescribed eigenvalue
4 = 5(1—s). For general s there will be no square-integrable eigenfunction with
this eigenvalue; and even if there is one, it is not equal to Bruggeman’s
function. Kuznetsov takes n > 0 and

gy =ye?™  Uldz,s)= Y e(nyz)(Im yz)°.

Ty
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By comparison with the Eisenstein series, Kuznetsov's Poincaré series con-
verges absolutely for Re s > 1, It satisfies

div grad U,(z, s) = —s(1—s) U,(z, s)—4nnsU,(z, s+ 1).

The first step is to work out the Fourier series

U,(z, 5) =) an(y) e(mx).

In Bruggeman’s case the coefficients a,(y) come out in terms of Bessel
functions; this calculation was done by Niebur. In our case

1/2
a, =0,y e ™+ Je(—mx)z Y —y—e(ﬂ ——n—)dx.

i Llez+d* e c(ez+d)
-1]2 (e, d)=1

As outlined in Section 3, we simplify the integral by collecting terms into
residue classes for d modulo ¢, then making a variable change ¥ = x+d/c.
The integral becomes

a

e * an n ys
Lk J 3(7)9(_"x‘c(cz+d))lcz+d|2s &

-

@®

© % [an dm h Y
- sk Rhasld —mu— du.
c§1 d%:dce( c * ¢ ) J‘e( e cz(u+iy)) czs(u2+y2)s !

-

Another advantage of working over the full modular group now appears.
The sum over d is the Kloosterman sum

an dm

S(n, m;c) = ZZ e(—+—)=S(m,n;c),

amode¢ dmadce ¢ ¢
ad =1(mod e)

which, as André Weil has proved, satisfies

S(m, n;c) €ctl?z(c) € c'?*e,

n
(-l <
c“(u+iy)

the individual terms of the Fourier series converge like

o [S(m, n; )

Z 20 *

1 ¢

Since
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where as usual s = g+it. Moreover if we treat the integral over u as a
contour integral, and take it to

Imu=-y2 for mz0, Imu=y2 for m<O

then

le(—mu)| < e~ mml
and the other estimates still hold, so that the Fourier series itself converges.
Hence for Re s > 3/4 the Fourier series gives an analytic continuation of

U,(z, s). _
Poincaré series behave like Eisenstein series in inner products:

(Un(z, 9), £ (2)) = j U,(z, 9)f (2) du

o/

D
m 1/2
d
- f elme TG g
5 -1/2

—d
= |y i) =
y

[= 3

If f(z) happens to be an eigénfunction
Ja(y) = b, A(2nny) = nb, \/(ny) Khy, (27ny).

The integral is one worked out in the section on Bessel functions, with 2nny
= u. Hence

b(n) |s—3+ix [s—3—ix
(4rny 1! |s—1

The integral also converges when f(z) is an Eisenstein series, for which we
know b(n) explicitly

(U,,(Z, S),f(z)) =

e i R R

#7201 2i) (=g —ix s—1°

(U.(z, 5), E(z, $+i%) =

Although U,(z,s) is not of compact support, the inner product with
E(z, 1/2+1x) exists, since the Eisenstein series is bounded by a power of y as
y -» 00, whilst the summand y*e(nz) in the definition of U, is exponentially
small for large y.

Kuznetsov's strategy is to express an inner product (U,(z, s), U,(z, w))
of two Poincaré series in terms of its components in the spectral
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decomposition

" bmbm ,
(Un(as 9, /)fs Unle B) = s o A w3 ),

where A(s, w; %) is the product
|S—3+ix [s—3—ix Ww—F+ix w—3—ix

==t

A(s, wy %) =

’

so that as x —» oo
(2m)2 y2Res+ FRew—4 = 2mx
s=i =t
By the coefficient bound for Maass wave forms
Ib_(nT) b(n)| < xe™.

From the proof of the spectral theorem x} > j, so the sum over eigenfunc-
tions converges exponentially. When f is replaced by the Eisenstein series

E(z, 1/2+it), the product of coefficients b(m) b(n) is replaced by

nifz“‘\/r;ri,(m)n”“"\/;t,-,(n)
—1/2—it {(1-2it) |—1/2+4it {(1+2it)

and from the functional equation of the factorial function

|A (s, w; 2)| ~

1 _chmt
[—1/2—it |=1/2+it =

We can now write

) b .
(Um (Z, S), S W)) = J=Z 4";1")-1(711 (41(;'1)‘: i‘j)

T, (M)t (M) A(s, wi t) ch e

1 o
Tan J i) £ (1+2i0) £ (1 — 2if) (dnm) = (drn)* =L

There is no term j = 0, since the constant function has no term in e(mx) in
its Fourier series.

The sum over j in the expression for the inner product is convergent for
any complex s and w, being meromorphic in s for fixed w, and meromorphic
in w for fixed s. The integral is subtler, as poles can lie on the contour. It is
regular in s and w for Re s > 1/2, Re w > 1/2, and can be continued to the
left by the calculus of residues. If s+w = 2 there is a great simplification in

dt.
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A(s, w; t). Putting s =1+iu, w=1—iu
[ju—1/2+ir ju=1/2—it |~iu+1/2+it |—iu—1/2—it
[ | =i
T n sin wiu n sh nu

== K, u),

~¢h n(t+u) chn(t—u) miu u ch nt

A(s, w; 1) =

where K (t, u) (called H(z, u) by Kuznetsov) is the kernel

K(t, u) = ch nt
(t, u) = ch n(t+u)ch m(t—u)

Since U, (z, s) is a Poincaré series,
(Unlz, 5), Uy(z, W) = J '“”'yam(y) 7

where a,(y) is the Fourier coefficient of U,(z, W):

2 S(m, n; c) @ n 2
Imy "7 y+z J e(_mu_cz(wiy)) Wy
c= U= —a

The first term integrates to
Omn (M) "5 "W s+ w—1

In the second term the inner integral over u is < y! ®"¢e™ =™ uniformly in
¢, so that we are justified in summing over ¢ last for Re (s—w+1) > 1. When
we put u = —(y

¢ r 2nin y¥  dudy
s ,— 2nmy :
J'y e J exp (2mmu+c2(u_iy))( RNV

u 4y y
y=0 u=-~o
" s—~w-—1 7
y i 2nn 1
= — exp| — 2nimt dtdy.
j g j p( YT = )(r+1 Y
y=0 1=—-w

For 1 < Re w < Re s the double integral converges absolutely, so we may
integrate over y first. Now

o s]

) X 1 du
exp —-2- u+; W

0

1
Khw—s(x) ==

A
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If we put

mn 1 +it mn
=4 —_—— — . 2y 4,2
X i (cz 1_“), u \/(C2 (1+t%)y ),

we can identify the integral over y as a Bessel function, so that the double
integral takes the form

]

' T n \sTw2 mn 1+ it
' (P +1)* (mcz(r2+l)) Kh“"’(4n (c_2 1—ir)) a.

1= -

Kuznetsov's ingenuity has, however, only just begun. Writing

so that

1_ 2 2dv_—2idt
v (1+63) v 1+r2’

we see that

(Un(z, 5), Uplz, W) = Sma(dnm)! =7 s+ w1+

S+w m

© ¢ . (s—w)/2
+ (I‘", n, C) (E) i J‘{% (U+ I/U)}'ﬁ- w—2 Khw_s(47wa (C)) djv,

c

e=1 ¢

where the contour C is the right-hand half of the unit circle, from —i to i,
taken anticlockwise. Now

Kh,_.(z) <|z2|*™ 9 log (1/]z]) as z-0.

We are still assuming Re w < Re s here, but there is now symmetry in w and
s, SO we can continue analytically to Re s > 3/4, Re w > 3/4 (this requires
Weil's bound for the Kloosterman sum to give convergence in ¢). Again we
shall take s+w =2, s =1+iu. To get convergence in the sum over c, any
non-trivial exponent in the bound for the Kloosterman sum will do, letting u
lie on a neighbourhood of the real axis.

We now have two expressions for a meromorphic function F (s, w) of
two complex variables, with

F(s, w) = (Unl(z, 9), U,(z, W))
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for Res > 1, Rew > 1. We have just shown that

F(l+i, 1—it) = o™ ot E om, 75 ¢ (m) JKhz,.u(ua(c))%”

C

We now deform the contour C.

Fig. 31

The deformed contour consists of

C,: line segment —i to —IR,

C,: semicircle centre O radius R in Re v >0,
C,: line segment iR to i.

On C, we have

Kby, (00 (0)) <€ Jo] =1,
so that the integral over C, tends to zero. On C,; we put v = —iy, so that
sin 2miu Khyy, (—iny) = Iy (—ioy) — I - 0, (—ioy)
= cis (—miu)J 5, (ay) —cis (miu) J - 55, (aty).
Similarly we put » =iy on C, and
sin (2miw) Khy;, (fay) = cis(niu) J 5, (ay) —cis (— mwiv) J _ 5, (@y).
Subtracting, we obtain for the integrals along €, and C,

dy
sin 2mu j (=2 sin 7iu) (Jz"‘ (@) +J - 21 (ay))

p=1

ch nu
{

d
(e () +J - 200 (1)) T‘

S —g
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so that

=<}

[ +7 )%,

a(c)

m

: o Omn o SO nic) (n\
N el O

We now obtain Kuznetsov’s first result by equating our two expressions
for the analytic continuation of the product of two Poincaré series.

Basic LEMMA. For —1/4 <Imu < 1/4

[ ]

d
a{c) j (J2!u (O+J -2 (t)) “EE

x(c)

S(m,n;c) 2u
n shnu =4 c sh 2ru

= 2]

_ 2 4n/mn by(m)b,(n) £ (m) T, () K (£, u)
=2 ch K(xy, )+ j E(L+2i) L (1~ 2it) at.

-

i=1

To complete the proof of the Basic Lemma we observe that both sides are
equal to

4 /mn — (T) F(l+iu, 1—iu).

shnu \ n

Further reading
BRUGGEMAN
KUZNETSOV

13. The First Trace Formula

The Kuznetsov trace formulae connect Kloosterman sums (‘known’) with
eigenvalues 1/4+x} (‘unknowr’). The first formula has a specified function
h(x)) on the unknown side, and integral transforms of k(z) on the known
side. The second formula has a specified weight function g (x) multiplying the
Kloosterman sums, and integral transforms of g(x) on the unknown side.
The Second Trace Formula is the one used to estimate number-theoretical

sums.
The function k(z) is brought in by means of the following lemma.

STIELTIES' LEMMA. If h(z) is regular in the strip —1/2<y<1/2 and
{ e " |h(x+iy)|dx converges for —1/2<y < 1/2, then

] ' d
[ oo v

u=—w
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Imu{#
- ir2 -
N E
Re u::
Dy /\Dz Ds
—— -
Fig. 32

Proof. Move the line of integration for the term h(u—i/2) to C made up
of

C,: line segment —oc+i/2 to —5+i/2,

C,: anticlockwise semicircle centre i/2 radius é from —d4i/2 to d+i/2

C,: line segment 6+i/2 to oo +i/2
and the line of integration for the term h(u+i/2) to D:

D,: line segment —o20—1/2i to —d&—1/2i,

D,: clockwise semicircle centre —1/2i from —4&—1/2i to §—1/2i,

D;: line segment §—-1/2i to oo —1/2i.

Since ch n(u+i/2) = —ch n(u—i/2), the integral along C, cancels that
along D,, the integral along C, cancels that on D,, and the integrals on C,
and D, add to a circle round the pole of ch nu at u = /2, with residue 1/mi.

CoRroLLARY 1. For real t

= o]

ch mt ch nu
ch n(t+u) ch n{r—u)

D(u+i/2) + h(u—~i/2)} du = h(H)+h(—1).

- @

Proof. We use the partial fraction decomposition of Kuznetsov’s kernel
K{t. u);

| + l _ 2 ch nt ch mu
chn(t+u) chn{t—u) chn(t+u)jchn(r—u)

CoOROLLARY 2. For Re s > 1/2

a

s—1
jA uthmu s—3/24iu s—3/2—iu sin tsdu = J—“.

T

[ald
Proof. We put
s—1+iu
h(u) =——-l——-—_ =|s—1+iu |s—1—iu sin (ns— inu).

|—s+iu
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After some calculation we find
h(u+i/2)+ h(u—i/2)

2iu
= —— |S—3/2+!u |s—3/2—iu {cos ns ch nu+isin ns sh mu}.

The integral with u ch u is O by symmetry, so we have the result.
A similar calculation without a residue evaluation gives

[= ]

‘h(“+1/2)+h(u—;/2 Uy = JU F;lh w
c

— a0

uch U

h{v) dv.

Ht_ﬁﬂ

We are now ready to multiply the Basic Lemma by
dch mu th(u+i/2)+h(u—if2)}

and integrate over u. Since

nu

J 21 (1) < W)

the double integral

m

2u dt
1 fr.. . 1 { ; — i
[ z¢h nu p— [ (i () + J = 20, (2)] . Ch(u+if2)+h(u—1i/2)) du

x x

n=

converges absolutely like

T4y

J‘u u—l—ly)ldudr

8‘_38

N

and we may interchange orders of integration. By symmetry

U
Jishn ']1(u+1/2)+h(u—1/2) sz( n+J- Ztu(t)

=2 J Y Chiu+i/2)+h(u—if2)} J . (t)du.
2 sh u

We now move cach term to the real axis: if u = v—i/2 = —3i(2iv+1), then
shmu=—ichn, and if u=0v+i/2= —%i(2iv—1), then sh mu =ich mw.
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The integral over u is

s 1+ . 2 . -
—~5i(2iv+ 1) h(v) —3i(2iv—1) h(v) I
J —ichmw Jaio 1 d0+ —ichm 2i0—1 00

- <]

Ch(v) .. d Jy(1)
- Jchm)zwta_t t

— o0

dv

by the recurrence relation

(4D () =5= D (0 = =250 5 20,00

and we can integrate over r in the double integral to get

2i J'vh(v) oy, (@) dv.

ch m
We wish to multiply by aS(m, n; c¢)/c with a = a(c) =4n \/(mn/cz) and sum,
As ¢« -0+ we have for any 6 in 0 <o < 1/2

vh(v) (t—io)h(t—io) )
—7 .. = ; d “1—-2

where we have used the continuation of h(v) off the real axis. The series over
c converges like Y |S(m, n; ¢)l/c'*?%, and any non-trivial exponent in the
upper bound for the Kloosterman sum justifies the absolute convergence.
For simplicity we suppose that h(z) = h(—2z). The other terms in the Basic
Lemma are handled by Stieltjes’ Lemma and its by-blows. We deduce
Kuznetsov’'s First Trace Formula (or Sum Formula).

THEOREM. Let h(z) be regular for |y| < 1/2 and tend to zero sufficiently
fast for |x| = +c0. Then

28]

5 S(m, n; c) J' vh(v) o ST
=1 v

¢ ch mv

- @

1‘[

5—”;" J‘v th rv h(v)dv+—2n—1~

4

_ & 4y/mnby(m) bymhe) 1 [ tulm)u () h()
= ch nx, x| C(+2i(1—2ir)

- @®
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The infamous Selberg Trace Formula also contains the first integral on
the left. The second term on the left is quite different in the Selberg formula,
as the group elements are combined into conjugacy classes by Selberg, but
into double cosets of the transvection group fixing ioo by Kuznetsov. On the
right-hand side the Selberg formula has Y h(x;) and a corresponding integral.
The relation between the Kuznetsov and Selberg formulae still has to be
cleared up. Kuznetsov has announced in Doklady ANSSR that he can
deduce the Selberg formula and improved versions of its consequences.
Zagier has a proof of the Selberg formula in the harder case when the
fundamental region has cusps, which follows Kuznetsov in considering a
Fourier coefficient. Finally there is Selberg’s Jugendtraum: to deduce the
Voronoi Summation Formula from the Selberg Trace Formula or something
like it.

For the convergence in v we certainly need jxlh x+iy) dx to converge.

The sum over j imposes a stronger condition. Note that if there were an
eigenvalue 4 < 1/4, instead of A = 1/4+x? we would write 1 = #(1—f), and
instead of h(x) we would have h(i(8—1/2)). In the Selberg formula there is a
term in j = 0, 1, =0, B, = 1, which explains why h(z) has to be defined for
|yl < 1/2. We have shown so far that »; > \/j and that bJ (m) € \/x_ exXp 3 7x;.

Hence we want ), h(x;) to converge, which requires jx max |k (X +iy) dx to
X>x

converge. However Kuznetsov has thoughtfully provcd a mean square theorem

4nlb;(n))* K?
ch mx; 4

y O (K (d>(n)+log K))+ 0 (/nd, (n) log®n),

x ij
where d(n) and d, (n) are the ordinary divisor functions. This lets us relax the

condition on h(z) to jx max |h(X +iy)| dx convergent.

X>x

. The idea is to multiply the Basic Lemma by sh nu and integrate from 0
to K, obtaining

S(n,n;c) u 4nnJ

c chnu ¢
u=0 dnnjc

K K o

_ O 47tr.¢|bj(n)[2 (n ) sh tu K (¢, u) it d

= L chmg | ShT K WA ca+zor 0%
0 -~

d
V2@ +J 20 (0)} -t—t du

0



286 M. N. HUXLEY

On the right we have an exact integral, since

sh nu K(r, u) sh nu sh mu

chnr  cha(r+u)ch n(r—u) ch®nu+sh?nr

1 d _; Chmu

 sh nr du sh nr

1 d
— {tan~!e™ ™" —tan~le™ ™™},
T sShr au

integratiug to an even function of K, which we can approximate as follows:
for 1<r<K-log K

1 L nr— nk — 1 .
n sh nr %E-I-O(e )é—Zsh nr (1+00/K);

and for r 2 K+log K

l
<Trshrtr

1
< K?sh

nK - nr

e

The [irst term on the left is the main term; to estimate the second term
we need one of Kuznetsov’s careful estimates.

Lemma. For a > 0,

K @©
u dx ) —
J. Jm (a2 (X) +J Z 5 ()] = du <€ ml.ﬂ (1, 1/\/a).
=0 x=a

Proof. From Section 9 we see that

T

4 oh (200 6) +J ~ 254 (x))

7

. 1
sin (x ch 1) cos 2tu dr+0( +Tu)
| xe
0

_ sin 27u

T

. X . -
sin (x ch T)- jﬂ sin 2tu cos (x ch t) sh tdt+0 (lx-:Tu).
0
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Hence we have

n J Va9 +I a0}

4 x ch nu
b T
in 274 | si hT "8 51 —si !
_sin j in (x ch T) e | SN 2ty {sin (b ch t)—sin (ach 1)} sh ¢ it
2u X ) 2tu cht
a 0
1+u
0 — T b
+ ( aeT)
and thus
r J J ‘JZIu(x)+J~2Eu(x)}
= dx
4 ch mu b's
=0 x=a

b
_ (1—cos 2TK) [sin (xch T) ’
=Tar o~

X

T
(1—cos 2K1¥) |
4t

KZ
tsin (b ch t)~sin (a ch t)) thtdt+0 (K:;T )
4]

When we let T — ¢, the first and third terms go out. Letting now b — oo,
the term in sin (b ch 1) goes out on integration by parts, and the integral of
the lemma is

th
! [-—?-{ (1—cos 2K¢) sin (a ch f)dr
e
0

As t increases sh 1/t increases, and th t/r decreases. By the Second Mean
Value Theorem, the integral is

€L

l max E%EJ(I —cos 2Kr) sin (a ch t)dt

n
4

for some ¢, and for @ = 1/2 we use van der Corput’s second derivative test to
estimate the integral as

< (min a ch 1)~ 12 1/\/5
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For a < 1/2 we treat the range t <log 1/a separately:

-

logl/a log 1/a

J' J' asht
<€
r

0 0

whilst as in the case a = 1/2, we have

j < ( max E—)( min acht)™? < 1/log 1/a.
1=logl/a tzlogl/a
logl/a

We see that

dt
j o (D) +J - 5 (D)} n du
u=0 dnnjc

Z IS n, ;o) min (1, \/’c/_n).

Using Weil's estimate

18 (n, n; c)|* < d*(c)(n, O)c,

we see that the sum is

«n{ Wmlnl\/ } % ‘—i——c)—a(Z—c)min(l,\/%)
r:l

1/2

The first sum is < log? n/ﬁ, and the second is

d(d) o(d) o d(é) d(d) o (d)

and the original sum is

< (dy(m)/*n'/? log?n.

The integral over ¢ on the right is i)ositive, so that changing K to K+log K
we have the upper bound of the lemma. The asymptotic equality follows
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from taking also K—log K for K and estimating the integral on the right
non-trivially.

Further reading
KUBOTA
KUZNETSOV
ZAGIER

14. The Second Trace Formula

The Second Trace Formula corresponds to Perron’s formula applled to the
Kloosterman sum zeta function

Zpal8) = Y20

defined in the first instance for Re s > 1 but continuable to Re s > 3/4 from
Weil's bound. We take

h(v) = % sin ms|s—3/2+iv |s—3/2—iv

in the First Trace Formula. By Stieltjes Lemma (Corollary 2)

H |s—1
Jvthnvh(v)dv=£ .
2 |—S

The main term on the left of the First Trace Formula is

j vh®) J2iv (e)dv.

chr

-

We take the integral to Im v = — N, N a large integer.

ei(s+%.)

(NP rw

®ils-%)

-1 —i(s-l-)G

-2 -ils+i)®

Fig. 33

19 — Banach Center, t. 17
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When we move the contour h(v) stays about the same size, except for poles
at v= —i(s—3+k), k=0,1,2,... The ch mv factor is periodic with poles at
~(k—%)i, k=1,2,..., and for large v

I 2")‘

le (d

which is smaller by a factor about az”/]__. The integrand is tending

to zero as the integer N tends to infinity, so that the integral along the
real axis is —2ni times the residues in the lower half plane. The residue at

= ~(k—1/2)i is
—(k—9)ijs+k—2s—k—1 gin xs
- - Jak—1(a)
i sin w(k—1/2) 2
_— k —_
=(__1)_%__llsjn ms[s+k—2 |s—k—1 Jy_y(a)
2k—1|s+k—2
= JZk—l(a)r
4 lk—s

using the functional equation for the factorial function

|4 | —# = mufsin nu,

The residue at v = —i(s—34+k) is

sin s [ 25— 2+k (- DH(—i)(s—1+k)

2 I_ (=~i)ch (—th(S _2_+k)) 25+ 2k 1 (00)
1 l2s+k——2

=Z-—-j£—(28+2k"1)12s+2k-1(a)-

Putting back the factors 2i/m and —2ni outside removes the factor 1/4. The
sum of the residues at ~i(s—3+&) gives Neumann's series for (a/2)>~!. For
the other residues we have surprising result

S(m, n; — 1) Zh— 1
): _(____mcn 9 Jzk—1(41t./mn/cz)=( 27!:) }’ZZk_l {¢a(Gatm) = Opmn}»

c

where Gy, », is the classical (holomorphic) Poincaré series of weight 2k, and ¢,
denotes its nth Fourier coefficient. These terms appear in answer to
Bruggemann’s philosophy that all representations of PSL(2, R) over the
cosets of the modular group PSL(2, Z) are equally important. To my mind
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their presence hints that Kuznetsov's formulae are deeper than Selberg’s

Trace Formula. However in the sequel we shall not use this identification of

the residues, but we transform the sum over Bessel functions yet again.
We have now shown that for Res > 3/4

(2r /mn)*" 1 Z,, . (s)+

S 151 & (=1 fm*T tk+s—2
+—2 + Z ( 2 ) 2k—1 {C" (GZk.m)—émn} (2k—'1) —_—_—
T | —35 k=1 T n |k—S

_ & 4y/mnb,(m)b(n)

j=1 2 Ch T[xj

sin mts 1§ —3/2+ix; |S—3/2—ix; +{p n(S),
l JB O i :

where {,, ,(s) is the integral over t, which will be considered next.
1 o Tw(m)t,(n) sin ns|s—3/2+w |s—3/2—w
) =5 LT 2w) L (1 - 2w)

—im

dw.

The integral makes sense for all s with Re s # 1/2—j, where j> 0 is an
integer (when there are poles on the contour), since the factorial functions fall
off exponentially. However, if Re s < 1/2, we must add the residues at pairs
of poles to make the integral represent the same function.

5 3 1l _eal
-5-5;@ -§-7@© -5 7@ 5+3@

3 1
-3<Resc<-3

Fig. 34
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Since the integrand is even in w, the residues are opposite, but corresponding
poles are described in opposite senses. The residue of w+s—3/2 at
w=1/2—s—k is (—1)*/k, so that the whole integrand has residue

sin ms |25—2+k (1)
Tk+s-1/2(m)rk+s—ll2(n)C(2—25—2k)C(ZS+2k)' ]E

o ks 1/2(m)Tk+s 1/2(") n

{(2—25—2k){(2s+2k) 2cos s 1—23+k]£

by the functional equation. Note that this residue only occurs when Re s
< 1/2—k, so that Re (2—2s—2k) > 1. However {,,,(s) does have a pole
when s = ¢/2—k, where g is a zero of {(s). For —K—~1/2<Res < —K+1/2
we have

ia

i _ s—3/24+w [s—3/2—w
Cmn8) = 5~ J T () 7, () sin “SLC(HZW)'C(I—ZW) =

=i

K m Tork-1/2(M) Toak—172(N)

" Loos ik msjk ((2—2s—2k){(25+2k) |L—2s+k

when Re s+1/2 is an integer, we must indent the contour appropriately.

Our conclusion is that {, ,(s) i§ 2 meromorphic function of s, so that
Z,..(s) is expressed as a convergent sum of meromorphic functions, with
poles at —k, 1/2+ix;—k and ¢/2—k, where j > 1, k > 0 are integers and g is
a zero of the zeta function.

Let g(x) be a piecewise differentiable continuous weight function, non
zero on a < x < b, a finite interval. With a slight change of notation from
Section 8, we write the Mellin transform as

b

x2s i
G(s) = — j_s_ g (x)dx = J2x25'lg(x)dx.
0

On the line L, Re s =5/4 we have the inverse formula

J.G_(_Slﬁ_ _J.f( ) g(x)—dX— J. (x)dx =g (y).

G(s) < (a**+b*)isl?,

Since
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the integral
1

g{v) = 3

IJ;G(S) sin 7s |s—3/2+iv |s—3/2~iv ds
L

converges absolutely. As in Section 9, we may change the line of integration
to a loop M from —oo round all the poles of the functions. By absolute
convergence of the double integral

g(v) =—_:[ fxz"‘g(x) sin nts |s—3/2+iv |s—3/2—iv dxds

= T awl2/%) =T - 3 (2/x)} g(x)dx.

We also have .
gv)<v™% asv— 4o, in [Imu|<n2;

this can be seen either from the integral over L or from integrating the Bessel
functions term by term as power series twice. Similarly we have

b

—-——j (s) wds—fh,,( )QE)—dx

2mi |u X
L
and
b
s—24 2
51_'[6(3) g—i ds = J\sz_l ( )g(JC)
i Uu—s

We substitute g(v) as the h(v) in the First Trace Formula, to obtain
Kuznetsov’s main result, the Second Trace Formula.

THEOREM. Let g(x) be continuous of compact support and piecewise
diﬁerentiable, and §(v) be the Kuznetsov transform deﬁned above. Then

lk -1
) \/_n Z g(zn\/__)S(m n, C)+ z ) /nz;‘ 1 lc (Gka) 5mnl
T c=1

x(2k—1) _[Jﬂ‘—l (2)g(x)dx-+—5,,,,, JJO( )% x

_ &4/ mnbm bm)b,(n)g(x,) 1 zu(mun(miw
ch mx, C 14+2i0 ¢ (1-2it)

j=1
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Proof. When we apply the First Trace F ormula to the right- hand side,
we obtain

G(s)is—1
__J G(s)(2n/mm* 1 Z,, ,(s)ds ""'J (l)_i_

(-1 (2Zk—1) [G() k+s5-2
+k§,1 2 n“‘ 1 { (G2t,m) — Omn} " E‘:f_ ds
L

The integral involving Z,, ,(s) is an ordinary Perron integral which gives the
weighted sum of Kloosterman sums term by term. The other two integrals
have been noted above.
. Our notation for the transform here differs from Kuznetsov and
Deshouillers—-Iwaniec. Kuznetsov writes g(x) as ug(u), where u = 2/x. For
applications it seems more natural to take x as the independent variable, not
its inverse.

Finally we indicate how to treat the sum over coefficients of classical
Poincaré series, by a typically ingenious argument of Kuznetsov. Multiplying
the recurrences for Bessel functions, we find that

L

—4s ,
(Jor 1 )+ T- 1 CNTas 1 (W)~ T5=1 ) = T J(x)J5 ()
Interchanging x and y and adding, we have

2 2s’
Juar )T O =i (9911 0) = = L 0) = L OML (3,

so that

—2s d

Js (X0 I, (vt) = td g1 (x) Jg 1 (¥1) = tJs 1 (x0) S5 1 ().
xy dt_

For Re s > O the Bessel functions can be integrated from 0 to 1 to give
1 1

j—;Js(x)Js(y)= jtjs—-l(xt)‘,s—l(yt)dt— J-t'js+l(xt)'js+l(yt)dt'

0 0

Adding these equations, we have

1
2 X . .
E Z (2k—1) JZk 1 () -1 () = J‘tJo(xt)Jo(yt)dt— Jthx(xt)sz(yt)dt
k=1
0 0
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Now as K — o, J,¢(u) tends to zero uniformly for u < max (x, y) and we
have
1

21:(2"‘— DJax-1 () Ju-1 () =4xy jtJo(xt)Jo(yr)dt.

0
Recall that

(=1* [ _—
2n nzk—-] -{C,. (sz,.,.)—ém} = 2_(__)_

[

Ja2k-1 (a(c)).

The sum over Poincaré series in the Second Trace Formula can now be
written as

b

-1 k 2k—1 )
Z( ) ) \ /':21‘—1 {cn(GZk.m)“‘amn} (2k—1) J.JZk— 1 (—)g(x) dx
k X

b 1

c
a 1=0

a more convenient form for order of magnitude estimates.

Further reading
KUZNETSOV
RANKIN

15. Linnik’s Sum

Linnik was the first to conjecture that a sum of Kloosterman sums S{m, n; c)
with fixed m and n and varying ¢ should behave like a sum of random
variables with root mean square c'/?*%. Kuznetsov’'s method allows us to
estimate smoothly 'weighted sums very well. We give only the simplest bound
here. Deshouillers and Iwaniec have many multiple averages, often with
congruence conditions that necessitate working in congruence subgroups of
the full modular group.
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We take
min (4, x/a)
(x) = 1 d
g —A—l y:
max(1,x/b)
where 4 <2 and ad < b. We have for any integrable function f(x)
00 min( 4, x/a)
jf(x)g(X)dX— J—-—— f f(x)dydx
0 =0 y=max{1,x/b)
4 by a4
_ S (%) _ f (yz )
= j JA—I xdy 11 ydzdy.
y=1 x=ay y=1z=a

Hence the Kuznetsov transform is
b

i 2 2
g(v) = 3 Sh - J {JZiu (;)—J—Ziu (;)}g(x)dx

x=a

2
J J—Iszw( )ydzdy.
sh o yz

y=1 z=4a

If either a > 1 or a » 1/v we can write the Bessel function as a power series

(2) 1 (1 )21‘0 1 (1 )2iu+2
S| — | =51 — T A VO +
yz @ yz {1 2iv+1 \yz
in which the first term dominates, and
b—a 1 /1)
max |Im— (-] +...
20 \¢

sh v ageS b
{(b a)(l+|log al+(log b)) fv<1,
b a)/\/_ ifv=1

We can also perform one or both of the integrations, giving

Im b i v +
2iv—1 \by/ |iv

g(v) <

max

1
g(v) < sh nv < b/vm
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or

b

ol) < " Q- D@02 o ' NV

1 1 gL 2iv 1
shm d—1 2%

If the condition on a is not satisfied, we must have 0 v < 1, and then

i {2\, (2. 2cht
4 sh yz) T\ )T % Tz
0

by van der Corput’s second derivative test, so that

) cos (2tv)dt < .\ /yz

b
§(0) < [/xg(x)dx <(b—a)/b.

If bis large we break the range of integration: for 0 <v<1, b2

logb [=a]
[+ [ <logb+l and §(v) <(b—a)logb.
] logh

We substitute g(x) in the Second Trace Formula, and use Cauchy’s
inequality

4\/_ n b, (m) b;(n) G ()

ch nx;

{z4nlbj(m)|2|§(%;)l}{Z4nlbf(n)l 19 ()l }

ch mx; ch mx;

j
We now use the estimate for the sum of squares of Fourier coefficients in
Section 13.

a

4 b; (|13 (x,) J v+ dy (n) \/n log® )| § (o)

)

1 ch nx;

& Jvlg(v)l dv +(d5 (n))'/? \.’rﬁ log?n max |7 (v)|.

vz1
1

Using our bounds for the transform §(v), we estimate the sum as

K

vb vb |
< Jvaz— dv+ j(A_1)05/2 dv+(b—a)(ds (m)*/? \/n log*n
K

1
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<3 bﬁﬁ'm'}'(b—a)(d;, (n))”z \/;l 10g2n

-t

when we optimise the choice of K.
More easily, for a » 1

an

1 [ w(mtmie
T (14 2i) (1 —2ir)

= a0

dt

2 o
log?t
«Jd m)d(n)t*(b—a)(log b+ 1)dt + J.d(m)d(n) °3,2 bdt
0 2
d

<d(m)d(n) [b+(b—a) log b}.

The sum over classical Poincaré series has already been transformed; it may
now be bounded

b 1
Z4n\/ﬁ S(m, n; c) fg(x) JIJO(E)JO(M)dtdx
c c X X ¢

x=a t=0

< flS(mnCIJlg dm( o2 )

' )™

c

where we have used
Jo(y) €min (1, y¥/3),

The whole expression is now
b
<log E(da ((m, n)))”z(mn)”4 log? mn,
by the calculation used to prove the Mean Value Lemma. If b < 1 we should

estimate both Bessel functions by the square root of the variable. Finally
b

b
[2o ()22 a2 e g 20

a a
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Writing M =2na./mn, N =2nb . /mn, for a > 1

c
S(m, n;
zc:g(Zn«/mn) (m, m; )
M 1/2
{1+\/A-—1<1—7V—)d(n)\/7—110g2n} X

X { 1+./4—1 (1 -—%) d(m) \./1; log’m }”2.

N
JA-1

There is no point in considering M < ./mn here, as the term in
(N-M) (mn)”‘" is larger than one would obtain by summing Weil's bound.

Deshouillers and Iwaniec get nontrivial results in the range N < \/mn by
averaging over other parameters. However without extra averaging, we get
the main term < N of the Linnik conjecture if m and n are bounded, and 4
may be bounded away from zero.

For an unweighted sum we must remove the tapering. This introduces
an extra error term

MA N4
< (2 +2)IS(m, n; o).
M N
We use Weil’s bound in the form

IS (m, n; q)|* < d*(q)(2m, 2n, q)

so that

1S(m, n; g <d(@) /g =Y

dg

1
The new error term is now

NP 1}

d|{m,n)

where

L(A-1)N¥* Y J-i;ﬂ+d((m, n))/mnN.

d|(m,n)

Here we have the estimate

TR
“"Z"'v") d \P|:(["-ll-n) p \-/1_7 v*((m, n))
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where we define

v(m) =[] (I—%)— .

plm AP

Choosing

A—1=N""3(v((m, n)))-M3
we obtain Kuznetsov’s unweighted bound (which he states slightly differently,
without explicit dependence on m and n).

TueoreMm. For ./ mm <€ M <N

N 2/3
Y S(m, n; q) < N"6(v((m, m))*° +
=M

q
NP2 (o((m, )" )/ log mo+d (m) /i log )+
+ Nd(m)d (n) (mn)*/* log? mn,

where v(m) was déﬁned above.

We get N7/ in the leading term because we estimated |§(v)l. If the
Fourier coefficients b;(n) were sufficiently regular, we could make some use of
the oscillation of §(v). This seems out of reach at present.

Further reading
DESHOUILLERS and IWANIEC
KUZNETSOV

16. Kloosterman sums with opposite signs

To prove the corresponding formulae for S(—m, n; ¢) we consider instead

aD

(Un(z, 8), Upz, W) = [ e ?™a_, y~2dy
y=0

in the notation of Section 12. The final formulae have I Bessel functions in
place of J functions, but the intermediate steps are quite different. The
expression for the Kloosterman sum zeta function as a sum of meromorphic
functions fails to converge absolutely, so we follow Kuznetsov’s treatment here.
The holomorphic Poincaré series do not arise here, as they have no terms in
e(mz) with m < 0.

For 1 < Re w < Re s the inner product is expressed as

=]

2nn 1
se=m | exp [ —2mimey— dtdy,
Jy J XP( Timty c"y(l+it))(tz+1)w y
y=0

H==a
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the only change being the sign of im. However in

1 X 1 du
Kh,(x) = - Jexp (—~5 (u+;>) D
0
> ) mc?
x=oa(c) =4n./mnfc*, u=(1+iny -

so that the subsequent variable change v = (1—it)V/2(1+it)~ Y2 gives

(Un(z, 5), Un(z, W)

o S(—m, n;c (smwyz 1\)st*-2 g
; s+w )(;) TUKhs_w(a(C)) J\{%(v_{_;)} » w,_vv_

[+

on the same contour C as before. The continuation to Res > 3/4,
Re w > 3/4 again follows. When we put s = 1 +iu, w=1—iu, the integral
over”C, half the unit circle from —i to i, becomes

. i sh nu
fuz‘" Ldy = :

we must put

u
c

This leads to a slightly simpler Basic Lemma.
Basic LEMMA. For —1/4 <Imu < 1/4
L 8(~m,n;0)

- _—c,—, a(c) Khyy, (a (C))

e=1

® 41r\/— nb,(m)b;(n) mri,(m)ri,(n)K(t, u)
L chmy  Keaw+ j Eiint(i—in *

— oD

Recall from Section 11 that Maass wave forms are either pure cosine
series or pure sine series. For cosine series b,(—m) = b;(m) is real, for sine
series b;(—m) = —b,(m), which is pure imaginary. The Eisenstein series is a
cosine series. Hence the b;(m) in the Basic Lemma is ‘really’ b;(—m).

The deduction of the First Trace Formula follows very similar lines. We
multiply the Basic Lemma by

% ch mu {h(u+i/2) + h(u—i/2)}

and integrate over u. The Macdonald function Kh,,, (o) needs to be ex-
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panded into I functions, giving

f Chzm sin lzim, (2 giu (o) = T3s () { P (w4 3/2) + b (u—i/2)} du

-

an

i 1 , .
=3 fsh - {h(u+i/2)+h(u—i/2)} I, («) du

—ao

since h(u) = h(—u). We move each term to the real axis as before, getting

O

i [ B0 e @, i [ O @ [ 40 Lu@hE)
EJ —ichnv dv+2J ichro do = o 2chm d

by the recurrence relation

2s
Is—l (a)_Is+l (a) = ? Is(a)'

The convergence of the sum over ¢ (so that a(c) — 0) follows as before, and
we obtain the First Trace Formula.

THEOREM. Let h(z) be regular for |y| < 1/2 and tend to zero sufficiently
fast for |x| » +o0. Then

an

—2i i Szm, n; ¢) Jz;l(;:l I, (4n /mnfc?)dv

=1 c

= ad

_ 2 dnyfmmb,mb (i) f 5 ), (1) ()
B ch nx, C(L+2i0¢(1~2it)

i=1
— @

The convergence condition is the same as in Section 13, To obtain the
Kloosterman sum zeta function, we should take

h(v)=ch nv |s—=3/2+iv |s—3/2—iv,

which is small enough at infinity only for Re s <0. To get round this
difficulty we must deduce the Second Trace Formula directly from the first.
What follows is essentially the integral transform of Kontorovich and Lebedev.
Suppose that 4T is an odd integer and a < x <y < b. Then

iT iT

Fron oo [ )

-iT -i
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We move the contour to C, made up of
C,: line segment —iT to T—iT,
C,: line segment T—iT to T+iT,
C,: line segment T+iT to iT.
When 1 is large we have

; 2 ) e™ fy?e T20t1 on C; and Cs,
2s y enT/y20(1+|t|)2¢+1 on C,.

The term in I,,I,; integrates to < 1/log T. We expand the term in I,,I_,, as
poOWer series.

2ns 2 2 2 2
V1L (5= DN N A Y S
sin 27s Lz, (y) I-a (x) |25 | =25 1o (y) I (x)

x \%$ 1 1
- (;) {H-]l (l+2s)y2+E(1+23)(2+23)y4+ } *

{ 1
X{1+|l(1—25)x2+L2_ 1—290-2 " }
x\% 2s 1 1 1
] (y) i (;57)“’(@*)}-

The error term and the second term integrate to O(1/T) uniformly in

a<x<y. Fora<y<x<b we argue similarly, moving the contour to the
left instead. Hence uniformly in a< x<b, ag<y<bh

iT iT
2 2 x\% 1
J 2ms I 5, (;) Kh; (;) ds = J (3;) ds+0 (log T)
—iT ~iT

Now let g(x), G(s) be the Mellin transform pair used in Section 14,
Then

b
j 2ns 12,( ) j (x) Khh(%) dx ds

—iT

iT b ir
x )\ 1 (s41/2) 1
= J J(;) g(x)dxdw-i—O(—~log T)= f—y ds+ O(log T)’
—iT a -iT

which tends to 2miyg(y) as T— o, and we have Kontorovich and Lebedev’s
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theorem in the single integral form

b

v=E—m a

Kuznetsov deduces the Second Trace Formula in this- manner in the
case of like sign. There are now poles of the integrand (J_,—J,)/sin ns at
s=1,3,5 since I_, =1, for all integers n, but J_, =(—1)"J,. The single
integral formula for the Kuznetsov transform

b
x 2 2
yg(y) = Z(Zk—l)"ﬂ:—l (;) szk—l (;)g(x)dx+
1

® b
. 5 5 ,
+ J Sh’;nv J a0 (}) f{hiu (;)—-J_m (;)} g(x)dxdv

is proved in the same way.
To prove the Second Trace Formula, we put

ch nv

g)= > J%G(s)]s—3/2+iv |s—3/2—ivds.

L

Again §(v) €<v™*? as Re v — oo, [Im v| < 1/2 and §(v) sh nw is regular for all
v. The contour integral converges even when we replace L by a loop M from
—ow —iT to —oo+iT passing all poles to the left. We can now write

b

g(v) =°1; ’:” j J%xzs_lg(x)ls—3/2+iv|s—3/2—iu dx ds
T

x=a M

b

2
ch m JKhZ'" (;) g(x)dx,

02l A

using a Bessel function integral from Section 9, inside an absolutely conver-
gent double integral.

We can now deduce the Second Trace Formula.

THeoREM. Let g(x) be continuous of compact support and piecewise
differentiable, and let §(v) be its Kontorovich-Lebedev transform as defined
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above. Then
1 e ¢
—— ) g|——=—=)S(—m, n;c
2n mnc; (2n~/mn) ( :
24 /mnb(m)b;(n)g(x +1 m)t, (n) g(t)dt
=1 ch mx; T ( 1+21t ¢(1=2it)

The bounds and estimates are the same as for g (v), since g (v) is the I-
Bessel function analogue of §(v). For small b there is a better bound since

[Khyi, (2/b)| < Kho (2/b) < exp (—2/b).
We find that

(b—a)exp(—2/b) for b<2,
(b—a)log b for b> 2
which we can use for small v. However this improvement does not extend to

the final bound for Linnik sums, and we get the same bound as in Section 15
for the sum

g(v) < {

N
Y, S(—m, n;q).
g=M

The case of opposite signs appears in Kuznetsov’s preprint, but not in the
expanded account in Sbornik.

Further reading
KUZNETSOV
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