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Maximum principles for solutions of second order elliptic equations have
been used in the mathematical literature for close to a century and a half.
They have been used to study questions of existence, uniqueness, regularity,
stability and error bounds. The book of Protter and Weinberger [16] gives a
good survey of the vast literature on the subject up to 1967. This paper will
deal with work done since that time.

The idea a “best possible” maximum principle is as follows. We are
given a nonlinear elliptic partial differential equation of the form

(0.1) F(x,u,Du,D*uy=0 in QcR"

and are interested in solution of this equation which satisfies

(0.2) B(x,u, Duy=0 on 09Q.

We say that a function ¢(u, g°) of u and g> = |grad u| satisfies a “best
possible” maximum principle if the following two properties hold:

1) ¢(u, q°) satisfies a maximum principle for any Q.

2) Exist some domain € (or a limiting domain) such that ¢ = constant
in . The condition 2 gives rise to the term “best possible”.

Let me first indicate why such “best possible” inequalities might be
useful. Many interesting problems in mathematics, physics, and engineering
are modeled by nonlinear second order elliptic boundary value problems.
For many such problems a bound for the solution is not nearly as important
as a bound for the maximum of the absolute value of the gradient which in
different contexts represents maximum stress, maximum velocity, maximum
heat flux, etc. Our maximum principles will not only lead to bounds for the
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maximum value of |grad u| but will also [requently yield some information
about where this maximum value occurs [12]. Furthermore, the bounds will
be sharp in the sense that the equality sign will hold for some Q. Since the
inequalities are sharp in this sense, then they may be integrated over Q or
subdomains of Q and isoperimetric inequalites (in the sense of Polya and
Szegb) will result. They also lead to isoperimetric comparison theorems
which relate the solutions of nonlinear problems to those of associated linear
or one dimensional problems (see e.g. Payne [9], [10]).

“Best possible” maximum principles have been used in solid and fluid
mechanics [11], [12], [13], reactor theory [15], [14], plasma physics [8],
[ 18], diffusion-reaction problems (see e.g. Sperb [17]), in geometry [13] and
in other areas.

1. Some recent results

A “best possible” maximum principle for the equation

Ap+1=0 in Q c R?
(1.1)
=0 on aQ
has been known for some time. Miranda [7] has shown that the quantity

(1.2) ¢ = |grad Y|+

takes its maximum value on ¢Q and that ¢ is a constant throughout Q, if Q
is the interior a circle. The analogue of this statement in higher dimensions is
also well known, :

Results of this type depend, of course, on the two Hopf maximum
principles [4], [5]. We do not require the most general forms of these
principles but state them for solutions of the inequality

2 N )
u +Y B30 in @
i=1 ox;

N
(1.3) Lu = sz;ll a;; (x) ox, 3%,

where a;; and b; are assumed to be continuous in Q, and the boundary éQ is
assumed to be a C** surface lor some a > 0. Furthermore, it is assumed
that the matrix with components a;;(x) is positive definite. Under these
conditions the two Hopf principles may be stated as

H.1. If u assumes its maximum value M in © then u = M throughout
Q.
H.2 If u assumes its maximum value M at a point P, on Jf2 then

. ou
either u=M in Q or —(P) > 0.
cn

0 ) )
Here P_ denotes the normal derivate on ¢Q directed outward from Q.
n
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We describe first some recent results of Payne and Philippin [14], which
apply to classical solutions of the nonlinear problem

g

Za[(uq)qJ+h(uq) 0 in QcRY

i=1

(1.4)
u=0 on ¢S2.

We assume throughout that g is a C' function of its arguments and that h is
a continuous function. These conditions can be relaxed, but for simplicity we
make these somewhat restrictive hypotheses.

We further assume that

. dg (4, q°)
(1.5) Gu, %) = g(u, q2)+2quzq—>0

on solutions. Condition (1.5) guarantees that the equation is strongly elliptic.
Our aim is to find a function ®(u, g°) which will satisfy a “best possible”
maximum principle, and as a guide in making a suitable choice we consider
the analogous one dimensional problem which can be reduced to a first
order partial differential equation. This lead to the following candidate for @,
i.e, a function which satisfies the first order partial differential equation

(P
(1.6) 2H(u, 4% <5 = G(u, q2)~
oq°
where
2 2 (’g
(L7 H(u, 4%) = h(u, g% +4*
%
together with the requirement
od

on solutions. This latter condition imposes some further restriction on the
function h, but in many interesting examples it can easily be satisfied. With
this condition we might expect to be able to obtain a solution ¢ in the form

(1.9) @ = q*>—F(u).
We now indicate a proof of the following two theorems:

THEOREM I. Let @ be a solution of (1.6), (1.8) where u is a classical
solution of (1.4), then @ takes its maximum value either on ¢Q or at a point in
Q ar which |grad uj =

THeoReM 1. If the average curvature K is nonnegative at every point of
0Q then & cannot assume its maximum value on Q.
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The proof of Theorem I involves showing that ¢ satisfies an inequality
of type (1.3). However, for the ¢ satisfying (1.6) the functions b;(x) (which
actually depend on the solution u) have singularities at those points in Q2 at
which |grad u| = 0. The conclusion is then obvious. The proof that ¢ satisfies
such an inequality is quite involved and we do not reproduce it here.

. . . od
In establishing Theorem II it is shown that if K < 0 on Q2 then — <0

n
on @Q2. An application of H.2 then establishes the theorem.
In the special case

(1.10) 9=9q), h=f(uelg?,

the equation (1.6) separates and @®(u, ¢°) can be written explicitly as

(1.11) P(u, q°) = Jﬂds+2 jf(n)dn.
e(s)
o 1]

A number of interesting examples for N =2 are of form (1.10).

(a) Surface of constant mean curvature: g = (1+4¢%)~ "2, f = const,
© = const.

(b) Torsional creep: g arbitrary, f = const., ¢ = const.

(c) Meniscus problem (capillary tube): g =(1+¢%) " Y3, f = —u,
© = const.

(d) Extensible flm: g = (1+4¢%~ Y2, f =const, ¢ = (1+¢%) /2

Furthermore, various special problems in two dimensional nonlinear
elasticity are of form (1.6) with g and h given by (1.10).

Theorems 1 and II yield a “best possible” maximum principle for
domains: with boundaries of nonnegative average curvature in that & is
identically equal to constant in the one dimensional problem, the limiting
case of a spheroid with fixed minor axis as the radius of the major cross
section tends to infinity. '

Remark. It is possible to treat other classes of boundary conditions (see
e.g. [13], [14]). ‘

The combination @ which satisfies (1.6) is not the only combination
which satisfies a maximum principle. It was shown in [14] that if instead of
(1.6), &, satisfies the equation

od 0P
(1.12) 2H (u, cﬁﬁg = NG(u, g7 5,

and furthermore

H
(1.13) 2gHg——NG(gﬂ—h@)20
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on solutions, then @, must take its maximum value on ¢Q. (Here no sign
condition on the curvature of the boundary is needed.) This maximum
principle 1s sometimes “best possible” in that the equality sign holds when Q
is the interior of the N-sphere. However, the additional condition (1.13)
reduces the applicability of this principle somewhat. On the other hand it
may be applied for any region with sufficiently smooth boundary, and in fact
it is not necessary that dQ be a C?** surface.

Suppose g and h are such that (1.4) has a positive solution. Theorems 1
and II may then imply that

(1.14) P (u, g°) < P(uy, 0).

In view of (1.8) it is then in theory possible to solve a bound for g* of the
following type:

(1.15) g < F (u, uy).

Integrating this inequality along a ray from the interior point P, at which
u = u,, to the nearest boundary point P, we would then obtain

Unf
dn .
(1.16) j——f—:so(Po, P)<d.
b4 \//;_("s uM)

Here 6(P,, P,) is the distance between P, and P,, while d is the radius of
the largest inscribed N-sphere. In many cases this inequality can be solved
for u, to obtain

(1.17) uy < ol(d
and the result inserted back into (1.15) to give

(1.18) max ¢° < # (0, a(d)).
o
From the inequality for &,, it is also possible to obtain a bound for

max ¢2, and in some cases to determine subsets of 92 on which max ¢’
] a0
cannot occur (see e.g. [12], [13]).

ExampLe. Consider the special case g = g(g?), h = k,, where k, is a
positive constant. Then provided (1.5} is satisfied it follows that if ¢Q has
positive average curvature K then

(@) g takes its maximum value g, at a point P on 082;

(b) 909(q3) < ki (NK,) ™'

(c) K(P)<k, meas 0QfN meas Q);

(d) various special results for special value of g (see [13]).

In (b), K, designates the minimum value of K on 0Q.
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In continuum mechanics contexts the quantity on the left of (b) is the
maximum stress on dQ. But by (1.5) it follows that gg{(q®) is an increasing
function of g and thus that (b) gives an upper bound for the stress
throughout . The interesting feature of (c) is that it is independent of the
particular form of g. It states that the maximum value of g cannot occur at a
point on the boundary at which the average courvature of the boundary
satisfies inequality (c).

A number of interesting applications of these maximum principles in
plasma physics have been made by Stakgold [18], Mossino [8], and in some
as yet unpublished results of Bandle and Sperb. As a mathematical model of
a certain plasma confinement problem Grad, Hu and Stevens [3] have
proposed the [ollowing equation:

d
m+ o in Q c R?
du
(1.19) u=y on (L,

“du
—b—ds=1.
f#ﬁn :

{2

The constant 7 i1s not prescribed a priort but the number I is specified. In
plasma physics one is interested in equations whose solutions have the
property that if one plots the surface z = u(x, y) over Q it will have the
shape of a hill with y either positive or negative. This is to be realized by a
function p of the following form

du
(1.20) p= p(u, a(u), —),
da

where a (i) is the measure of the set of points for which u > @. This leads of
course to a very nonlocal type of equation, and very little is known about
solutions except for very special functions p (see e.g. Temam [20]). Whenever
one is assured of a solution which is C' in 2 and C? in some neighborhood
of 0@ then it can easily be shown that the quantity @®(u) = |grad u|*

d . , C . = .
+2p(u, a(u), Jlj) takes its maximum value at a point in € at which [grad u|
a
=0, provided 22 is convex. If in fact
(1.21) p = pu, a(u),

and the solution has the shape of a hill then under mild assumptions one can
conclude that

(1.22) lgrad uj? +2p(u, a(u)) < 25{uy, 0).
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A “best possible” maximum principle has been employed in the litera-
ture to study a few special cases, e.g.,

1iu? u=0
—_ 2 ’ = Y,
(a) P {0, u <0, (Stakgoid [18]),
(b) p = ufgla(n)dn, (Mossino [8]),
0
At
’ uz=0,
(c) p ={ a (Bandle and Sperb).
0, u <0,

2. Comparison theorems

In this section we indicate how “best possible” maximum principles may be
used to obtain sharp inequalities relating solutions of nonlinear elliptic
problems with those of simple linear ones and/or analogous one dimensional
problems (see Payne [9], [10]).
As an example suppose u is a positive solution of
Au+if(u)=0 in Q c R",
(2.1)
u=20 on 09,
where the function f satisfies

(2.2) Sw=20, [fw=0 for u>0.
We wish to “compare” the solution of (2.1) with that of the linear problem

Ay+1=0 in Qc RV,
(2.3)
v=0 on @,
or to the positive solution w of

Aw+i,w=0 in £,

(24)
w=0 on 09Q.
To this end we define the two functions
up M ,
d 2 dn
o o[ ] el
J F(up)—F(n) / VF (up)—F(n)

and

upM
Ay dn
26) _ [/-_ j ]
Vo Fra—Fw
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where
(2.7) Fu={f(n)dn.

It is then possible by use of the “best possible” maximum principle to
establish the following two theorems:

THeorem III.  Let u be a classical positive solution of (1.1), (1.2) in a
region  whose boundary has nonnegative average curvature then

(2.8) ¢, < 4y in Q
and .
(29) lgrad ¢,| < 44|grad y| on 09Q.

THeorem 1V. Let u be a classical positive solution of (1.1), (1.2) in a
region  whose bou{zdary has nonnegative average curvature, then

n? i

uM
B
) JFu)—Fn)~ 24

To prove (2.8) we use the “best possible” maximum principle for
lgrad u|? + 2F (u) (where u is the solution of (1.1)) to show that

(2.10)

(2.11) AP, +41=0 in Q.

The result then follows from Hopf’s first principle. Inequality (2.9) is then a
standard results (see e.g. [16]). To establish (2.10) we employ the same
maximum principle to show that

(2.]2) A¢2+111 ¢2 S 0 in Q

from which the result follows easily. A number of somewhat more involved
alternative theorems are also established in [10] by use ol “best possible”
maximum principles.

We mention now a result in another direction. It was indicated earlier
that the boundary value problem

=1 0% ox;

2 9

Z—(—[ (qz)au]+2k1=0 in Qc R?
(2.13)

u=20 on 08,

is sometimes used to model the problem of torsional creep. The next theorem
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compares the solution of (2.13) for a convex region 2 to the solution of the
analogous one dimensional problem

(P VTI+2k =0, O0<x< /2y,
(2.14)

V'(0) =0, V(V2u) =0,
where y is the solution of (2.3) in 2 and y,, = max . In (2.14), p> =[V']>%
n

THEOREM V. Let u be classical solution of (2.13) in a convex region Q. If
g(s) is a C? function of its argument for s > 0 and satisfies the conditions:
(1) g'(s) <0, s>0;
(m) g(s)+2sg'(s) >0, s >0;
(ii)) g'(s)[{sg®(s)}']1" ' nonincreasing in s for s > Q, then

(2.15) u< V{2Wu—-¥) in Q
and
V' (/)
(2.16) lgrad u| < —Y"M"|grad Y| on Q.
vV 2¥u

In some contexts condition (i) is said to describe a softening material.
By a straight forward though complicated computation using a result of
Makar-Limanov [6] which states that if Q is convex all of the level curves of
¥ (the solution of (2.3)) are convex, together with the “best possible”
maximum principle for the solution of (2.3) (i, |grad y|> < 2[Yp—¥]), it

can be shown that ¢, = V(\/Z(lllM—l/l)) satisfies the inequality

2 9 o
2773 :
(2.17) .-; 5 l_[g(a ) 6x-]+2k1 <0 in
¢, =0 on Q.
d 2
Where o2 = |grad ¢,|* = I—gia—ﬂ—pz. Inequality (2.15) then follows directly,
4Wm—VY)

and (2.16) is an immediate consequence of the fact that il ¥ < ¢ in Q and
u=¢ on dQ2 then |grad u| < |grad ¢| on 0. '

The inequalities in Theorems 111, IV, and V are sharp in the sense that
the equality sign holds in the limit for a thin strip as the ratio of thickness to
length tends to zero. Thus as mentioned earlier the inequalities in the three
theorems may be integrated over appropriate subdomains of Q and the
resulting inequalitics will be isoperimetric.

As an example, it is known that for the solution of (2.13) the functional

(2.18) S = fudx
(9]
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is proportional to the rigidity of the beam. By integration of (2.15) over it
is possible to establish the following isoperimetric inequality for S
NI
(2.19) S<[pn] ?4 | Vi(o)do,
0
where A is the arca of €.
Theorem V may also be used to derive the following simple bound for

the maximum shear strain intensity Q, = max ¢[g(¢%].
AR

(2.20) Qo < ky /20y

This inequality displays the remarkable fact that the isoperimetric result is
completely independent of the form ol g.
In the inequalities derived in this section many results involved y,, or

max [grad |. Bounds for these quantities in terms of the geometry of £ can
"

be found in numerous ways, e.g., monotony principles, maximum principles,
variational principles. ¢tc. A simple bound derived in [11] is

(2.21) max |grad Y|? < 4y, < d?,

a9

where d is the radius of the largest inscribed circle in Q. Sharper estimates
have been given by Fu and Wheeler [2].

The results on torsional creep will appear in a forthcoming paper. A
number of additional comparison results would follow if it were possible to
determine classes of functions f for which positive solutions of

Au+f(u)=0 in Qc R?,
u=10 on Q2

satisfy the Makar-Limanov property (i, the convexity of € implies the
convexity of all of the level curves of ). This is known to be the case for the
positive solution of (2.4) (see Brascamp and Lieb [1]) but whether it holds
for other functions f is still an open question.
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