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Introduction

In these notes we describe some number-theoretic techniques which can be
used to investigate the behaviour of the Fourier coefficients of certain
modular forms, particularly those associated with continuous representations
of Gal (Q/Q) (Q = algebraic closure of the rational field @) in GL (C). We
shall show that the study of these Fourier coefficients often reduces to the
study of multiplicative functions whose values may be integers in some
algebraic number field K, or else in some commutative monoid. In particular,
there i1s considerable interest in divisibility and congruence properties of these
coefficients (see Serre [33], Kolberg [14]), and also in the frequency of
occurrence of given values of the coefficients, while much effort has been
expended on growth properties (see, e.g. Deligne [6], [7], Peligne-Serre [(9]).
In some cases we can adapt standard methods of analytic number theory to
obtain asymptotic expansions for the number of n < x for which the cor-
responding Fourier coefficients a, have the required properties. In other cases
our analysis leads to deep problems associated with the desingularisation of
complex algebraic varieties; here we lack a complete solution, although
refatively recent advances, due to B. Malgrange and others, allow us to deal
with many individual cases. The major focus in the present notes is the “local
problem”, in which we consider the distribution of n for which a, takes some
fixed value in a number field; it is this case which causes the greatest
difficulties. We develop the appropriate machinery in Sections 1-5. In
Section 6 we outline the appropriate changes needed to deal with multiplicat-
ive functions with values in a finite monoid, in particular when the functions
are Frobenian; there is a surprisingly large class of distribution problems
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associated with algebraic number fields which can be reduced to questions of
this type; as a special case we may cite the “norm density” problems treated
(by different methods) in some of the author’s earlier papers ([26]-[29]).

In Section 7 we set up a general framework for the analysis of
divisibility problems for multiplicative functions with values in an algebraic
number field. Finally, in Section 8 we explain how the work of Sections 1-7
can be applied to modular forms. In the references we include not only
papers directly cited in these notes, but also other work closely related to the
topics discussed here.

Notation. Throughout these notes we use the following conventions: K,
L — algebraic number fields, Q, R, C the fields of rational, real and complex
numbers, respectively; Q is some fixed algebraic closure of Q in C. T denotes
the torus {zeC; |z| =1}, T= R/Z, where Z is the ring of rational integers.
Z, denotes the ring of integers of K. When ye C we abbreviate exp (2miy} to
e(y). F, denotes the finite field with g elements. When A is a set we denote
its cardinality by # 4. N denotes the set of natural numbers > 1.

1. Multiplicative harmonic analysis

Let K be an algebraic number field, Z, its ring of integers, and let
0 # aeZy. Our aim in this chapter is to express (for £ a variable in Zj) the
function

1 il é&=a,

0 if not

51: (ﬁ) = {

in terms of multiplicative functions of £. Once this has been achieved we
shall be able to proceed with the analysis of value-distribution for multi-
plicative functions with values in Z.

1A. Normalised valuations on K (Lang [15]). The non-archimedean
valuations of K arise as follows. For each non-zero prime ideal p in Z,, and
non-zero f§ in K, we define v,(f) to be the exact exponent of p occurring in
the prime ideal factorisation of the fractional ideal (8) = fZ,. We convert v,
(an additive valuation of K) into a normalised multiplicative valuation by
putting ||, =(Np) *? where N, := 4 Zy/p.

The archimedean valuations arise as follows. Choose 1 such that K
= Q[1]. Amongst the [K: Q] distinct algebraic conjugates of 1 over Q we
assume that r of them (labelled A, ..., 4,) are real and 2c = [K:Q]—r of
them are non-real. The latter occur in complex conjugate pairs. From each
such pair we choose one conjugate; these are labelled A,.,, ..., A.,.. We
now define r+c independent normalised multiplicative valuations of K as
follows. If p(x)e Q[x] we write [p(4)|, for [p(1), where |-| is the ordinary
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absolute value on R when j<r, and the square of the ordinary absolute
value on C when j > r. With these definitions we have the product formula

(1.1) IT 18, IT 1B,=1 forall 0% BeKk,

O#peZy JSr+e
in view of the classical formula N(8Zg) = |Ny,o(B) for 0 # BeZy.

1B. T-units. Returning now to our problem of expressing 4,(¢) multi-
plicatively, we let T be the finite set consisting of all archimedean valuations
of K, together with the (finite) set of |-|, with v, () > 0. The subgroup Ky of
K*:= K\0, consisting of all fe K* with v, (8) = 0 for all p¢ T, is called the
group of T-units of K. Clearly ae Ky, so that {€ K is a necessary condition
for ¢ = a. Now the set K; N Zy is a saturated multiplicatively closed subset of
Zy, ic. it has the property that, for all x, y in Zg, xye Ky n Zy if and only if
both x and ye Ky Zg. Thus the function fr: Zy - F,,

1 if XEKTHZK,

1.2 =
(1.2 fr(3) {0 if not

satisfies fr(xy) =fr(x) fr(¥) for all x, y in Z,. It is clear that f3({) is a factor
of 4,(£), and we now seek the other factors.

1C. The logarithmic mapping (Lang [15])). We now fix a suitable
labelling for the members of T We label the non-archimedean valuations by
listing the p with v,(@) >0 as p,;.4y, ..., P, where t = 4 T, for these we
write ||f]|; instead of |f]|,.. For the archimedean valuations we use the same
labels as in 1A, writing ||8||; in place of |f];, for j <r+c. We now map Ky
into R via B—log B:=(log|fll, ..., log ||Bll). The product formula (1.1)
shows that log K is contained in the hyperplane X+ ... + X, = 0. But in
fact we have the much more precise

T-UNIT THEOREM. log Kt is a free abelian group of rank (t—1), contained
in the hyperplane X, + ...+ X, =0 in R".

(log is obviously a homomorphism: Ky — {R"; +}; further, log K is a
discrete subspace of R*; this follows from the fact that, for a given 4 > 0 in
R, only finitely many f in Zy can have ||, < A for all j <r+c. This already
proves that log K, is free abelian of rank < :—1; to prove that the rank is
actually r—1 requires an argument of Minkowski type).

The kernel of log consists of those elements # of K* for which v,(n) =0
for all p # 0 in Z, (and hence are units in Zy), and which also satisfy [|; = 1
for all j < r+c. The latter equations have only finitely many solutions in Z,
so that n must belong to the (finite cyclic) group of all roots of unity in K.
The latter group is obviously contained in ker log, so that they coincide.

Clearly, when &€ Ky N Zy, a necessary condition for { = a is that log ¢
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= log o and this condition can be neatly expressed in terms of the characters
of log K;. Let e, ..., -, be any Z-basis of log Ky < R'. Regarding
e, ..., &, as the rows of a (t—1)xt matrix E of rank t—1, log Ky will
consist of all row vectors x = nE in R', as n varies over all row vectors in
Z'" 1. To recover n from x we postmultiply by E*, where EE* =1,_, is the
(t—1)-square identity matrix. Thus n = xE*. The character group of log K1
is now obtained by choosing t—1 independent variables u; in T = R/Z, and
defining ¥ (x) = e(xE* u*), where e(y) = ¢*™ and u" is the transpose of u.
This gives a 1:1 correspondence between choices of u in T*~! and characters
of log Ky, while the orthogonality relations for characters yield

{1 if log & =log a,

(L.3) § ¥(log )y (log o)du,...du_, = 0 otherwise.

-1

For fixed we T'™, the function & /(&)Y (log £) is completely multi-

plicative on Zg, and (1.3) shows that we can express the characteristic

function for the property (eKrnZy, log { =log o, as a fixed “linear
combination” of such functions.

1D. There now remains the problem: given that (e Ky N Z; and log ¢
= log a, when does ¢ =a? Since éa™! must now lie in ker log, it must be a
root of unity, and we need to decide which one it is. We do this by the
following simple trick. Choose some fixed prime ideal p* # 0 in Zg such that
p*¢ T, and such that distinct roots of unity in K are incongruent (mod p*).
(There are infinitely many such p*; for the condition on roots of unity is
simply that (0 #) II({—{)¢p* where { and {’ run over all pairs of distinct
roots of unity in K; there are certainly infinitely many such p*, while T is
finite). Let ¥ be a Dirichlet character (mod p*); thus a character of (Zy/p*)*
lifted to Zg\p*, and then extended to Z; by putting x(y) =0 when yep*.
Then we have

1 if ¢ =a(mod p*),
0 otherwise,

(1.4) (Np* =17 Y 2D () ={

where y runs over all the Np*—1 Dirichlet characters (mod p*). If now
CeKrnZy, log £ =log a and also ¢ = a (mod p*), then ¢ = ar, where 7 is a
root of unity congruent to 1 (mod p*), and so v =1 by our hypotheses on
p*. The individual functions

(1.3) (T, x, u; &) : =17 (5 1 () (log &)

are completely multiplicative from Zy into 0u T and (1.3) and (1.4) show
that &, (£) is expressible as a fixed finite linear combination of integrals

(1.6) [ (T, x, u; &)§(log a)du,...du,_,.
-1
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1E. Some variants.

I. The condltlon ¢ = o can be relaxed to (e A, A some ﬁmte subset of
Z,. Indeed, 6, ( é) z 3, (£).

II. We may consnder finitely many & in Z., and the simultaneous
_equatlons ¢ = o, for all i, which we abbreviate to C— a. The characteristic
function &, () is now Hé,‘ (&).

III. Let S be a ﬁmtc set of valuations of K including all the archi-
medeans. We denote by Z% the set of all S-integers of K thus the set of all
yeK with v,(y) >0 when p¢S. Now let « #0, aeZ%, and consider the
problem: when does the variable ¢ in Z3 coincide with «? To deal with this
we replace the set T of § 1A by T* = TuS. Then ae Kr., and the analysis
of § lA-§ 1D goes through, with T replaced by T* and fr replaced by
J* Zg— Fy,

e 1 if ZeZynKr,
4 (6)—{0 if not.

IV. We may combine I-III in various obvious ways. Thus, in II, we can
take the «; in different fields. The most general useful variant is the following.
Take finitely many fields K;, and, for each i, a finite set S; of valuations of
K;, including the archimedeans. For each i, let ; be a non-zero member of
Z‘}"'_, and let £ vary over Zi" Then the methods of Section 1 allow us to
express the simultaneous equations & =a; (Vi) in terms of multiplicative
functions of the £,. The same is still true if we replace ¢ by a finite set.

2. Harmonic analysis of multiplicative functions

2A. Let 6;: N— Z; be a multiplicative function, i.e. 8(mn) = 8(m)0(n)
whenever (m, n) = 1. We consider the distribution of those nelN, n<x
(x large) such that 6(n) = «, some fixed member of Z,\0. In the notation of

Section 1 the number of such nis Y J,(8(n). We introduce the Dirichlet

n<x
series

2.1) D(0;a;s) = Zé( m)n~

where s = o +it, 6, te R, ¢ > 1. It is holomorphic for ¢ >1 and, moreover,
when a > 1, we have

atia

(2.2) > 2 (e(n))=51— f ?D(Q;a;s)ds

n<x
a-im
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by Perron’s summation formula. Qur plan is to obtain (where possible) a
continuation of D to the left of ¢ = 1; provided we can discover enough
information about the singularities of D, (2.2) should give an asymptotie
expansion for ), &,(f(n)) as x — oo. In practice it is better to work with the

ns<x

weighted summation formulae

a+ia
1 x*
(23) Exéa(ﬂ(n)) log%=ﬂ J ?D(B;a;s)ds
or a—lw
a+io
n 1 x° o
(g.4) ngxéa(ﬂ(n))(l—;)=2—m J S(S+1)D(B,a,s)ds,
a—iam

since the extra factors in the denominators of the integrals ensure absolute
convergence, which facilitates the estimation of error terms. One may pass
easily from asymptotic expansions of (2.3) or (2.4) to that of (2.2), by means
of Tauberian theorems of a rather simple kind. (See e.g. [33]).

2B. We now consider D(9;«;s) in the light of Section 1. By (1.6),
5,(6(n) is a fixed finite linear combination of integrals

2.5 - [ W(og &) (T; x; u; 8(n)du,
-1

with coefficients which are independent of n. Moreover (T} x; u; 0(n)) is a
multiplicative function of n (when the other parameters are fixed). It follows
that, for ¢ > 1, D(0; a; s) is the same linear combination of the integrals

(2.6) [ W(log &) A(T: 6; %; u; s)du,
r—l
where
(2.7 AT 0; x; w38 := Y n (T x; u; 0(n)
n=1

for ¢ > 1. Thus, to obtain the asymptotics of (2.3), we need those of

atian

(2.8) I(x;a;6; x):=i. J sz{ jlﬁ(log w) A(T; 0; x; u;S)du}dS-

2mi
a—im -1
We may think of A in (2.7) as a sort of “pseudo L-function”; for ¢ > 1,
A has an Euler product [] A4,(T: 6; x; u; s), where

pprime

(29) A,=14+ Y pMo(T x; u; 0(pY),

k=1
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and it is this feature which allows us to obtain the analytic continuation of A
(and hence of D) in some important special cases. Roughly speaking, if the
sets of primes for which w(T; x; u; 6(p)} takes given values are sufficiently
“regular”, then a continuation will be possible: see § 3.

2C. Some variants.

I. We may consider 6 defined on integral ideals of a number field, and
satisfying 6(ab) = 8(a) 0(b) when (a, b) = 1, in which case we seek an asymp-
totic expansion for ) ,(6(a)). More generally, we may restrict the a

Na€x .
to ideals composed only of prime ideals in some suitably “regular” set.
II. We may consider finitely many 6; simultaneously, using the function
[16,,(6:(m); the products [Je(T; x; w; 6,(n) are still multiplicative func-
i i

tions of n.
III. The condition 8(n) =« can be relaxed to f(n)e A, with A finite.
IV. As remarked at the end of Section 1, we may replace Z,\0 by

Z5\0, the set of non-zero S-integers of K. The changes needed are straight-
forward, and the details will be omitted.

3. The A-function in the Frobenian case

3A. In a number of important applications the multiplicative function 8
in Section 2 is Frobenian, that is, there exists an algebraic number field L,
Galois over @, such that, for primes p unramified in L/Q, the values 8(p") (n

L
2 1) depend solely on the Frobenius conjugacy class Frob p:= (%) in

Gal L/Q:= G (see Odoni [23], [24]). In this case we can obtain some very
precise information about the function A of Section 2. For simplicity we shall
assume that 0(p") = 0 whenever p is ramified; the general case is dealt with
at the end of this section.

Suppose that 6 is Frobenian; then the same is true of @ (T x; u; 8(n)).
Consider the Euler product (2.9). Here A, depends only on Frob p, so that
we may write A(T x; u;5) =[] Ac(T, x; w; s), where C runs over all the

C

(finitely many) conjugacy classes in G, and Ag:= [[ 4, For o
Frobp=C
= Re s > 1, we can take logarithms (using the branch which attributes real

logarithms to positive reals), obtaining
3.1 log Ac= Y log {1+ Y p™™w(T:z; u; 0(p")}.

Frobp=C k=1

.Since 8 is Frobenian we may write o (T x; u; 8(p") as @, (C; u), where we
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regard T and y as fixed. Hence
(3.2) log Ac= Y, log {1+ Y p™uwy(C; w}.
Frobp=C k=21

3B. If y, (k>1) and x are indeterminates, it is easily seen that, as
formal power series,

(3'3) IOg {1+ Z ykxk} = Z mem(yl, A ym):

k=21 mz1

where P, is a polynomial over @, involving at most y;, ..., Y. If we
substitute uniformly bounded complex numbers for the y, then (3.3) also
gives a convergent power series expansion, provided x is a suitably small
complex variable. If we write

3.4) ©™(C; u) 1= Pp(0,(C; W), ..., 0n(C; u),
then (3.2) and (3.3) yield
(35) logdc= Y Y p*o®Ciw=3 o™(C;u{ Y p7*}

Frobp=C k21 kz1 Frobp=C

This is, in fact, valid at least for ¢ > 1, since the w,(C; #) are all of unit
modulus and each p > 2. The Chebotarev density theorem ([33]) asserts that

(39) T p=(G:0) ! log ——+Re(d) (Rez> 1),
Frobp=C -

where (G:C) = # G/# C and R (2) is holomorphic and grows no faster than
log log {2+|Im 2|} as |Im z| = co in the region

c(L)
{log (]Im z| + 2)}4®”

c¢(L) and A(L) being positive parameters depending only on L. Hence we
have |

3.7) Rez>=1-

m

(3.8) log Ac = Y, o*(C; u){(G:C)*1 log

k=1

ks — 1 +RC (kS)},

in the first place for ¢ > 1, but we may use the right-hand side of (3.8) to
extend the definition of log A., as follows. If %(C) is the smallest integer k
= 1 such that o®(C; u) is not identically zero in u, the summation in (3.8)
reduces to k = %(C), and the right-hand side is holomorphic, provided 2z
= sx(C) satisfies (3.7) and we cut the s-plane leftwards from (x(C))™' along
the real axis, to avoid the branch points which arise from the terms
log (ks—1). '

If we now add (3.8) over all conjugacy classes C in G, this yields a
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continuation of log A into the region corresponding to » = min %(C). In
C

practice this x is almost invariably 1, the cases x > 2 usually arising from
some degeneracy in 4.

3C. Remarks and examples.

I. In the above we assumed that 6(p") = 0 whenever p is ramified in
L/Q. If this is not the case then the Euler product (2.9) also involves factors
A, corresponding to ramified p, and these 4, may not = 1. However, there are
only finitely many ramified p. It is then easy to see that the corresponding
function [] 4, is holomorphic for ¢ > 0, and thus offers no obstruction to

p ramified

the continuation of A, since the relevant singularities of the A, given by
(3.8), are to the right of o = 0; it is these which give rise to the dominant
terms in the asymptotic expansions which we shall derive later.

I1. Some examples of Frobenian multiplicative functions:

1. Let @ be a Dirichlet character derived from (Z/9Z)*; we take L
= Q{e(1/g)). That 6 is Frobenian is a direct translation of Artin’s reciprocity
theorem in classfield theory, admittedly applied to a simple special case!

2. Let {f;(x)};y be any family of polynomials in Z[x] = Z[x,, ..., x,].
We let 8(n) = 1 if there exists a solution ye Z" of the simultaneous congru-
ences f;(¥) =0 (mod n), Viel, and put 8(n) =0 otherwise. § is multiplicat-
ive, by the Chinese remainder theorem, while a theorem of J. Ax (see Serre
[35], Odoni [25]) shows the existence of a finite Galois extension L/Q such
that # is Frobenian relative to L/Q.

3. Let L/Q be any finite Galois extension and let D be some multiple of
the discriminant of L/Q. Suppose that g is some representation of Gal L/Q
into GL (n, C). Let L(s) be the (trivially altered) Artin L-series

[]det {(},—p~“e(Frobp)} ' (6 =Res>1).
p4D
We can expand this as a Dirichlet series Y 6(n)n™*, and the coefficients 6 (n)
n21
are clearly Frobenian multiplicative, with values in the ring Z [e(1/g)], where
g is the exponent of Gal L/Q.

4. Let t(n) be Ramanujan’s function, given by the identity

Y tmzi =z [] (1-29%,

nz1 k21
and let p be a fixed prime. t(n) is a multiplicative with values in Z, so that 6:
n—1(n) (mod p) is certainly multiplicative, with values in Z/pZ. Deep results
due to Deligne imply that € is also Frobenian, relative to a certain finite
Galois extension L,/Q (see Serre [33]).
5. Frobenian multiplicative functions also occur when examining density
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questions associated with norms of algebraic integers, or of ideals in various
orders (such as integral group rings). For particular instances see Section 6.
In such cases it is often convenient to allow 8 to take values in some
commutative monoid M. The following properties of such are of considerable
utility:

(1) If 6: N— M, is Frobenian multiplicative, and f: M, - M, is a
monoid morphism, then nr—f(6(n)) is also Frobenian multiplicative.

(i) If 6;: N—- M, 1 <i<k) are Frobenian multiplicative, then so is
6: n—>(6;(n))eM; x ... x M,.

Indeed, if 9, is Frobenian relative to L,/Q (finite Galois) then 8 is
Frobenian relative to []L,/Q, where [ L, is the compositum of the L;. For

there exists a natural injection Gal [JL/Q < ©Gal L,/Q, and projections

Gal [] L/Q - Gal L,/Q, which respect the Frobenius classes of primes p
unramified in [[ L/Q.

We can use (i) and (ii) to deal with “simultaneous distribution prob-
lems”, eg. to handle # {n;1<n<x,0,(n=peM} or #{nl1<ngx,
6, (n) 65 (n) = u}, with 6,, 6,: N— M Frobenian multiplicative.

4. Asymptotics for 6(n) = a in the Frobenian case

4A. As remarked in Section 2 the sum Y §,(8(n) and its asymptotics
are closely related to the integrals )

a+tim
1

@) x50, ) =5 f :—2{ Jtﬁ(loga)A(T, 8; x; u_;S)du}dS-

a—iom 1
When 8 is Frobenian we may use the analysis of Section 3 to obtain
asymptotic expansions, at least “generically”, as we shall see later in this
section. Our first step here is to use Cauchy’s theorem to deform the vertical
s-contour from a—ioo to a+ico into one which exploits the analytic
continuation and singularities of the A-function. We begin by interchanging
the order of integration in (4.1); we study for fixed we T*~! the integral

a+iwm
1 x*
(4.2) Je; T0; x5 ) == f — A(T, 0; x; u; s)ds.
2mi s

We note that (3.8) implies that A in (4.2) is holomorphic and uniformly
bounded as |t/ — o0 in the closed half-plane xc > 1+& (¢ > O arbitrary),
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where » is defined below (3.8). Thus we can certainly replace a by any real

number > x~'. But we can do much better than this. We cut the s-plane

along the real semi-axis s < »~', and deform the vertical contour from a—

—ioo to a+ico into the union of 5 contours % = %7y U%; UE L% VG,
. . . _y €5 . upper

where %, is the anticlockwise circle [s—x ! =¢ < ~ is the edge of
%3 lower

the cut, taken in the sense {‘:» for l—aﬁsﬁs 1—xe, with the
. %! . c(L)
tation of (3.7), and _ 1s the contou =1-— fi
i D {fg SO  og @ kDT
>0 . . ,
K :8 and increasing. Here £ > 0 is arbitrarily small.
TS
By (3.8) we can write
(4.3) A(T, 6; x; u; s) =eXP{Q(u) log ml 1]( H(s; u)
for z = xs satisfying (3.7), where
(4.4) Qu):=Y (G:O) '™ (C; w
C

and H(s; u) is holomorphic when z* := (1 +x)s satisfies (3.7) with z* replac-
ing z, and so certainly on 2,:=%; U%, V%5 .

(2+1)"

Fig. 1

Moreover, the ™ (u; C) are, by (3.4), trigonometric polynomials in & so
that H(c+ir, u) is holomorphic in ue T'"* and grows no faster than a
uniformly bounded power of log|t| as |1| » oo on ¥. Standard arguments
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(analogous to the estimation of the remainder term in the proof of de la
Vallee-Poussin version of the prime number theorem (Ingham [13])) now show

that

(4.5) f %A(’I‘, 8; x; u;s)ds=0(x"_1 exp (— B \/log x)),
%;u¥r
where B = B(T, 0, x) is independent of u, as is the implied constant in

O(...). We shall see that (4.5) is, in general, negligible compared to the
integral along 2,.

4B. We now deal with the integral along 2,. We first write s = 1 4w,
so that, by (4.3),

1
xs X +w B
(46) JF A(Tt G;x;u; S)dS=Jm A(T; B,x, M, W+Xx 1)dW
29
=x ! jxw(x'1+w)‘zH(x‘1+w, u) exp {Q(u)(log w™ ' +log x~ ')} dw,
2

where ¥ is %, translated by —sx !, We now write
(4.7) Gw;w=wW+x N 2H( 4w, u) exp {Q(u) log » ).

This function is certainly holomorphic in w in some closed disc whose
interior contains the whole of %, and so we have the Taylor series

(4.8) G(w; u f ;G (0 ),

certainly uniformly and absolutely convergent for we 2. The integral (4.6) is
now

49 x* Jx” exp (—Q(u) log w) Y :—T G"™(0; u)dw

m=0
2
o G o [
Z ( 1) x¥w™ exp (—Q(u) log w)dw
m=0 5
a G(m)( ) r

exp (w log x+(m—Q(u) log w)dw.

LT

N,
2

4C. Let 2" consist of &, extended out to —co along each edge of the
w-cut (which runs along the real semi-axis w < 0). It is a well-known theorem
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due to Hankel (see Copson [4]) that

(410) ,1—1 ezlogl I"(z)—l - _]:_ J‘elw—zlugwdw
2ri
9+
when A >0, where I' is the classical gamma-function. Let —& denote the

endpoints of 2. Then, along either edge of the cut, we have, for large 1 > 0,
and bounded Im z, with Re z bounded below,

| J' elw zlogwdw' < Al j‘e —Rez(logy tin) dy <A j‘e Ay -Rczdy

ws -

< A2 Ie—.lylz sup {e—lylzy-Rez} dy < A3 e—ly/‘t’
) y=d
where the A4; are positive constants; here 6 > 0.
It follows from this and (4.10) that

e(ﬂ(u)—m)loglogx
log xI" (2 (u) —m)

(4.11) —2% Jexp{w log x+(m—Q(u))logw}dw = +0(x"%),

2

where O(...) is uniform for ue T'~! and & > 0. Consequently (4.9) and (4.5)
yield an asymptotic expansion -

412) J(x; T, 0; x; u)
xx‘l eﬂ(u)loglogx M G(m) (0 ll)(]Og x)*m

= log x ,,,;0 m!I:(Q(u)—m) +0(10gX)_1_M},

the functions x~% and exp(—B./log x) being asymptotically negligible,
relative to the scale (log x)™™ (m = 0).

4D. To obtain the asymptotics of I, we now need to multiply (4.12) by
¥ (log @), and then integrate over all ue T*~!, and the problem reduces to
finding the asymptotics of

(4.13) j Y (log o) exp {Q(u) log log x} ((M)(O 0 du

Q1) —m)

TI'—].

as x - oo. We write A =log log x and call the integral in (4.13) .7,(4).
We now recall that Q(u) is a trigonometric polynomial, i.e. a member of
the ring C[z,, ..., 2,1, 27 %, ..., 2] of Laurent polynomials in the vari-
ables z; = e(u,). Moreover 4.7 and (4 3) also show that G™(0, u) is an entire
function of the variables w™(u; C) and hence holomorphic in z,, ..., z,-,,
except for possible singularities where []z; = 0. Also (F'(w))™! is an entire
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function of weC, so that (I’ (Q(u)—m))”‘ is holomorphic in z, except where
[Tz, =0. Thus the change of variables z; =e(u) in (4.13) leads to the
consideration of the asymptotics of integrals of the type

(4.14) = [ rOF(@dz; A Adz_,

_ 51 T:.lxsl
where S! is the unit circle (oriented anticlockwise), R(z) is a polynomial in z,
divided by a monomial, and F(z) is holomorphic for []z; # 0.

5. The asymptotics of #(4)

It is clearly desirable to obtain an asymptotic expansion for _#(4) of (4.14) in
terms of a scale of simpler functions of A, such as exponentials or powers.
The sheer generality of ¢ (1) makes this a very difficult problem; indeed, to
date, there is no complete solution available. However, thanks to the efforts
of B. Malgrange and B. A. Vasil'ev, based on Hironaka's theory of resolution
of singularities, one can at least solve the problem for “most” R(z).

S5A. #(A) represents a generalization to several complex variables of the
classical saddle-point integrals

(5.1) [P g(z)dz (A — + o),
€

where % is a contour in C, lying in some domain where f and g are both
holomorphic. In mathematical physics integrals such as (5.1) are of very
frequent occurrence, and their asymptotics are often accessible via a tech-
nique due to Riemann [32] (rediscovered and extended by P. Debye [5] in
1909). Briefly, one proceeds by deforming % so as to pass through certain
“saddle-points” (i.e. critical points z, where f'(zo) =0); the direction of
passage through a saddle-point is preferably along a curve on which Im f is
constant, and such that Re f has a local maximum at the saddle-point
(relative to the curve). When 2 is large and positive A Re f will have a sharp
peak at the saddle-point, and the problem reduces to one of a type first
treated by Laplace in his discussion of Stirling’s formula for n!.

5B. For #(A) the analogous critical points (where now 0R/dz; = 0 for
1<j <1 are also of crucial importance. The t—1 simultaneous equations
OR/0z; = 0 (z; # 0) amount to a system of ¢t—1 algebraic equations in ¢t—1
unknowns z,, subject to the constraints z; # 0 (necessary since R may be
undefined when sz = (). Consider a family of rational functions of the type
R,(z)=Y p,z,", ..., z'', where a runs over some sufficiently large finite set

of vectors in Z'~ !, For our purposes we may regard as equivalent any pair
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of such functions which differ by some non-zero constant factor. Thus we
may regard g as a point which runs over complex projective space P? of
suitably large finite dimension. For each y let V, denote the variety in z-space
consisting of all points with 6R,/dz; = 0 +# z; for all j. Then V, is generically
of dimension 0, in the sense that the set of u for which dim ¥, # O will be a
proper subvariety in P? Now zero-dimensional algebraic varieties consist of
finite sets of points; almost all generic 4 will have the same value for # V,;
those p yielding exceptional values for # ¥, will constitute a proper sub-
variety of P% Furthermore, the points of V, will be non-degenerate for generic
a, that is, at each point of V,, the Hessian matrix (0 R/dz,0z)) will be non-
singular. Further, there will be no “missing critical points” lying on []z;
=0.

If R corresponds to a generic value of g, in the above sense, then the
asymptotics of # (1) can be obtained by a direct imitation of the one-variable
saddle-point method; we obtain a finite sum (over points in V) of expansions
of the type

(5.2) HREDJ-12 5 g (F) 72,

nz0
where the coefficients a,(F) vary “smoothly” with F, in the sense of the m-
adic topology on the local ring of germs of functions holomorphic near z°
(see Malgrange [19]).

5C. In non-generic cases this is a rich diversity of pathological behaviour
which can occur. However, since R is a rational function, there is a
redeeming feature which allows us to treat many of the remaining cases. The
set of critical values of R is finite, i.e. regardless of how many critical points
R may have, there is only a finite set of we C such that the variety R(z) = w
in C'~! has any singular points at all (this is a mild generalization of a
theorem of H. Whitney — see Milnor [20]). We emphasise that this result
holds for rational functions; it is easy to produce counterexamples for non-
rational R. Of course, it is possible that there are no critical values at all for
certain R (they may “escape out to co” or onto the forbidden variety []z
= 0). When this degenerate case occurs the corresponding _#(4) can have
very pathological behaviour, as the following example shows.

5D. Example of R without critical values. This even occurs in one
complex variable. We consider

(5.3) FA)= [ "dz (g=1in 2),

sl
which might well occur as a special case of (4.13). Here R(z) =z obviously
has no critical values. However, we can obtain an asymptotic expansion for
#(A) in this case, by a special trick. The contour S' can be replaced by any

13

25 — Banach Center, L. 17
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concentric circle, by' Cauchy's theorem. We make a linear change of variable
2 = pw. dz = pudw, obtaining
JA)=p [exp Auw+pu w9 dw.
sl
We now “balance” the exponents by requiring that Ag = u~ 9 A =pu~1'79 and
write N = Ay = A'"14a*D g0 that N - + oo with 4. Thus

F()=pf*(N)y=u | exp {N(w+w™9)}dw.

Sl.
The function w+w™? has critical points where 1—gw™9"! =0, ie. at the

points w, = gt/@+h e(%), 0<r<gq+1. The steepest descent paths here
q

are tangential to the circle S: [wj?f! =g, so that S will be an optimal
contour for the application of the saddle-point method. Amongst these
saddle-points, wy yields the largest value of Re (w+w™9, and will give the
main contribution to #*(N). We find that

FHN)~ N~ exp [N(wo+wg ")} ), a,N™"2,

p nz0

(5.4)
f(}») ~ A" M4+ D exp {,11“/“””(w0+w5“)} Z a,,(ll'”(‘” 1))-(n+llf2.
nz0
Notice here that w+w™7 exhibits all the features ol the generic R, in
§ 5B; the critical points are all non-degenerate, and their number and nature
are stable under small perturbations of the rational function.

5E. When, in (4.14), R does have critical values, the natural method of
attack is to fibre C'"'\{[]z; = 0} into the union of the varieties V¥,: R(z)
=w, as w varies over C. Since the critical values of R form a finite set, the
corresponding critical varieties V,, are separated. In order to obtain the
asymptotics of #(A), we aim to deform the cycle §! x ... xS! into another, 3

h—I!—l—-_J
say, which is smooth, compact, and homotopic to it relative to C'~*\{[]z;
=0}, and passing through or near certain of the critical varieties V,,, in such
a way that the neighbourhoods of the latter give the dominant contribution;
in particular, Rez ought to have local maxima on 3N ¥, for appropriate
critical w.

We consider now the contributions to #(J1) from the portions of 3 away
from critical ¥,,. Suppose that y is a compact, smooth chain of integration
in C*~'\ ]z, = 01, not meeting any of the critical ¥,. We can dissect y into
a finite number of pieces y;, on which some fixed partial derivative dR/0z;
is bounded away from 0. On such a y; we can change variables in

(5.5) | " F(z)dzy A ... Adz_,

Yrj
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by replacing the z; for which dR/dz, fails to vanish on 7, by R; that is, we
put w, =R, and w, =z, for all k #j. Then (5.5) becomes

(5.6) [ ™ F*(wydwy A ... Adw,_,,

Vi
where F*(w)dw; A ... Adw,_; =F(z)dz; A ... Adz,_,, with F* holo-
morphic, and y}; is the chain corresponding to y;, in w-space. By parametrising
73 with local real parameters, we can reduce (5.6) to a finite number of integrals
of the type

b .

dw;

5.7 W0 G5y =L
(57) j G =L dr

(the number of these being independent of 1), where G(r) is a C*-function of
t, and dw,/dt is non-zero and C® for a<t < b. We can now apply inte-
gration by parts, integrating e‘wjm‘dwj/dt and differentiating G. This process
is applied repeatedly, yielding an asymptotic expansion of the type

(5.8) [e™1® f PN () [l
n=1

for (5.7). If we have chosen 3 in the way described above, the expansions (5.8),
will, ideed, be negligible compared with those arising from the neigh-
bourhoods of the critical varieties.

SF. We now face the major task of determining the contributions to
# (A) arising from the neighbourhoods of the critical varieties. We shall make
use of the following fundamental

THEOREM 5.1 (Malgrange [19], Vasil'ev [38]). Let f: U — C be a function
holomorphic in some neighbourhood U of O in C", with f(0) = 0, and such
that df =0 at O. Suppose that A is a smooth, compact n-chain contained in U,
such that 04 is contained in {zeU; Re f(z) < 0}. Then, for any ¢: U —>C
holomorphic in U, we have

(5.9) [P (2)dzy A...Adz,~3 Y apolf, 4, )27 (log 2.
4 P Q

Here Qe0,1,..., n—1}, P runs through a finite set of non-negative
rational arithmetic progressions {am+f; m > 0in Z}, and the coefficients
upol/f, 4, @) depend only on f, 4 and ¢. The seis of P and Q which occur
are dictated by the topological properties of the set U {f(z) = 0].

The proof of Theorem 5.1 is based on Hironaka’s theory of resolution of
singularities of complex analytic varieties, applied locally to U n | f(z) = 0],
and does not assume that the point @ is an isolated singularity. However, if
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O is isolated (i.e. there exists an open ball B, of positive radius, centred on O,
such that ze B, df (z) = 0 implies that z = 0), then the sets of P and Q were
related (by Malgrange) to monodromy groups of the singularity. Vasil'ev
obtains information on the first non-vanishing ap g, by studying the Newton
polyhedra of the Taylor series of f and ¢.

5G. Assuming now that R of (4.14) has critical values of appropriate
type for the application of (5.8) and (5.9), we see that #(4) of (4.14) can be
expected to have an asymptotic expansion consisting of a finite sum of
expansions of the type

(5.10) e°% ¥ apo(R, F)A~F(log )2
P Q

(R, a critical value of R), and hence that #,,(1) of (4.13) has the same type of
expansion. This, in turn, yields an expansion for I(x; T} 8; x) of (2.8) = (4.1),
consisting of a finite sum of expansions of the type

(5.11)
x '(log )" T Y Y bpg mllog log x)~*(log log log x)2(log x)™ ",
mz0 P Q
with Qo some critical value of {2 (with respect to the variables z; = e(u))).
When R fails to have critical values, the example of § SD suggests the
possibility of more exotic expansions, such as the product of (5.11) by such
factors as exp {A(log log x)’}, or even stranger functions. I have not been
able to determine the general type of function which one might expect to
occur.

SH. Remarks. Our analysis in Sections 4-5 has been based on the
behaviour of a single Frobenian multiplicative function @ with values in Z;.
However, if we consider the remarks in § 2C and § 3C, it is clear that, with
straight-forward modifications, we may extend our analysis to cover the case
where 0 takes values in Z%, the ring of S-integers of K, and also the
simultaneous problems # {n;1<n<x, 0;(n)=a;), with 6;: N- Zi“
Frobenian multiplicative, I being some finite index set.

6. Frobenian multiplicative functions with values in a finite monoid

If, in place of the difficult “local” problem 6 (n) = «, to which we have devoted
Sections 2-5, we weaken the problem to ((n)e some suitably chosen large
subset, we {requently obtain asymptotics of a rather simpler kind. This often
happens when considering divisibility problems,

6A. A subset S, of a commutative ring R with 1, is said to be a saturated
multiplicatively closed subset of R if it has the property r,-r,eS iff both r,
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and r,€8. It is an interesting exercise in the use of Zorn's Lemma to show
that every SMCS § in R is necessarily of the form ) (R\p), where X is the

e

set of all prime ideals p in R with pnAS = @. (In fa;t this is set as a student
exercise in Atiyah, MacDonald [1]!). For example, if K is an algebraic
number field and R = Zy, then X = @ corresponds to R itself, while I
=spec R corresponds to the group of units, and X finite (including 0)
corresponds to Ky n Zy, where K is the group of T-units of K, in the sense
of Section 1. Let § be any SMCS in R. We define a function g: R— F,,
whereby

1, &€,
g(¢) = 0, if not.
If now 6: N— R is multiplicative, then so is G(n) =g(f(n)), and if 8 is
Frobenian, then so is 6, the latter taking values in the finite monoid {F,, - }.

6B. Let K, ..., K, be algebraic number fields, f; a conductor in K;, and
let $, be the maximal divisor class group of K;, relative to f; (thus, the group
of fractional ideals of Z, prime to f;, modulo the subgroup generated by all
principal fractional ideals («) with @ = 1 (mod*f)) and « totally positive —
see Hasse [11]). Let $ be the direct product of all the ©; (thus a finite
abelian group), and let X = 2° be the set of all subsets of . We make X
into a finite commutative monoid by putting A-B = {ab;ae A, be B} for all
A, Be X (The identity element is $, and we define 4- D = O for all A€ X).
We now define 6: N— X by writing 8(n) = {(h,, ..., h)e H: I ideals qeh;
with Na; = n for all i <r}. It is easily seen to be multiplicative. Moreover
is also Frobenian; let L/Q be the Galois hull over Q of the compositum
H,...H,, where H;/K; is the classfield corresponding to the divisor class
group 9;. By use of the Artin reciprocity map, and the standard properties of
Frobenius symbols, one can show that, for p unramified in L/Q, @(p") is
determined for all n > 1 by Frob p in Gal L/Q (see Odoni [23]).

6C. As we mentioned in § 3C, the function 8: n+—1(n) (mod p), where t
is Ramanujan’s function and p is prime, is Frobenian multiplicative with
values in {Z/pZ, '}

6D. In §§ 6A-6C we have produced three concrete examples of
Frobenian multiplicative functions with values in a finite commutative
monoid. One can produce many other examples in which it is of interest to
obtain the asymptotics of # [n; 1 <n<x, 0(n)= uf, where 6 is Frobenian
multiplicative into M a finite commutative monoid and 4 is a fixed element
of M. I have explained the analysis of such problems elsewhere ([23], [30])
and will be content here merely to skeich the main features. Effectively, we
need some procedure for separating the points of M by means of “harmonic
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analysis”. However, there is no simple, direct description of the characters of
M, unless it happens to be a group We proceed instead by means of formal
power series associated with a presentatlon of M as a quotlent of a free
commutative monoid”. Let M = {y,, ..., p,}. We introduce indeterminates
z;, one for each yu,. For a fixed pe M we introduce the formal power series

(6.1) Gu;n=Y'2 (2=z...20,

vz 0
summed over all vectors v=(v,, ..., v,} of non-negative integers such that
... " = p. Consider, for a fixed ye M, the sequence 1 =y°, !, ..., %, ...
(k>0 in Z). Since M is finite, the sequence y* is recurrent. Let a = a(y) be
the least k > 0 such that y* = y™ for some m > a. We write b = b(y) for the least
such m. Then, if c(y) = b(y)—a(y), we shall have y* = y*** for all k > a. This
produces the “tadpole diagram” below:

Fig. 2

Let the set 22 (y) of all v occurring in (6.1) be called the relation set of . If,
in some ve Z(u), one of the v, is at least b, = b(y,), we may obtain a new
relation v'e & (u) by subtracting ¢; = c(y) from v;.

The process may be repeated until v; has been reduced to lie in the
interval [a;, b;), and, moreover, we can apply this process to each i for which
v; 2 b;. We thus obtain a new relation v* in which every component v, < b;;
such v' are called reduced relations for u. The set of all such reduced
relations is clearly finite. Conversely, given any reduced relation v*, to each
component v; > &; we may add an arbitrary non-negative multiple of ¢. Itis
now easy to see that G(u;z) of (6.1) must be expressible as a ratnonal

function of z, with a denominator which is a divisor of n(l —z}"). Il we now
i
treat the z;, as independent complex variables, then G(g;z) is certainly

holomorphic for max lz)] <1, and writing it as P(u; z /H —zjj) with P(y; 2)

a polynomial, we also have a continuation of G to a meromorphlc function
on C". '
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We now introduce the Euler product

(6.2 A*(M; 652, 8) =[] {1+ } 2 Yo (o> 1),
! 6(:") 1nJ

an analogue of A of Section 3. If we expand A* as a Dirichlet series

Y, exk™*, the coefficient e, = e, (z) will be zV®, where N(k) is the vector
k=21

whose jth component is the number of prime powers p’|| k having 8(p") = y;.
If we take each |z] < 1 we have the formula

(63) 3 k*=(2mi)" @A*M 8296w A[[E @1

k)= <
g Iz1=p<i < %

using the so-called Hadamard convolution of power series. It follows that

(6.4) Y log x/k

K€x
b(k)=u

4a+ico

= (2mi) "1 j {@A*M 6; 2% 9 Glu; 3 [ 22 B ds
J€n

Izj1=p<1

when a > 1. The function A*(M; 0; z ':s)'is holomorphic in z for r[zj # 0,
and is holomorphic at oo in each z,. Moreover the poles of G(u;z) are
separable variable-by-variable. We may therefore apply Cauchy’s residue
theorem, one variable at a time, moving the circles of integration out to
infinity, and expressing (6.3) as a sum of residues which depend holomorphic-
ally on s. The poles of G occur as simple poles where the z; are various roots
of unity, while the numerator P of G can cause multiple poles where some of
the z; are infinite. Thus (6.3) reduces to a finite sum of terms

(6.5) Yk A*(M; 0,7 8)
4

over vectors { of roots of unity, together with a sum over poles y at oo of the
form

(6.6) k() 0A*(M; 652715 8)l.oys

where 0 is some mixed derivative with respect to z.
Hence (6.4) reduces to the problem of obtaining an asymptotic expan-
sion for an integral of the type

atim
(6.7) f EZBA*(M;B;Z_l;S)dS,
s

a-iw
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where 8 is some mixed z-derivative (possibly of order 0), and y is some vector
of roots of unity or infinities. Since # is Frobenian, we can imitate the
analysis of Section 3, working with A* in place of A; the analogue of (3.8) is

(6.8) log A* =) log A% +log Ay,
[
where
(6.9) log A=Y Po(zyj s 2mp) 3 P ™.
m=1 Fmbp=C

Here z; = 2, (C) is the unique corresponding z; such that 6(p*) =y, and
P,(...) is as in (3.3). Using the Chebotarev density theorem once again, we
find that

(6.10) log AX(M;0;z71;5)

= Y Pu(zii', ... z;jl){(G:C)"1 log + Rc(ms) ;.
m=1 ms—1
If we let » be the least m > 1 for which
(6.11) Q(z):=Y(G:C) Pz}, ... Z0))
C
is not identically zero, we obtain
(6.12) log A*(M;0;z71;s5) = log A¥_+Q(z) log +R(s),

ws—1

with R(s) a suitably holomorphic function similar to log H in (4.3), and the
asymptotics for (6.7) are given by

h -
(6.13) x*~ ! (log x)?"0 -1 Y Y a,,(log log x) (log x)~"
r=0 n=0
where Q*(y) is some z-derivative of Q at y. The exponent h = h(y) will be 0
unless some component of y is infinite, and we usually find that Q*(1,..., 1)
is the dominant value amongst the Q*(y).

7. Divisibility of multiplicative functions

In this section we consider a general multiplicative function 0: N — Z,.
Choose a finite set § of non-zero prime ideals p in Z,. We consider two new
types of problem:

(A) Given fixed integers r(p) (VY p€eS), what is the distribution of the neN,
n < x, having v,(0(n)) =r(p) (Vpes)?
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(B) What is the “average order of divisibility” by the p in S of the 8(n),
n < x, relative to the set of all n < x with 8(n) # 07

More precisely, let us regard {neN, n< x, 6(n) # 0} as a finite prob-
ability space, in which every subset is assigned the measure equal to its
relative size. Choosing n “at random” in this space, we consider the vector
random variable v(@(n)). Then we seek normalising vector functions M(x),
V(x) such that {v(6(n))—M(x)}/V(x) has a limiting distribution as x — co.

7A. Analysis of Problel:l A. For each peS we choose a complex variable.
Then y(z;n):=[]z(®"™™ is a multiplicative function on H:

pes
= fneN, 0(n) # 0}. We construct the Euler product
(7.1) P;9):=[]{1+ ¥ p ™ p)} (0>
P pheH
=Y Yz mns,

ncH

If we expand the Dirichlet series in (7.1) as a power series in z (it is certainly
holomorphic when each |z(p)| < 1), the coefficient of 27 =[]z (p)"” is pre-

cisely Y 'n~% summed over the ne H with v(0(n)=r, so that the latter

Dirichlet series coincides with some mixed z-derivative of P(z;s) at z= 0.

When 6 is Frobenian we may imitate the analysis in Section 3 and

Section 6, obtaining a continuation in s of ¥ (z; s), uniform and holomorphic

in z for max |z(p) < 1, since ¥(z; n) is also Frobenian (') multiplicative.
p

Hence, in this case, we obtain for # {ne H; n < x, v(6(n) = r} an asymptotic
expansion essentially of the same type as (6.13).

7B. Problem B is handled rather differently. For each peS we introduce
a real variable u(p), and consider the multiplicative functions A(u; n} defined

on H by A(u;n) =e(Y u(p)v,(0(n)). We consider the Euler product
P

(72) L s):=[[{1+ X p oA ) =Y Awnn™* (o> 1).

P preH neH
k=1
Then
atioo

7.3 A ) log (x/n) = — X P(u 5)ds
(7.3 3 A log () =0 | G5 Ll 9ds

nsx a—fw
with a > 1.

(') See the argument between (7.3) and (7.4).
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We now assume that @ is Frobenian. Then so is each A(u; n) with ne H.
(The characteristic function of H is itself Frobenian multiplicative). We

decompose £ (w;s) into Fon(#; )] Lc(u;8), with C running over all

C
conjugacy classes in Gal L/Q. We have

(7.4) log #c(u;5)= ;/1:("; C) {F _;Y=Cp"’“} (6 >1)
pMeH

where A%(u; C):= P, (A(u; p), ..., A(u; p™) for all Frobp=C, in the no-

tation of (3.3). We now define » to be the least m > 1 such that u¥(u)

=) (G:C)" ' A% (u; C) does not vanish identically. Imitating Section 4,
3

we obtain for (7.3) an asymptotic expansion

(7.5) x " exp {(1f (w—1)log log x} ¥ a,(u)(log x)7",
nz0

by analogy with (4.12). The coefficients a,(u) are actually holomorphic, if we
regard the u(p) as complex variables in some compact polydisc about O. The
weights log (x/n) can be stripped from (7.3) without changing the general
form of (7.5), other than to replace the a,(u) by possibly different holo-
morphic coefficients a¥ (u).

We now observe that the substitution u= O in (7.3), (7.5) yields an
asymptotic expansion for # {neH;n < x]. Hence, if we divide
(7.6) x*~ " exp {(ur (w)—1) log log x} ¥ a¥ (w)(log x)~"

hnz0

by the same quantity with u = O, we obtain the empirical expected value
&.(A(u; n)) of A(m; n), regarded as a random variable on Hn[1, x]. On
performing the division we find that the quotient is asymptotically
(7.7) exp {(4 (w)— pz (0)) log log x} Y b,(w)(log x) ",

nz0

at least for u in some small polydisc about Q. In the neighbourhood of 0 we
have

(78) K014 (0) = w3 W Qu O (4,

where the constant matrix Q is easily seen to be positive definite symmetric,
in general. Now let ¢ be some fixed vector, and make the substitution u

= t/B ./log log x, where B is some positive constant to be chosen later. If we

write W, for the random vector {v(6(n))— a log log x}/B ./log log x, then we
find, as x — oo, that (7.7) and (7.8) yield the relation

(7.9) &.le(t- W)~ C(B, Q) exp (-1 Qy/B),
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where &, denotes expectation relative to the probability space H n[1, x].
Now the right-hand side of (7.9) is the Fourier transform of some Gaussian
probability distribution on RS with mean O, while the convergence in (7.9) is
certainly uniform for all ¢ in any fixed compact box of positive measure in
RS. 1t follows from a classical theorem of P. Lévy (see Lévy [17]) that the
empirical distributions of the W, converge to the corresponding Gaussian
law. Whether or not the individual components of the W, are correlated
random variables is dictated by the precise form of Q; independence is
equivalent to the diagonality of Q.

We should point out that certain choices of the set S may cause Q to be
singular, in which case we may obtain a limiting distribution which is
concentrated on some linear subspace of positive codimension.

8. Modular forms (Serre [35], Deligne-Serre [9])

8A. Modular groups. Let SL(2, Z) be the group of all invertible 2 x2

matrices T = (a Z) over Z; with determinant +1. SL(2, Z)/{4-I} acts as a
¢

discrete group of transformations on #:={zeC;Imz>0} via z+— Tz
= (az+b)/(cz+d). For N2 1 in Z we consider subgroups

(8.1) I'(N) < T (N)S T'o(N)<SL(2, Z) =T'(1),
where
I'(N)={T, T=1I(mod N)},
Ir(iN)={T.a=d=1,c=0(mod N)},
I'y(N) = {T; c =0 (mod N)}.

Any subgroup I'< I'(1) with I' = I'(N) for some N is said to be of
congruence type; its level (Stufe) is the least such N.

8B. Modular forms. Let f(z) be defined for all ze #. Let k>0 in Z,
and let Tel(l). We write f|, T for the function zi—>(cz+d)™*f(T)
(Vzes#). Note that f|, TU =(f|, T U for all T, Uel(1). Now let I
> I'(N) be of congruence type. A function f defined on 5# is called a
modular form of weight k on I' il

(1) f is holomorphic on J#;

i) f|, T=f for all Terl,

(iii} f is “holomorphic at cusps”, that is, f[, T has a convergent power
series expansion in e(z/N), VTel'(1).

If, further f|, T vanishes at oo, ¥ Tel(1), f is called a cusp form of
weight k on T, '
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The set M(k, I') of all modular forms of weight kK on I' is a finite-
dimensional C-vector space, in which the cusp-forms comprise a subspace
MO (k, I) which has codimension 1, if k is sufficiently large, Note that an
SeM(k, I'(N)) will also lie in M(k, I'y (N)) if and only if f(z4+1) =f(z) for
all ze #, ie, if and only if it has a “Fourier expansion” ) a,q" (¢ = e(z)).

nz0

by\. .
8C. Forms of type (k, ¢). If feM(k, I'; (N)) and T = (j d) is in Iy (N),

then f|, T depends only on d(mod N), Moreover, T+=+d (mod N) is a
homomorphism of I'y(N) onto (Z/NZ)*, while, if d = —1 {mod N), we have
S T =(—1)f. We thus obtain an action of (Z/NZ) on M(k, I'; (N)), and so
the latter decomposes as a direct sum of eigenspaces, according to the
characters & of (Z/NZ)*; the eigenspace M(k, &, I'o(N)) consists of those
feM(k, I'y (N)) such that f|, T =¢(d) f for all TeI4(N); such f are called
modular forms of type (k, €) on I'q(N).

E i;"dd' Since f|, T
=(—1)*f when d = —1 (mod N), we see that M(k, e, ['4(N)) = 0 unless &
and ¢ have the same parity, and we shall assume the latter from now on.

We say that ¢ is Z‘c,liin according as e(—1) ={

8D. Hecke operators on forms of type (k, ¢) (see Lt [18]). It is possible to
generalize the classical notion of Hecke operators on M(k, I'(1)) to operators
on M(k, &, I'y(N)), so that the cusp subspace M (k, &, I'y(N)) is equipped with
a basis of a very convenient type. We begin by defining an analogue of the
Petersson inner product; specifically, for f, ge M°(k, &, [o(N)), we define

1 _—
(8.2) frg)= Jff (2)g(2) y*~ 2 dxdy,
(1 (N):To(N)) '
D
where D is a fundamental domain for I';(N), acting on #. The Hecke
operators are defined as follows. Assuming that f has the Fourier expansion
Y a,q", we write

nz0

ST, =3 apq"+e(pp™' Y a,q4™,  when ptN;

(83) nz0 nz0
fIUp—': Z apnqn: when plN

nz20

These operators map MM (k, e, [o(N)) into itself, while M° (k, &, 'o(N)) is
invariant for each operator. As operators on the latter, the 7, constitute a
family of pairwise commuting ¢-Hermitian operators, with respect to the
inner product (8.2). As was shown in [18] it follows from this that
MO (k, &, [o(N)) has a basis consisting of forms f(z) = g;(zd,), where
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gfe‘JRO(k, g, FO(N,)), d; divides N/N,, and N; is a divisor of N such that ¢ is
defined (mod N)); these g; can be chosen to be simultaneous eigenfunctions
for all the T, and U, acting on M (k, &, I'y(N,)). Further, we can also insist
that the g, should be primitive, in the sense that their Fourier expansions
begin with ¢+ 0(q?. If f is primitive with N = N, then its Fourier coeffi-
cients a, will be multiplicative; the Dirichlet series Y a,n"° will converge

n=1

for sufficiently large o, and will have the Euler product

(8.4) [[d=pa) ' TI(1—p ta,+e(p) P~ ~%) 1.

pIN prN

The a, are, in fact, certain eigenvalues of the T, of U, and can easily be
shown to be algebraic integers generating some finite extension of Q; thus
the same is true of all the a,. If we consider the special case N = 1, ¢ trivial,
k =12, we have the example

S =q[](1-g%** = Y t(mg¢", =Ramanujan’s function, t(n)e Z.

nz1 nz1

We can also obtain a good basis for M(k, ¢, I'y(N)) by adjoining to our
basis of M°(k, &, 'y (N)) one of Hecke’s “Eisenstein series of Nebentypus™; it
was shown in [12] that such a function can also be taken to be a
simultaneous eigenfunction for the T, and U, of (8.3).

8E. Forms of type (1, ¢). In the case of forms of type (1, &) we have the
following remarkable

CHARACTERIZATION THEOREM (Deligne—Serre [91). The primitive f in
MO(1, &, Fo(N)), where e(—1) = —1, are of the type Y a,q", where ) a,n”*

nz1 nz1
is the Dirichlet series expansion of a certain Artin L-function. More precisely,
given such an f, there is a unique corresponding irreducible continuous rep-
resentation g of Gal Q/Q into GL (2, C), with conductor N and with det g
= ¢, such that the p-factors (for p ¥ N) of the Euler product (8.4) are precisely

det (I,— p~*g(Frob p))~ ",

and the p-factors for p| N are the standard Artin factors for ramified primes.

Another account of the proof was given in [34]. One corollary of this
theorem is a special case of the Artin conjecture: for the g occurring in the
above theorem, the Artin L-functions are entire functions.

We also remark that the Hecke “Eisenstein series of Nebentypus” in
weight 1 correspond in the context of the above theorem to reducible two-
dimensional representations, so that their Dirichlet series are expressibie as
the product of two ordinary Dirichlet L-series.
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8F. Weight k > 1, The situation here is not so simple; ) a,n”* cannot

nz1
now be an Artin L-series, since its coefficients grow too rapidly with n.
However, let f be primitive in IM°(k, &, I’y (N)). Its coefficients are integers in
some field of finite degree over Q. Let p be any non-zero prime ideal in the
ring Zr of integers of this field F. Then there exists an Artin L-function, of
conductor N* dividing (norm p) N, corresponding to some irreducible rep-
resentation ¢ with det ¢ =¢, whose Dirichlet series Y b,n*° satisfies b,

nzl
=y, (mod p) for all n = 1. (Here ¢ is two-dimensional.)

8G. Problems on coefficients of modular forms of type (k, &) on I'4(N). In
[32] Serre raised some interesting questions on the Fourier coefficients of the
“typical’ feM(k, e, ['y(N)).

ProBLEM 1. Suppose that feD(k, €, Iy (N)) has all of its coefficients a, in
Ze, F some algebraic number field. Choose a non-zero ideal a < Z, (when
k > 1 we require a to be prime). How do the a, distribute themselves (mod a)?
Thus, given feZg, obtain the asymptotics of

(8.5) # (n;1<n<x, a,=f(mod a)}.

ProBLEM II (Weight 1 only). Obtain the asymptotic expansion of
(8.6) #/n1<n<x, a,#0].

ProsLeM III (Weight 1 only). For fixed « # 0 in C, obtain an asymptotic
expansion for
(8.7) #n1<n<x, a,=0a.
(The reason for the restriction to weight 1 in Problems II and III is that a,
tends to infinity “in general”, when &k > I).

We may add a further pair of problems of analogous type, motivated by

the results of Section 7. Under the hypotheses of Problem I, choose a finite
set S of non-zero primes in Z,.

ProBLEM IV. Find the asymptotics of
(8.8) #l<n<x;o(a,)=k, VYpeS},
where each k, = 0 is fixed.
ProBLem V. Consider the n with a,+# 0, n< x, as random variables.

Decide whether some suitably normalised linear combination of the random
variables v,(a,) (p€S8) has a limiting probability distribution as x - x.
The method of Frobenian multiplicative functions which we have de-

veloped in Sections 3-7 enables us to solve Lhese problems, except in certain
“pathological™ cases.
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8H. Reduction of Serre’s problems to Frobenian functions. As pointed out
in § 8D, we can choose a C-basis for M(k, ¢, I’y (N)) consisting of functions
g:(zd;), where the g, are either primitive eigenfunctions in M°(k, e, I'o(N}))
or else an Eisenstein series of Nebentypus on I'¢(N). Thus, if
feM(k, &, I'o(N)), it can be written uniquely as

(8.9) f(z)= ZA.' g:(zd,)

with the 2; in C. We write the Fourier expansions of the g; as Y b;(n) e{nz).
n=0
Then

(8.10) a(n) = Z’li bi (n/d;)

when f(z) = Z a(n)e(nz), where we make the convention that b;(n/d;) = 0 if
n20

d; #n. Each ne N is uniquely expressible in the form md, where (m, D) =1

and 4 is composed only of primes dividing D. Here we take D = N, except in

Problem I, where it is (norm a) N. The coefficients b, (n) are multiplicative for

nz=1, by our choice of the g;. Thus

(8.11) a(md) = Zl bi(d/d;) b; (m).

The results of § 8E and § 8F show that, for k=1, b, is Frobenian
multiplicative from Np (natural numbers prime to D) into Zg,, where K, is
some finite cyclotomic extension of Q. Also, for k> 1, b; (mod a) is
Frobenian multiplicative from N, into the finite monoid Zy /an Zy,, provided
that a is prime.

Let & be the set of natural numbers composed only of prime factors of
D. Let these prime factors be py, ..., p,. Then the number of de 2 with d < x
is the same as the number of t-tuples of non-negative integers y,, ..., y,
satisfying ) y; log p; <log x, and thus, by a simple calculation of volumes,

st

satisfies
'l '
(8.12) 5 1-~(°g %) (x = ).
gi_ﬁ- ‘ lgf

The fact the & is such a thin subset of N makes it feasible to convert the
counting problems in Problems I-V into problems with de ¢ fixed, and m
running up to x/d, and then to sum the resulting asymptotic expansions over
all d up to, say, some large power of log x. For the d > (log x)™ we estimate
the corresponding number of m with some suitable trivial upper bound. For
example, in many cases it is sufficient to use the upper bound x/d. As for the
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error term thus produced, we note that

D, _xloglog x

x Y dilgx Y n'D,—Dy ;)< x < (log 27

2
ded n2(logx)T n(logx)T "
x2d2 (logx)T

where D, = # {de ?;d < n}. The counting functions for the m can “gen-
erically” be obtained from the results of Sections 4—6. Thus we can deal with
all cases of Problem I; for the others, we need to make the hypothesis that
the non-zero A, in (8.9) are linearly independent over the algebraic number
field generated by all the b,. (Since the latter field is countable, while C is
not, this really does deal with “most” f!)

ExaMmpLES. 1. Ramanujan’s function. We take k = 12, N = 1, ¢ trivial, and
consider the cusp-form Y t(n)g" =g [] (1—¢"**. For Problem I with a a

nz1 nz1

prime ideal pZ in Z, the method of Frobenian functions on a finite monoid
yields another proof of the results of C. Radoux [31]. Radoux’s results were
also obtained by Serre [33]; by applying further work of his own (Sém.
Delange-Pisot—Poitou 14 (1967/8)) and of Swinnerton-Dyer (Modular
functions of one variable III (Springer Lecture Notes 350 (1973), pp. 1-55)), he
shows, in effect, that n+—1(n) (mod k) is Frobenian multiplicative for any k.
Our methods of Section 6 yield complete asymptotic expansions of the type
(6.13) (with no terms in log log x) for # {n; 1< n<x, t(n) = p (mod k)}.
Radoux and Serre were content to obtain leading terms only, making use of
Delange’s Tauberian theorem ([33]). This is sufficient, for example, to decide
when t(n) is uniformly distributed over invertible residue classes (mod k).
Our methods also allow us to impose further Frobenian conditions on n. For
example, let heN and let y be a Dirichlet character (mod h). Then
ni—(t(n) (mod k), x(n)) is Frobenian multiplicative, with values in Z/kZ x C,,
where ¢ is the exponent of (Z/hZ)*. From this we are able to extend the
Radoux—Serre results to the cases where n is restricted to any fixed arith-
metic progression. Slightly more sophisticated ideas will yield the distribution
of t(n) (mod k) for n a sum of two squares, or a value of a binary quadratic
form, or, more generally, a norm of an element of a full Z-module in an
arbitrary Zg, by appropriate combination of Frobenian multiplicative
functions with values in a finite monoid.

2. A cusp form of type (1, €) discussed by Hecke. The Fourier expansion
q H {l—qlz"'}2= Z a,q" = ZE (_l)bqa2+bz
mz1 nz1 a,beZ,a=1,bh=0(3)

ath=1(2)

belongs to a primitive cusp form f of type (1, ¢) on I'y(144), where e(n) is the

: —4 .. .
Jacobi symbol (—;—) The Dirichlet series Za,,n's (o > 1) is the Artin L-
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function corresponding to a certain irreducible 2-dimensional representation
¢ of Gal (Q(i, $/12)/Q) = D,, the symmetry group of the square, having det ¢
= ¢£. This was already noticed by Hecke (Gesammelte Werke, pp. 426, 448); see
also Serre (33], [34]. Since f here is primitive the discussion of § 8G, H is
directly applicable. Thus, in agreement with Serre [33], we find that

# {n; 1< n<x, a,#0} ~ x(log x)734( Y ¢ log x)7%).
k>0
For the quantity # {n; 1 < , a, =}, with ¢ # 0 fixed in Z, we do not

really need the heavy machmery of Section 5. The corresponding integrals
F(4) of (4.14) involve only one complex variable (since K = Q here), while
R(z) turns out to be a polynomial and F(z) has a multiple pole at z = 0.
Thus the saddle-point method becomes irrelevant here, and we need only
apply the Cauchy residue theorem, obtaining for # {n;1<n<x, a,=a}
and expansion of the type (6.13).

A direct application of Section 6 gives an expansion of type (6.13) for
# (n; 1 <n<x,a,=p(mod k)}. The corresponding divisibility problems fit
into the typical cases of Section 7.

3. Let F be an imaginary quadratic number field, f some conductor in F,
and let ¥ be a non-principal character on ideal classes (mod*f). The Hecke
L-function

Yx(@Na*=[[{1-Np~—x(p)} ' =Y a,n™° (where a,= 3. x(0)

a pAt n2z1 Na=n
corresponds to a modular form of type (1, ¢) on some I'o(N); in fact f is a
cusp form, and, indeed, an eigenfunction for all the T, and U,. In this case
the a, lie in some general cyclotomic field. When f is primitive, § 8G, H
will apply, and this time there does not appear to be any reason to think
that the general cases of Section 5 can be avoided, when discussing
# {n; 1 <n<x,a,=a}; however, the other Serre problems yield to the
methods of Sections 6 and 7.
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